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Abstract: Robot grasping constitutes an essential capability in fulfilling the complexities of advanced
industrial operations. This field has been extensively investigated to address a range of practical
applications. However, the generation of a stable grasp remains challenging, principally due to the
constraints imposed by object geometries and the diverse objectives of the tasks. In this work, we
propose a novel learning from demonstration-based grasp-planning framework. This framework is
designed to extract crucial human grasp skills, namely the contact region and approach direction,
from a single demonstration. Then, it formulates an optimization problem that integrates the extracted
skills to generate a stable grasp. Distinct from conventional methods that rely on learning implicit
synergies through human demonstration or on mapping the dissimilar kinematics between human
hands and robot grippers, our approach focuses on learning the intuitive human intent that involves
the potential contact regions and the grasping approach direction. Furthermore, our optimization
formulation is capable of identifying the optimal grasp by minimizing the surface fitting error
between the demonstrated contact regions on the object and the gripper finger surface and imposing
a penalty for any misalignment between the demonstrated and the gripper’s approach directions. A
series of experiments is conducted to verify the effectiveness of the proposed algorithm through both
simulations and real-world scenarios.

Keywords: grasp synthesis; learning from demonstration; skill transfer; robot learning

1. Introduction

In recent years, there has been a notable escalation in the demand for industrial robots,
driven by the need to enhance productivity and boost product quality. With the continu-
ous advancements in robotics technology, the trend toward increased robot installations
has been significantly pronounced in sectors such as logistics and assembly production.
Among the broad spectrum of robotics research, the capability of robot grasping stands
out as a fundamental skill that is crucial for the execution of complex tasks in industrial
environments [1]. Despite being a subject of research for numerous decades, robot grasp
planning in the context of industrial automation presents persistent challenges due to the
lack of understanding of the constraints that are inherent to the downstream processes in
industrial operations [2].

To address this challenge, learning from demonstration (LfD) has emerged as a promis-
ing approach that synthesizes robot grasping by observing human demonstrations. LfD
offers an intuitive and straightforward method for non-experts in robotics to program a
new task on a robot. Despite significant research efforts dedicated to efficiently transferring
human grasping skills to robots, substantial challenges remain due to the low complexity
and dexterity of the robot gripper compared to the human hand, as well as the diverse array
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of object shapes encountered in practical applications. Recent advancements in data-driven
methods have made remarkable progress in the extraction of grasping skills by leveraging
deep learning techniques. However, these methods typically require a large amount of
data for training, leading to time-consuming and labor-intensive processes [3]. On the
other hand, traditional analytic approaches formulate grasp planning as an optimization
problem, focusing on achieving a stable grasp. The combination of human intention with
optimization techniques enables robots to execute functional grasps while being mindful of
constraints emanating from downstream processes. Existing methods typically represent
human grasping skills through a contact model and then search for an optimal grasp that
aligns with the corresponding contact model based on prior knowledge of object shapes
and gripper configurations [4]. However, a notable limitation of many current approaches
is their reliance on pre-defined grasping taxonomies, which aim to bridge the gap in config-
uration differences between human hands and robot grippers. This pre-defined grasping
taxonomy hinders the ability to generalize across a broad spectrum of industrial tasks.

In this work, we propose a novel LfD-based grasp-planning approach, which incorpo-
rates human grasp skills into an optimization framework to synthesize a stable grasp. This
method revolves around extracting key elements of human grasp skills, namely the contact
region and the approach direction, from a single human demonstration. The key idea of
our approach is to account for high-level task knowledge while addressing the difference
in configuration between human hands and robot grippers. More specifically, the proposed
method utilizes contact regions as a foundational element and applies optimization to
reduce the surface fitting error between the robot gripper fingers and the object. To achieve
a functional grasp, both the contact region and the approach direction are crucial, as often
observed in human grasp skills [5]. To extract this information from human demonstrations,
we propose an intuitive and straightforward method that involves passing a plane formed
by the thumb and index finger through the object. The obtained grasp skills are then fed
into an optimization algorithm to generate a grasp that closely approximates the human
demonstration. In summary, our main contributions are:

• We propose a novel LfD-based grasp-planning framework that utilizes both the contact
regions and approach direction as key skills derived from a single human demonstra-
tion. This approach effectively harmonizes human intention with the environmental
constraints of both the objects and the robot gripper.

• We develop an intuitive and straightforward method for detecting the contact regions
and approach direction by employing a specific hand plane formed by the thumb and
index fingers using a single RGB-D camera.

• We integrate human grasp skills, encompassing both the contact regions and approach
direction, into an optimization problem. This integration aims to generate a stable
functional grasp that aligns with human intention while considering environmental
constraints.

