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Abstract: This paper presents a new enhanced coprime array for direction of arrival (DOA) estima-
tion. Coprime arrays are capable of estimating the DOA using coprime properties and outperforming
uniform linear arrays. However, the associated algorithms are not directly applicable for estimating
the DOA of coherent sources. To overcome this limitation, we propose an enhanced coprime array in
this paper. By increasing the number of array sensors in the coprime array, it is feasible to enlarge the
aperture of the array and these additional array sensors can be utilized to achieve spatial smooth-
ing, thus enabling estimation of the DOA for coherent sources. Additionally, applying the spatial
smoothing technique to the signal subspace, instead of the conventional spatial smoothing method,
can further improve the ability to reduce noise interference and enhance the overall estimation
result. Finally, DOA estimation is accomplished using the MUSIC algorithm. The simulation results
demonstrate improved performance compared to traditional algorithms, confirming its feasibility.

Keywords: enhanced coprime array; direction of arrival (DOA) estimation; coherent signals; array
processing; spatial smoothing

1. Introduction

Extensive research has been conducted on the topic of direction of arrival (DOA)
estimation in many array processing areas [1–4]. Antenna arrays are frequently used in
these sectors to receive incoming signals. For instance, DOA estimation that impinges
on an array with unknown mutual coupling is important in the area of navigation [5,6].
Scholars have proposed various DOA estimation algorithms using uniform linear arrays
(ULAs), such as the ROOT-MUSIC technique [7], propagator method (PM) [8], CAPON [9],
multiple signal classification (MUSIC) [10], and estimation of signal parameters via rota-
tional invariance techniques (ESPRIT) [11]. Nevertheless, it is important to recognize that
these techniques are predicated on the idea that the signals are independent of one another.
Multipath propagation actually contributes to the coherent reception of signals. Because of
this coherence, there is a rank deficiency in the covariance matrix of the received signals,
which prevents these approaches from accurately estimating the DOA.

To solve the rank deficiency in the covariance matrix of received signals, a lot of
approaches have been designed. One such approach is the generalized MUSIC algorithm,
introduced in [12]. Another method involves the subspace adaptation technique, as pre-
sented in [13]. However, it is important to note that these methods entail multidimensional
searching, making them computationally complex and impractical for real-world applica-
tions. The spatial smoothing technique [14] has undergone improvements in subsequent
research (commonly referred to as MSSP), as documented in [15–17]. By combining the
covariance matrices of each overlapping subarray, the rank of the covariance matrix is recov-
ered by treating the entire array as a set of overlapping subarrays. Spatial smoothing-based
approaches have been widely used and have undergone further enhancements [18,19].
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Several alternative approaches have been developed for reconstructing the covariance
matrix of coherent signals apart from spatial smoothing. Notably, novel matrix construction
methods proposed in [20,21] do not require the signals to be independent. To recover the
rank, the Toeplitz matrix construction is presented in [20], whereby the array aperture is
sacrificed. On the other hand, ref. [21] presents a non-Toeplitz matrix approach that can
manage scenarios involving coherent and incoherent signals. Improved spatial smoothing
(ISS) is another noteworthy method that has attracted a lot of interest [22,23]. To improve
the effectiveness of DOA estimation, these techniques make use of both the cross-covariance
matrix between subarrays and the covariance matrix of each subarray. Additionally, ref. [24]
presents an improved spatial smoothing method that is robust to noise and further utilizes
information concerning signal subspace.

However, it is crucial to remember that current methods are made for uniform linear
arrays (ULAs) and might not work well with sparse arrays, including coprime arrays
(CA) [25–27] and nested arrays (NA) [28]. Sparse arrays have bigger aperture arrays than
ULAs, and the inter-sensor spacing is not limited to half a wavelength. These sparse arrays
therefore offer improved performance and create new opportunities for DOA estimation.