We note that a short conference version of this work was presented in [6]. Our initial
conference paper did not delve into specific challenges such as collision avoidance and
internal grasp complexities. This manuscript addresses these critical aspects, supplemented
by additional analytical experiments to provide deeper insights.

2. Related Works

Data-driven methods: The data-driven approach in robot grasping has gained con-
siderable traction due to its ability to learn grasp features from a large amount of data by
leveraging deep learning techniques [7]. Benefiting from robustness to perception errors
and the capacity to generalize to unseen objects, this approach has been successfully de-
ployed in various applications, notably in bin-picking scenarios [8]. However, the collection
of large volumes of training data is a costly and resource-intensive endeavor. Additionally,
generating a feasible functional grasp in complex industrial settings often requires an
understanding of environmental constraints and downstream procedures, an aspect that
data-driven methods may struggle to incorporate effectively. In response to the challenges
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associated with data collection, Reinforcement Learning (RL) methods have emerged as
a potential solution. RL methods enable robots to automatically learn grasping policies
through self-supervised interaction with the environment [9]. The advent of advanced com-
puter graphics has further facilitated this process, allowing researchers to train grasping
policies in simulation environments and then transfer them to real-world applications [10].
However, setting up training simulations can be daunting for novice users. Moreover,
due to the difficulty in acquiring general skills applicable across a variety of tasks, these
methods often require extensive retraining for different task configurations. In contrast,
the proposed method synthesizes the functional grasp by observing human demonstration
once, without requiring extensive data collection and time-consuming training processes.

Analytic methods: Analytic approaches in robot grasping search for a stable grasp
by formulating and solving an optimization problem, utilizing prior knowledge of object
shapes and gripper configurations [11]. These methods are suitable for well-structured
industrial environments since they are low data-dependent and eliminate the need for
tedious supervised or unsupervised training. Some analytic strategies represent a grasp as
a set of contact points, sampling gripper poses in the configuration space to seek an optimal
grasp. This process often employs various metrics, such as contact surface matching [12]
or gripper configuration [13]. However, these approaches do not always guarantee that
the generated grasps can successfully perform specific post-grasp motions in line with the
downstream processes. Alternative approaches focus on developing a taxonomy of grasp
types tailored for different manipulation purposes. This type of approach can initially
assign a feasible functional grasp and enhance sample efficiency by reducing the complexity
of the search space [14]. An in-depth analysis of grasp taxonomy for continuum robots was
presented in [15]. Based on this grasp taxonomy, the study in [16] introduced an analytical
grasp synthesis approach, allowing continuum robots to adapt grasping strategies to
diverse objects and tasks. In [17], a comprehensive taxonomy of human grasp types was
presented through an analysis of the data recorded from 40 healthy subjects performing
20 unique hand grasps. Extending this concept, ref. [18] proposed an approach to predict
the best grasp type from a taxonomy of 33 grasp classes in multi-object scenarios using
just a single RGB image. However, the taxonomy-based approach is heavily dependent
on predefined shape priors of both grippers and objects, which can limit its generalization
capabilities for unseen objects. In contrast, our approach directly transfers human grasp
skills to the robot through observations of human demonstrations, without the need for a
predefined taxonomy of grasp types, which enables a more flexible and adaptive approach
to robot grasping.

Grasp synthesis by learning from demonstration: The remarkable grasping skills of
humans, capable of handling a diverse range of objects in complex task contexts, have
sparked significant interest in the field of robotics, particularly in the transfer of these
skills to robots, as surveyed in [19]. To recognize the human grasping pose, many different
methods have been discussed. Early research in the field predominantly relied on a data
glove for the precise detection of human finger positions, which were then replicated by
robotic grippers. A teleoperation system utilizing a data glove to control a multi-fingered
robotic hand was developed in [20]. The integration of tactile sensors into this glove-based
framework plays a crucial role in understanding how the hand interacts with different
objects. In [21], a data glove equipped with multiple Inertial Measurement Units (IMUs) and
tactile sensors was designed to capture the complex dynamics of hand–object interactions
in real time. However, the complexity of data gloves, especially in integrating various
sensors, presents significant challenges in terms of cost and maintenance. To simplify the
system of human grasping demonstration, the study in [22] proposed the use of thermal
sensors to trace contact areas. With the advent of deep learning technologies, more recent
studies have begun to employ simple cameras to track 3D hand poses [23]. A learning
from demonstration pipeline designed to infer the poses of both the human hand and the
object and then transfer these relative poses into robot grasping instructions is discussed
in [24]. The integration of human demonstrations into the initialization of grasping policies
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has been shown to significantly improve sample efficiency for both reinforcement learning
and heuristic-based methods. This efficiency is achieved by limiting the search space
to a more constrained domain. A critical element in learning from demonstration (LfD)
approaches is the contact model between the human hand and the object, which was
extensively explored in [25]. Some researchers measure accurate contact points between
the fingertips and objects through the use of a specific data glove and then map the contact
points onto the corresponding robot gripper fingers [26,27]. Although these methods
provide an intuitive way to transfer human grasping poses to robots, the reliance on
single-point approximations imposes rigid mapping constraints and sacrifices flexibility in
accounting for the configuration differences between human hands and robot grippers. To
relax the mapping constraints, recent research has shifted its focus toward contact regions,
recognizing that human grasps typically involve surface matching between the hand and
the object [28]. However, most of these approaches employ specialized equipment (e.g.,
thermal cameras) or manual labeling to identify the contact regions, often overlooking the
importance of the grasping approach direction, which could further narrow the search
space for optimal grasping. In contrast, our method proposes a novel approach to detect
both the contact regions and approach direction using a single RGB-D camera, a common
device in industrial settings. In addition, the proposed optimization method formulates the
surface fitting issue, aiming to minimize the distance between the demonstrated contact
regions and gripper finger surface, as well as the misalignment between the demonstrated
approach direction and the robot gripper, as a least-squares problem to accelerate the
computation required for grasp searching.

3. Proposed Approach

The proposed method for robot grasp synthesis is structured into two stages: grasp
skill recognition from human demonstration and grasp synthesis with the optimization
method, as shown in Figure 1. The process starts with the identification of contact regions
and approach directions from a human demonstration. This identification involves defining
a hand plane formed by the thumb and one of the other four fingers [29]. The approach
direction is determined by combining the directions of the thumb and index finger. The con-
tact region on the object is then determined by intersecting this hand plane with the object’s
surface and selecting proximate surface points. Following the extraction of the contact
region and approach direction, the grasp optimization process, which iteratively fits the
surface of the gripper fingers to the previously identified contact region and aligns the
direction of the gripper approach with the human demonstration, is employed to determine
the best grasping pose. The optimization is mathematically formulated as a least-squares
problem, taking into account the grasp skills extracted from the human demonstration.
Once a grasp pose is generated, it undergoes a critical evaluation to ensure it is collision-free.
If a collision is detected, the gripper is moved to a safe pose, and the grasp optimization
process is repeated to generate a new collision-free pose.

3.1. Grasp Skill Recognition

During the human demonstration phase, the movements of the human hand are
tracked by leveraging deep learning techniques [30], employing a commercial camera.
The research in [31] has proven that the majority of human grasp poses are formed by
the thumb and some other opposing fingers. This finding has significant implications
for robot gripper design, many of which mimic this fundamental grasp characteristic by
incorporating a thumb finger and a set of opposing fingers. Therefore, in this work, the hand
plane is defined by the thumb and one of the other four fingers. As shown in Figure 2,
one hand plane is defined by the thumb and index fingers in the case of a parallel gripper,
and two hand planes for a three-finger gripper are defined: one formed by the thumb
and index fingers, and another formed by the thumb and middle fingers. The coordinate
system of the hand plane is calculated based on the 3D positions of specified hand joints
on the thumb and index fingers, as shown in Figure 3. The midpoint between the root
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joints of the thumb and index fingers is defined as the origin of the hand-plane coordinate
system. The normal vector of the hand plane is defined as the X-axis, whereas the Y-axis is
determined by the vector connecting the thumb and index root joints. The Z-axis is then
established following the right-hand rule.

Figure 1. The pipeline of the proposed approach consists of two stages: grasp skill recognition and
grasp synthesis. First, the contact regions and approach directions are recognized from the human
demonstration. Then, grasp optimization, which iteratively fits the surface between the gripper finger
surface and the contact region, is employed to synthesize the grasp corresponding to the human
demonstration. The generated grasp pose is evaluated to ensure it is collision-free. If a collision
is detected, the gripper is moved to a safe pose, and the grasp optimization process is repeated to
generate a new pose.

The approach direction, a crucial feature for functional grasp, indicates grasp reacha-
bility. Upon determining the hand plane, the Z-axis direction is selected as the approach
direction, a concept similarly explored in [5]. Note that the approach direction is uniformly
calculated using the hand plane formed by the thumb and index fingers, regardless of the
number of fingers on the gripper.

Figure 2. The hand-plane definitions in the two- and three-finger Robotiq gripper cases.
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Figure 3. The hand plane is formed by fitting hand joints on the thumb finger and index finger.