The virtual array faces limitations when it comes to processing DOA estimation for
coherent sources with sparse arrays, thereby constraining the potential advantages of
increased DOA design flexibility. Nevertheless, there are compressed sensing algorithms
available for the direct estimation of coherent signals. A sparsity-aware algorithm is pre-
sented in [29] for reconstructing the covariance matrix using cyclic rank minimization.
The nuclear norm is employed in the construction of the covariance matrix [30], lever-
aging its positive semi-definite (PSD) structure. A gridless algorithm, utilizing nuclear
norm minimization (NNM) for interpolation, is introduced in [31]. Ref. [32] proposes
an array interpolation algorithm that utilizes atomic norm minimization (ANM). Sparse
Bayesian learning (SBL) [33] provides an efficient method for estimating a sparse signal,
which determines the set of DOAs that have non-zero source power from a larger set of
potential DOAs. While these algorithms offer high DOA estimation accuracy, it is impor-
tant to note that they demand a substantial number of sensors and entail relatively high
computational complexity.

Although the above compressed sensing algorithms can be directly used for the DOA
estimation of coherent sources in sparse arrays, they cannot take full advantage of some
characteristics of sparse arrays, such as the ambiguity resolution property of coprime linear
arrays, and the performance of DOA estimation needs to be improved. In this paper, an
enhanced coprime array is proposed by expanding sensors of the coprime array, combining
the enhanced spatial smoothing algorithm and the characteristics of the mutual prime
array to eliminate angle ambiguity. The enhanced spatial smoothing is performed on
each subarray, and the DOA is estimated using the MUSIC algorithm. Finally, the angle
ambiguity is eliminated via the mutual prime characteristics. The computation complexity
is lower than compressed sensing algorithms, and the estimation accuracy of DOA is higher
than compressed sensing algorithms, which is more suitable for practical application.
Specifically, the following succinctly describes our primary contributions:

• We designed an enhanced coprime array with a larger array aperture that can be used
to estimate the DOA of coherent sources;

• We utilized an enhanced spatial smoothing technique to effectively smooth the signal
subspace rather than directly smoothing the received signal. This technique enhances
the capability to resist noise interference and greatly improves the performance of
DOA estimation.

• We conducted the performance comparison between the proposed algorithms and
classical compressive sensing algorithms for DOA estimation of coherent sources,
which demonstrated the superior performance of the proposed algorithms, along
with significantly lower computational complexity compared to compressive sensing
algorithms.
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The remainder of this paper is provided below: Section 2 presents how to design the
enhanced coprime array. Section 3 analyzes how the spatial smoothing algorithm and
enhanced spatial smoothing algorithm perform the decorrelation step, demonstrating how
coprime arrays are utilized to eliminate angle ambiguity. Section 4 analyzes the complexity
of the proposed algorithm and the Cramer-Rao Bound (CRB). Section 5 is dedicated to
conducting simulation analyses. This paper is concluded in Section 6.

Notations: Lowercase letters a, lowercase letters in boldface a, uppercase letters in
boldface A, and letters in blackboard boldface A are used to represent scalars, vectors, ma-

trices, and sets, respectively.
[
n(1), n(2), · · · , n(R)

]T
represents an R-dimensional vector n,

where n(r) is the rth coordinate. The transpose, complex conjugate, and complex conjugate
transpose of A are AT , A∗, and AH . Tr[·] denotes the trace operator for a matrix. diag(·)
represents the matrix formed by the diagonal elements of the matrix. [A]i,j denotes the (i, j)
entry of A.

2. Mathematical Model

The mathematical model of the coprime array is shown in Figure 1, which consists of
two sparsely uniform linear arrays (SULAs) with M and N sensors, respectively, where
the inter-sensor spacings are Nd and Md (M and N are coprime, d is half a wavelength,
M < N). The reference sensor is the leftmost sensor, and the reference sensors of both
SULAs coincide. The location of the array can be denoted as [26]

SCA = {Nxd|0 ≤ x ≤ M− 1} ∪ {Myd|0 ≤ y ≤ N − 1}. (1)
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Figure 1. Coprime array.