Our method adopts a novel approach to determining the contact region for robot
grasping. Instead of striving for pinpoint accuracy in detecting the positions where human
fingertips contact the object surface, the hand plane is utilized to estimate a broader contact
region on the object. This strategy not only simplifies the process but also enhances the
robustness of our method, particularly in optimizing the grasping pose and accommodating
the configuration differences between the human hand and the robot gripper.

Figure 4 exemplifies the process of identifying the contact region on an object. To cal-
culate this contact region, we employ a two-step procedure. The first step involves passing
the hand plane through the point cloud of an object. During this phase, all points on the
object surface that fall within a specified tolerance distance, denoted as d1, from the hand
plane are selected using Equation (1). These points serve as preliminary candidates for the
contact region.

|AOx + BOy + COz + D|
√

A2 + B2 + C2
≤ d1 (1)

where A, B, C, and D are the coefficients defining the hand plane Ax + By + Cz + D = 0.
Each point within the object’s point cloud is denoted by its 3D coordinates Ox, Oy, and Oz.
The parameter d1 is the first tolerance distance, which represents the permissible distance
from any point in the object’s point cloud to the hand plane. This tolerance distance is
determined based on the width of the gripper finger and subsequently guides the selection
of the contact area. The results of the first step are shown in Figure 4a. The selected volume
contains points from the object’s point cloud that fall within the tolerance distance d1 from
the hand plane.

In the second step, we refine the selection of potential contact points on the object
that were initially identified in the first step. This refinement involves selecting only those
points that are within a second tolerance distance, denoted as d2, from the origin of the
hand plane using Equation (2). The purpose of this second tolerance distance is to ensure
that the chosen contact regions on the object are not too far away from the demonstrated
grasp pose. √

(Ox − x0)2 + (Oy − y0)2 + (Oz − z0)2 ≤ d2 (2)

where x0, y0, z0 denotes the origin of the hand-plane coordinate, and the parameter d2 is the
second tolerance distance, which is determined based on the length of the gripper finger.
The results of the second step are shown in Figure 4b. Only the points within the object’s
point cloud, where the distance to the origin of the hand-plane frame does not exceed the
specified threshold d2, are retained.
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(a)

(b)

Figure 4. The contact region is determined by passing the hand plane through the object’s point
cloud (blue). (a) First, select the points (red) within the distance d1 to the hand plane. (b) Second,
select the points (red) from the first step within the distance d2 to the origin of the hand plane.

3.2. Grasp Synthesis
3.2.1. Grasp Optimization

The contact regions on the object that align with the human demonstration are identi-
fied and then employed in an optimization computation. It is generally observed that a
larger contact surface between the gripper and the object results in greater friction, which,
in turn, facilitates the formation of a more robust grasp. Leveraging this principle, an
iterative surface fitting (ISF) optimization method, adapted from the Iterative Closest Point
(ICP) algorithm, was proposed in [32].

Compared with the conventional ICP approach, the ISF method deforms the gripper
fingertip surfaces while obeying kinematic constraints and concurrently aligns these modi-
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fied surfaces with the target object’s surface. This method is more precisely formulated in
Equation (3).

min
R,t,δd

(Ep + λEn)

s.t. Ep(R, t, δd) =
m

∑
i=1

2

∑
j=1

((pij − qij)
Tnq

ij
)2

En(R) =
m

∑
i=1

((Rnp
i )

Tnq
i + 1)2

(3)

where the rotation R and translation t are the transformation matrix from the robot gripper
to the object, and δd is the displacement between the gripper fingers. The variables pi, qi,
np

i , and nq
i represent the points on the robot gripper surface, the corresponding point on the

object surface, the normal vector at point pi on the gripper surface, and the normal vector
at point qi on the object surface, respectively. The variable m is the total number of points,
and j = 1, 2 represents the indexes of two fingers. According to [32], Equation (3) can be
further formulated as a least-square problem min

R,t,δd
∥Ax− b∥2.

The core objective of the ISF method is to search for an optimal transformation matrix
(rotation R and translation t), as well as the displacement (δd) of the gripper fingers, by
minimizing the surface fitting error. In practical terms, the most intuitive approach involves
initializing R, t in Equation (3) with the pose corresponding to the human grasp. This
initialization forms the baseline from which the ISF algorithm iteratively computes the
errors Ep and En to refine the fit to the contact surface. However, this method may diverge
from the initial human grasp pose due to the difference in fingertip shape between human
hands and robot grippers. To address this, we incorporate the approach direction derived
from the human demonstration into the optimization process as a constraint in Equation (4).
This incorporation ensures a more accurate and feasible replication of human-like grasping
by the robot.

min
R,t,δd

∥Ax− b∥2

s.t. Rnz = napp

(4)

where nz denotes the Z-axis direction of the gripper, and napp represents the approach
direction, determined from the human demonstration. The rotation matrix R is designed to
align nz with napp.

To effectively solve this optimization problem while maintaining the integrity of the
approach direction constraint, as defined by the human demonstration, Equation (4) is
rewritten as follows:

min
R,t,δd

∥Ax− b∥2 + ω2∥(Rnz)× napp∥2 (5)

where ω2 is a weight parameter to balance the surface matching accuracy and the alignment
of the approach direction. Under the assumption that the rotation angle involved in each
iterative step is small, it becomes feasible to approximate the rotation matrix R as follows:

R ≈

 1 δψ δθ
δψ 1 −δϕ
−δθ δϕ 1

 = I + δ̂r (6)

where δ̂r ∈ so(3) is the skew-symmetric matrix form of the rotation vector δ̂r = [δϕ, δθ, δψ],
which contains the small rotational changes in three dimensions—roll (δϕ), pitch (δθ),
and yaw (δψ). By substituting Equation (6), which characterizes the skew-symmetric matrix
δ̂r, into Equation (5), the second term of Equation (5), which concerns the alignment of the
approach direction, can be rewritten as follows:
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ω2∥ ˆnapp · n̂z · δr + n̂z · napp∥2

=ω2∥E · δr− f ∥2

where E = ˆnapp · n̂z, f = −n̂z · napp

(7)

Consequently, by integrating Equation (7) into Equation (5), the optimal grasp pose
can be calculated as

[δr, t] = (AT A + ωGTG)−1(ATb + ωGT F)

where G = [ET , 0T
3·3]

T , F = [ f T , 0T
3 ]

T
(8)

Using Equation (8), the optimization problem is formulated into a standard least-
squares problem that can be solved efficiently. The optimal finger relative displacement is
calculated using Equation (9), given by [32].

δd∗ =
∑m

i=1 ∑2
j=1 Kij Hij

∑m
i=1 ∑2

j=1 K2
ij

s.t. δd∗ ∈ [dmin, dmax]

(9)

where Kij = 0.5(−1)j−1(Rv)Tnq
ij

, and Hij = (Rpij + t− qij)
Tnq

ij
. dmin and dmax indicate the

minimum and maximum distances between two fingers, and v is the direction vector of the
finger movement.

The pseudo-code of the proposed LfD-based iterative surface fitting is summarized
in Algorithm 1. The proposed method is designed to optimize for the optimal gripper
transformation R∗, t∗ with fixed δd. Concurrently, the finger optimization focuses on
determining the optimal finger displacement δd∗ while maintaining fixed values for R, t.

Algorithm 1 Learning from demonstration-based iterative surface fitting

1: Input: pi, np
i ∈ gripper, qi, nq

i ∈ object
2: Output: R∗, t∗, δd∗

3: Init: R∗ = Rhandplane, t∗ = thandplane, δd∗ = 0, err = ∞
4: while err− E(R∗, t∗, δd∗) > △err do
5: R∗, t∗ ← minR,tE(R, t, δd∗) using Equation (8)
6: δd∗ ← minδd∗E(R∗, t∗, δd) using Equation (9)
7: err ← E(R∗, t∗, δd∗) using Equation (3)
8: end while
9: return R∗, t∗, δd∗

3.2.2. Collision Avoidance

In the iterative surface fitting phase of robot grasp planning, it was observed that
while the gripper fingers tend to align toward collision-free grasps, there remains a non-
negligible risk of the gripper base colliding with the target object. To mitigate this issue and
ensure that the entire gripper body avoids collision, we incorporate a collision avoidance
mechanism within the grasp optimization framework.

An existing method in this domain is the Signed Distance Function (SDF), which
computes the distance between each point in a three-dimensional space and the surface of
its nearest obstacle. This function offers a differentiable representation of the environment,
which proves advantageous for algorithms based on gradient optimization. However,
a critical limitation of the SDF approach is its inability to accurately determine the exact
penetration vector in scenarios involving deep collisions, as shown in Figure 5. To address
collision detection and avoidance, the Gilbert–Johnson–Keerthi (GJK) algorithm coupled
with the Expanding Polytope Algorithm (EPA) [33] is commonly employed. The GJK
algorithm is utilized to rapidly determine whether a collision occurs through the concept of
the Minkowski difference. Subsequent to this, the EPA is tasked with calculating the most
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efficient vector for collision escape, based on the findings of the GJK algorithm. Despite
their utility, these algorithms exhibit limitations, particularly in handling objects with
concave geometries. In light of these challenges, particularly prevalent in internal grasp
scenarios, we propose a new approach to deep collision avoidance for grasp planning.
This approach is designed to effectively navigate the intricacies of deep collision scenarios,
thereby enhancing the robustness and reliability of robot grasping.