In this paper, the enhanced coprime array (Figure 2) is obtained by increasing the
number of sensors of each SULA within the coprime array. The number of sensors of the
two SULAs is M + m and N + n, respectively. The other settings are consistent with the
coprime linear array, and the location of the enhanced coprime array can be written as [27]

SECA = {Nxd|0 ≤ x ≤ M + m− 1} ∪ {Myd|0 ≤ y ≤ N + n− 1} (2)
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Denote li, i = 1, 2, · · · , G as the ith sensor in the enhanced coprime array and G =
M + N + m + n− 1.
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Given an additive white Gaussian noise model with zero mean for the noise produced
by the array upon receiving the signal, K far-field narrowband coherent signals, each
coming from a different direction, are represented by θ = [θ1, θ2, · · · , θK]

T and impinge on
the aforementioned array. We can express the signal received from the array as [1]

x(t) =
K
∑

k=1
αka(θk)s(t) + n(t)

= Aαs(t) + n(t),
(3)

where A = [a(θ1), a(θ2), · · · , a(θK)] represents the direction matrix of the enhanced co-

prime array with a(θi) =
[
1, ej2πl2 sin θi/λ, · · · , ej2πl|S| sin θi/λ

]T
. λ stands for the wavelength

of the signal. s(t) is the waveform of the signal. The vector of the nonzero coherence
coefficient is denoted by α = [α1, α2, · · · , αK]

T . Additive white Gaussian noise is known as
n(t).

Supposing that the enhanced coprime array receives the signal of J snapshots, the
model of the received signal can be written as [1]

X = Aαs + N (4)

where the signal waveform vector is denoted by s ∈ C1×J . N represents the additive white
Gaussian noise.

3. Proposed Algorithm

This section begins by presenting the spatial smoothing technique and the enhanced
spatial smoothing technique. It then demonstrates the utilization of the prime characteristic
to obtain the DOA without angle ambiguity. Finally, it explores the combination of the
aforementioned methods to resolve the DOA of coherent signals received by the enhanced
coprime array.

3.1. Spatial Smoothing Technique

The spatial smoothing technique [15] is capable of performing decorrelation processing
by reducing the array aperture. By extending the coprime array, the impact of array aperture
loss can be minimized. For the ith SULA of the extended mutual prime linear array, the
received signal model can be expressed as

XSi = ASiαs + NSi (5)

where ASi and NSi correspond to the direction matrix of the ith SULA and the corresponding
additive Gaussian white noise, respectively. Spatial smoothing techniques treat this SULA
as consisting of multiple overlapping sub-arrays, as shown in Figure 3.
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Denote the direction matrix of the kth subarray as Ak. According to the characteristics
of the SULA, the relation between the direction matrix of the k + tth subarray and the kth
subarray can be written as

Ak+t = AkDt (6)
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where D = diag
(

ej2πT sin θ1/λ, ej2πT sin θ2/λ, · · · , ej2πT sin θK/λ
)

, T is the sensor spacing of the
ith SULA. Then, the received signal of the kth subarray can be modeled as

Xk = Akαs + Nk
= A1Dk−1αs + Nk,

(7)

where A1 represents the direction matrix of subarray 1, and Nk is the additive Gaussian
white noise corresponding to the received signal of the kth subarray.

If the received signals are coherent, the rank of the covariance matrix of the received
signal will be lower than the number of sources. Consequently, subspace algorithms
such as MUSIC will fail to accurately estimate the DOA. To address this issue, we can
apply the spatial smoothing technique to the covariance matrix, which restores the rank of
the covariance matrix by averaging the covariance matrix of each subarray. The specific
formulas of spatial smoothing technique can be modeled by

R f
SS = 1

L

L
∑

k=1
Rk

= 1
L

L
∑

k=1
XkXH

k /J

= 1
JL

L
∑

k=1
A1Dk−1αssHαH

(
Dk−1

)H
AH

1 + σ2I

= A1

(
1
JL

L
∑

k=1
Dk−1αssHαH

(
Dk−1

)H
)

AH
1 + σ2I

= A1RS1AH
1 + σ2

k I,

(8)

where RS1 = 1
JL

L
∑

k=1
Di−1αssHαH

(
Di−1

)H
. σ2 means the average power of the Gaussian

white noise. I represents the unit matrix.
According to [15], the number of sensors of the subarray needs to be larger than the

number of coherent sources; that is, M > K. In the enhanced coprime array proposed in
this paper, we can set m = n and choose the smoothing number as m. In this case, we can
estimate, at most, M− 1 sources. After that, we can estimate the DOAs in Equation (8)
using the MUSIC algorithm.