Figure 5. (a) In instances of minor collisions, where the interaction between the gripper and the object
is relatively superficial, escaping collisions is typically straightforward. (b) In situations involving
deep collisions, the complexity of avoiding collisions escalates significantly.

The proposed approach for determining the shortest escape vector in robot grasping
scenarios, as depicted in Figure 6, is structured into three steps.

Figure 6. (a) Approximate both the object and the gripper into spherical components. (b) Calculate
the Minkowski difference to formulate a union of spheres. (c) Determine the boundary of the union
of spheres. (d) Find the shortest escape vector. (e) The result of the collision-free grasp.

The first step involves representing both the object and the gripper as multiple spheres,
as shown in Figure 7. This step enables the decomposition of any non-convex object
into convex shapes, facilitating the efficient calculation of the Minkowski difference for
spherical forms.

Figure 7. Examples of approximation into spherical components.

Next, the Minkowski difference between each pair of spheres—one from the object
and one from the gripper—is computed. This calculation, guided by Equation (10), results
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in the formation of a union of spheres, collectively representing the overlapping regions
between the object and the gripper.

P⊖ G = ∪{Ai ⊖ Bj|Ai ∈ P, Bj ∈ G} (10)

The object, denoted as P, is represented as P = ∪i=1:M Ai, where each Ai signifies an
individual sphere on the object. Here, M is the total number of spheres that constitute
the object. Similarly, the gripper, denoted as G, is represented as G = ∪i=1:N Bi, with each
Bj representing a sphere on the gripper, and N being the total number of spheres that
constitute the gripper. The Minkowski difference between two spheres is calculated using
Equation (11).

Ai ⊖ Bj = Sphere(cAi − cBj , rAi + rBj) (11)

where cAi represents the center position, and rAi denotes the radius of the sphere Ai
constituting the object P. Similarly, cBi is the center position, and rBi signifies the radius of
the sphere Bi on the gripper G.

The final step involves calculating the boundary of the union of these spheres. The shortest
distance from this boundary to the origin is identified as the escape vector. To streamline
this process, we introduce a grid-based method to reduce computational complexity. Each
grid point is evaluated to determine whether it is inside a sphere, on the sphere’s surface,
or unoccupied, according to Equation (12). The shortest escape vector is then determined by
identifying the shortest distance between a point on the surface of the combined spherical
union and the origin. The vector from this point to the origin represents the shortest
possible path to disengage the gripper from the object without collision.

dij = |pk − cij| − rij
dij < 0, inside ball
dij = 0, on ball surface
dij > 0, not occupied

(12)

The position of the kth grid in the space is denoted by pk. cij = cAi − cBj , which represents
the center of the union ball Ai ⊖ Bj, calculated as the difference between the centers of Ai
and Bj. rij = rAi + rBj , which is the radius of the union ball Ai ⊖ Bj, determined by the sum
of the radius of Ai and Bj.

4. Experiments

In this section, both simulations and real-world experiments are conducted to verify
the effectiveness of the proposed LfD-based grasp-planning algorithm. The desktop com-
puter we used was equipped with a 3.7 GHz CPU and 32 GB of memory. An SMC parallel
gripper was used in the experiments. The width d1 of the gripper finger was 2 cm, whereas
the length d2 was 10 cm. To incorporate a margin of flexibility in the grasp planning, a scale
factor α was introduced, set at 1.5. Applying this scale factor, the parameters of the gripper
were adjusted to d1 = α · 2 = 3 cm and d2 = α · 10 = 15 cm.

4.1. Experiments through Simulations

In the simulations, the contact regions and the approach direction were specified by the
human operator through the use of a mouse, as shown in Figure 8. The method employed
for evaluation incorporated three datasets: HomebrewedDB [34], YCB-Video [35], and T-
less [36]. To ensure a comprehensive and varied analysis, nine objects were picked from
each dataset, resulting in a diverse range of 27 objects. To evaluate the proposed method,
the original iterative surface fitting (ISF) method was employed as a benchmark. The evalu-
ation metric was the surface fitting error Etotal = Ep + λEn, as defined by Equation (3). This
metric quantifies the average distance, in millimeters, between the corresponding points
on the surfaces of the gripper tips and the object, thus providing a measure of the accuracy
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of the fit. In addition, the computation time for grasp planning, measured in seconds, was
recorded for each method. The simulated results for the various objects are presented in
Figures 9–11. Furthermore, as detailed in Table 1, the simulation results revealed certain
limitations of the original ISF method, particularly its tendency to converge to local optima,
requiring the resampling of grasp poses. This resampling process subsequently resulted
in increased computation times. In contrast, the proposed method, incorporating contact
regions and approach directions specified by human operators, demonstrated improved
performance. Specifically, it achieved reduced fitting errors and shorter computation times
for determining the optimal grasp poses owing to the employment of closed-form solutions
for grasp planning. The experimental results underscore the enhanced efficiency and
accuracy of the proposed method in grasp-planning applications.