3.2. Enhanced Spatial Smoothing Technique

The proposed approach in this section is enhanced spatial smoothing [24], which
recovers the rank of the covariance matrix by making use of the signal subspace. Taking
the example of the SULA with M + m sensors, the corresponding covariance matrix can be
modeled as

R = XM+mXH
M+m/J (9)

where XM+m = AM+mαs + NM+m. AM+m is the direction matrix of XM+m, and NM+m
denotes the corresponding white noise.

By performing eigenvalue decomposition on Equation (9), we derive [20]

R = XM+mXH
M+m/J

= Γs + Γn
= λsusuH

s + UnΛnUH
n

(10)

where λs is the maximum eigenvalue of R, and us denotes the corresponding eigenvector.
Λn represents a diagonal matrix including the rest of the M + m− 1 smaller eigenvalues,
and Un means the matrix consisting of the corresponding eigenvectors of these eigenvalues.

For [4]:
usu

H
s + UnUH

n = IM+m (11)
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by applying Equation (11) to Equation (10), we derive

AM+mRSAH
M+m = R − σ2IM+m

= λsusuH
s + σ2UnUH

n − σ2IM+m
=
(
λs − σ2)usuH

s ,
(12)

where IM+m ∈ C(M+m)×(M+m) is the unit matrix and RS = αssHαH/J.
Then, us can be written as

us =
1

λs−σ2 AM+mSAH
M+mus

= AM+mt,
(13)

where t = 1
λs−σ2 SAH

M+mus ∈ CK×1.
Denote M consecutive us elements as

vi = us(i : i + M− 1)
= AMDi−1t, i = 1, 2, · · · , m + 1.

(14)

where AM means the direction matrix. Therefore, we can consider vi as the sub-array of
spatial smoothing. Denote

Γij = vivH
j

= us(i : i + M− 1)uH
s (j : j + M− 1)

= AMDi−1ttH
(

Dj−1
)H

AH
M.

(15)

Regard Γij as the covariance matrix, and the direction matrix is AM. Performing a
similar step as for spatial smoothing leads to

RESS =
1
m

m

∑
i=1

m

∑
j=1

ΓijΓji. (16)

We can expand RESS to obtain

RESS = 1
L

L
∑

i=1

L
∑

j=1
ΓijΓji

= 1
L

L
∑

i=1

L
∑

j=1

(
vivH

j vjvH
i

)
= 1

L

L
∑

i=1

L
∑

j=1

(
AMDi−1ttH

(
Dj−1

)H
AH

MAMDj−1ttH
(

Di−1
)H

AH
M

)
= AM

[
1
L

L
∑

i=1

L
∑

j=1

(
Di−1ttH

(
Dj−1

)H
AH

MAMDj−1ttH
(

Di−1
)H
)]

AH
M

= AMRS2AH
M,

(17)

where RS2 = 1
L

L
∑

i=1

L
∑

j=1

(
Di−1ttH

(
Dj−1

)H
AH

MAMDj−1ttH
(

Di−1
)H
)

.

Then the DOA of the coherent signals can be estimated by applying the MUSIC
algorithm to Equation (17).

3.3. Eliminating Angle Ambiguity Using Coprime Characteristics

DOA estimation using a SULA can result in angle ambiguity if the sensor spacing
exceeds half a wavelength. In such scenarios, when only one source is present, multiple
angle estimates for the arrival angles may be generated. To resolve this issue and obtain
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accurate angle estimates, it is crucial to perform angle ambiguity resolution. When angle
ambiguity exists in the SULA, we can obtain [4]

a(θi) = a
(

θ
′
i

)
, θi 6= θ

′
i (18)

where a(θi) represents the direction vector corresponding to the actual incident angle θi,
and a

(
θ
′
i

)
represents the direction vector corresponding to the ambiguous angle.

Assuming a SULA with a reference sensor located at the origin and its sensors arranged
along the positive x-axis, the direction vector can be represented as follows [24]

exp(−j2πd sin θi/λ) = exp
(
−j2πd sin θ

′
i /λ

)
(19)

Then we obtain
2πd sin θ

′
i /λ− 2πd sin θi/λ = 2απ (20)

where α ∈ Z. Denote d = mλ/2, m ∈ Z+, and the above equation can be written as

sin θ
′
i − sin θi =

2α

m
(21)

Since the range of incident signal angles is (−90◦, 90◦), then we can obtain sin θ
′
i ∈

(−1, 1), which means
2α

m
+ sin θi ∈ (−1, 1) (22)

By solving the above equation, we obtain

α ∈
(
(−1− sin θ)m

2
,
(1− sin θ)m

2

)
(23)

When there is no angle ambiguity (α = 0), it corresponds to m ≤ 1. When m > 1, as
indicated by the equation above, α has m different values. This implies that within the
range of (−90◦, 90◦), there exist m ambiguous angles, including the angle of the original
signal of interest. Therefore, when using techniques like MUSIC and peak searching in the
spectrum, you will obtain m peaks, and it is necessary to discard m− 1 ambiguous angles.

Assuming that the receiving array is a non-uniform linear array with M sensors
positioned along the x-axis, and x = λ/2 · [0, x1, x2, · · · , xM−1] represents the positions of
the elements on the x-axis, where xn is a non-negative integer, then its direction vector can
be represented as

a(θi) = [1, exp(−jπx1 sin θi), · · · , exp(−jπxM−1 sin θi)]
T (24)

The angle ambiguity is

sin(θi)− sin
(

θ
′
i

)
=

2αn

xn
(25)

where αn ∈ Z, xn ∈ N+.
If the array does not have angle ambiguity, we must have

2αn

x0
∩ 2αn

x1
∩ · · · ∩ 2αn

xM−1
= 0, αn ∈ Z. (26)

Denote ρn = 2αn
xn

, then over all possible values of xn, we can obtain

ρn =

{
0,

2αn

xn

}
,
∣∣∣∣αn

∣∣∣∣< xn. (27)
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When xn is prime, its greatest common divisor can only be 1, which means

{ρ0 ∩ ρ1 ∩ · · · ∩ ρM−1} = {0}. (28)

Equation (28) demonstrates that if the array positions xn are mutually prime, we
can obtain sin(θi) − sin

(
θ
′
i

)
= 0, i.e., θi = θ

′
i . This indicates that there is no issue of

angle ambiguity in the estimation of DOA. Consequently, by ensuring that the sensor
spacing satisfies the coprime relationships among them, it becomes possible to effectively
overcome the problem of angle ambiguity that arises when the sensor spacing exceeds a
half-wavelength.

The enhanced coprime array enhanced spatial smoothing MUSIC algorithm (ENSS-
MUSIC), as demonstrated in Algorithm 1 of this paper, can be summarized as follows.

Algorithm 1: Enhanced spatial smoothing MUSIC algorithm

Step 1: Calculate the covariance matrix of each SULA according to Equation (4);
Step 2: Perform the eigenvalue decomposition of the covariance matrix according to Equation (10);
Step 3 : Choose the eigenvector that corresponds to the largest eigenvalue as us;
Step 4: Calculate the new covariance matrix according to Equations (15) and (16);
Step 5: Use the MUSIC algorithm to estimate the DOAs;
Step 6: Compare the spectral peaks of subarray1 and subarray2 to find the angle corresponding to
the common spectral peak, which is the true angle.