Figure 8. The red area is the contact region (red) and the yellow arrow is the approach direction.

Figure 9. The simulation results on different objects. The nine objects were selected from the
HomebrewedDB dataset.
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Figure 10. The simulation results on different objects. The nine objects were selected from the
YCB-Video dataset.

Figure 11. The simulation results on different objects. The nine objects were selected from the T-less
dataset.
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Table 1. Surface fitting errors and computation times on different objects.

Dataset Object Name ISF LfD-Based ISF
Etotal (mm) ttotal (s) Etotal (mm) ttotal (s)

HomeDB

Jig 13.005 1.191 5.326 0.798
Dryer 14.600 1.071 6.974 0.747

Cap 9.609 1.990 5.459 0.975
Converter 11.387 2.561 6.404 0.519
Motocycle 12.032 2.439 7.285 0.661
Dinosaur 17.219 1.744 9.427 0.895

Clamp 9.439 1.240 7.395 0.614
Cup 10.871 1.867 8.068 0.771
Bear 12.758 1.043 7.215 0.558

Average 12.324 1.683 7.061 0.726

YCB-V

Box 3.457 0.404 3.560 0.369
Can 4.193 0.420 2.551 0.406

Mustard 8.720 0.832 6.174 0.559
Spam 8.740 0.532 4.283 0.370

Banana 3.145 0.434 3.031 0.287
Bowl 8.924 1.238 4.778 0.862

Scissor 5.808 0.679 3.662 0.277
Magic pen 4.806 0.523 4.092 0.317

Clip 6.836 0.379 4.681 0.347
Average 6.070 0.604 4.090 0.422

T-less

Bulb 5.198 0.506 2.600 0.327
S-connector 8.772 0.872 3.588 0.334

C-plug 6.968 1.004 6.525 0.532
R-connector 11.648 1.216 7.858 0.524
C-connector 10.593 1.562 6.623 0.639

Switch 5.159 0.915 3.409 0.359
Box 2.405 0.439 2.536 0.412

Plug 13.058 1.282 5.171 0.865
Circle box 7.784 0.526 5.417 0.329

Average 7.954 0.925 4.859 0.480

Total average 8.783 1.071 5.337 0.543

We further evaluated the effectiveness of the proposed collision avoidance method in
scenarios involving the internal grasping of four distinct objects. The results are visualized
in Figure 12. The process involved randomly sampling an initial grasp pose, followed by
the generation of collision-free grasp poses using the surface fitting method. The evaluation
metric was the success rate of collision-free optimal grasps based on a total of 20 samples,
comparing scenarios with and without the implementation of collision avoidance. The
comparison results are detailed in Table 2. It is noteworthy that internal grasping presented
a significant challenge due to the necessity of locating a feasible grasp within a narrow space,
a task that is markedly more complex in the absence of a collision avoidance mechanism.
Our findings demonstrate that integrating the collision avoidance function significantly
enhanced success rates across all four objects.

Table 2. Success rates (collision-free grasps/total samples), with and without the implementation of
collision avoidance.

Object Name Gear Water Valve Water Pipe Jig

Without collision avoidance 11/20 13/20 10/20 7/20
With collision avoidance 20/20 18/20 19/20 20/20
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Figure 12. The simulation results of the internal grasping of different objects.

4.2. Experiments with a Real Robot

The proposed approach was further validated on a FANUC LR-Mate 200iD (FANUC
America Corporation, Rochester Hills, MI, USA), a 6-degree-of-freedom industrial robot,
tested with various objects. For detecting human hand movements, an Intel RealSense
D435 camera (Intel Corporation, Santa Clara, CA, USA) was utilized in these experiments.
Compared with other sensors, such as data gloves or thermal cameras, the advantage of
using a 3D camera is that it allows for the same sensor to be used for human hand tracking
in human demonstration and object detection in robot execution since the demonstrator
and the robot share the same workspace. The well-known Iterative Closest Points (ICP)
method was employed for object localization. After detecting the positions of both the
human hand pose and the target object, the contact region and approach direction were
calculated within the camera coordinate system. Once the optimal grasp was determined in
the camera coordinates, the result was subsequently transformed into the robot coordinate
system for execution by the robot.

The proposed LfD-based grasp planning was demonstrated on four different objects:
a water pipe, water valve, converter, and toy rabbit. The results are shown in Figure 13.
The top row of the figure illustrates the human demonstration. The second row shows
the hand plane; the identified contact region, marked in red; and the approach direction,
marked in yellow. The third row shows the generated optimal grasp, whereas the fourth
row shows the robot successfully executing the grasp. Finally, the bottom row illustrates
the ability of the proposed method to rotate the object by 90 degrees relative to the ground,
simulating a pose-grasp motion. The experimental videos are available in Supplementary
Materials.

We also evaluated the proposed method to encompass scenarios involving the internal
grasping of four distinct objects. The results, as illustrated in Figure 14, affirm that our
method is capable of identifying feasible grasping poses, even within restricted spatial
confines. This is primarily attributed to the integrated collision avoidance function, which
effectively identifies an escape vector to facilitate the generation of a collision-free grasp.
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Figure 13. The results using a real robot. After lifting the objects, the robot rotates the objects
90 degrees to simulate a post-grasp motion.

Figure 14. The experimental results of the internal grasp case using a real robot.
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To quantitatively evaluate the proposed method, we conducted a series of experimental
comparisons: Method 1 employed only the contact region; Method 2 employed only
the approach direction; and Method 3 utilized both the contact region and approach
direction. The evaluation metric was the success rate, indicating the robot’s ability to
reach the grasp pose generated from human demonstrations without colliding with the
surrounding environment. The results of these experiments are comprehensively detailed
in Table 3. Note that only Method 1 and Method 3 were subjected to comparative analysis
and testing in the case of internal grasp since it was necessary to specify the contact
region for generating an internal grasp. The analysis revealed that Method 1 exhibited
the lowest success rates. This outcome can be attributed to the absence of approach
direction information, leading to frequent collisions with the ground during grasp attempts.
This indicates the critical importance of approach direction in facilitating a functional
grasp. Method 2 demonstrated better success rates compared to Method 1. Notably,
the integration of the approach direction reduced the frequency of collisions with the
surrounding environment. However, the lack of contact area information often resulted
in grasping poses tending toward an unstable position, hindering the successful lifting of
the object. In contrast, Method 3 exhibited the highest success rates, suggesting that the
inclusion of both the contact region and approach direction was effective. It was observed
that the incorporation of a good initial contact region and approach direction derived
from human demonstrations significantly expedited the convergence of the optimization
algorithm to a feasible solution.

These experimental results not only validate the proposed method but also highlight its
practical applicability in real-world grasp-planning scenarios. Despite the diverse shapes
of the target objects, the proposed LfD-based approach demonstrated its efficiency in
synthesizing human-like grasps. A key strength of this approach lies in its ability to adeptly
avoid collisions, a critical aspect in robotic grasping scenarios. Furthermore, the method
ensures a firm grasp of the object, which is essential for successfully executing post-grasp
motions. This adaptability to various object geometries while maintaining a reliable and
collision-free grasp underscores the robustness of the proposed method. The effectiveness
of replicating human-like grasping strategies enhances the practical applicability of robotic
systems in diverse environments.

Table 3. Success rates (collision-free grasps/total samples).

External Grasp Internal Grasp
Objects Water Pipe Water Valve Converter Toy Rabbit Gear Water Valve Water Pipe Jig

Method 1 11/20 6/20 2/20 13/20 11/20 7/20 17/20 12/20
Method 2 15/20 10/20 13/20 13/20 - - - -
Method 3 18/20 20/20 20/20 19/20 20/20 20/20 20/20 20/20

5. Conclusions

This work introduces a learning from demonstration-based grasp-planning approach
that effectively generates stable grasps by integrating grasp skills derived from human
demonstrations. We demonstrate that the proposed method can intuitively acquire critical
grasp skills, namely the contact region and approach direction, from a single human
demonstration using a standard RGB-D camera. This approach contrasts with and offers
advantages over more specialized equipment such as data gloves or thermal cameras. In
addition, the optimal grasp is solved using a closed-form solution, which incorporates
the nuances of human grasp skills. To validate the effectiveness of this approach, a series
of experiments is conducted using a FANUC industrial robot. The results from these
experiments demonstrate that the proposed method not only achieves stable grasping but
also effectively aligns with human intentions for post-grasp motions.

In the future, we plan to extend the algorithm to accommodate multi-finger grippers
while considering the kinematic constraints of such grippers. In addition, there is an interest
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in exploring how general grasp skills can be extracted from human demonstrations across a
variety of object shapes. This exploration is expected to leverage deep learning techniques,
potentially leading to more versatile and adaptable robot grasping capabilities.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s24020618/s1, Video S1: Experimental Videos for Learning from
Demonstration-Based Grasp Planning.
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