4. Performance Analysis
4.1. Computation Complexity Analysis

In this section, we undertake a comparison of the complexity of the proposed algo-
rithm, along with several compressive sensing algorithms. This comparison includes the
evaluation of algorithms, such as SBL and NNM. The complexity of SS-MUSIC is divided
into two parts: SULA 1 and SULA 2. For SULA 1, the covariance matrix is calculated m
times, and the number of multiplications is M2 Jm. The total number of multiplications
using the MUSIC algorithm is M3 + M2(K + 2)g, and g denotes the number of searches.
Similarly, for SULA 2, the total number of multiplications is N2 Jn + N3 + N2(K + 2)g.
Therefore, the computation complexity of SS-MUSIC is

O
(

M3 + N3 +
(

M2m + N2n
)

J +
(

M2 + N2
)
(K + 2)g

)
.

The computation complexity of ENSS-MUSIC is similar to that of SS-MUSIC, which is

O
(

M3 + N3 + (M + m)2 J + (N + n)2 J + (M + m)3 + (N + n)3 + M2m + N2n +
(

M2 + N2
)
(K + 2)g

)
.

The selected algorithms for comparison are compressive sensing algorithms, known
for their iterative convergence. Hence, their complexity is dependent on the number of
iterations. Determining the appropriate number of iterations based on the desired error
introduces complexity in calculating the overall complexity. To assess this, we compared
the runtime for various numbers of iterations, as presented in the table. We conducted
analyses using 1, 20, 100, and 1000 iterations to evaluate the time required for different
iteration counts. See Table 1.

Table 1. Comparison of runtime of different algorithms.

Monte Carlo NNM SBL SS-MUSIC ENSS-MUSIC

1 1.3343 s 0.2013 s 0.0572 s 0.1311 s
20 5.2786 s 3.7636 s 0.7131 s 0.7262 s

100 23.5879 s 17.4307 s 3.7138 s 3.5957 s
1000 254.0145 s 175.8712 s 36.3054 s 36.4978 s



Sensors 2024, 24, 260 9 of 14

4.2. Cramer-Rao Bound (CRB)

According to [34], the Cramer-Rao Bound (CRB) matrix can be modeled as

CRB =
σ2

n
2J

{
Re

[
DHΠ⊥AD

^
P

T
]}−1

(29)

where A represents the manifold matrix of the array, Π⊥A = I − A
(

AHA
)−1

AH ,
^
P = 1/J

J
∑

t=1
s(t)sH(t), σ2

n denotes the average power of signal source, and D can be writ-

ten as

D =

[
∂a(θ1)

∂θ1
,

∂a(θ2)

∂θ2
, · · · ,

∂a(θK)

∂θK

]
where a(θK) denotes steering vector.

4.3. The Advantages of the Proposed Array and Algorithm

We propose an enhanced coprime array for the DOA estimation of coherent signals.
Our design offers several advantages:

• By employing enhanced spatial smoothing techniques, the DOA can be estimated
using subspace-based algorithms like MUSIC accurately. The enhanced coprime array
can estimate M− 1 coherent signals at most;

• The enhanced spatial smoothing technique effectively utilizes all the signal subspace,
leading to improved accuracy in DOA estimation and enhanced resistance to noise
interference;

• The designed enhanced spatial smoothing MUSIC algorithm offers lower computa-
tional complexity compared with the compressed sensing algorithm. Additionally,
it provides higher DOA estimation accuracy, improving its suitability for real-world
applications.

5. Simulation Results

In this study, we have carefully chosen several widely recognized compressive sensing
algorithms, including SBL and NNM. These algorithms were thoroughly evaluated and
compared to our own proposed algorithm, with a detailed analysis of their respective
performances. For this evaluation, the parameters of the proposed array are fixed as M = 3,
N = 4, x = y = 1. In this setup, two far-field narrowband coherent signals impinge on the
proposed array from angles of 9.55◦ and 25.15◦. To quantify the accuracy of the direction of
arrival (DOA) estimates, we defined the root mean square error (RMSE) as

RMSE =

√√√√ 1
K

1
J

K

∑
k=1

J

∑
j=1

(
θ̂j,k − θk

)2
(30)

where J and K stand for the total number of coherent sources and Monte Carlo trials,
respectively. The estimate of the actual angle θk is denoted by θ̂j,k. We have J = 1000 as the
number of Monte Carlo simulations in the following simulations.

In Figure 4, we present a comparison of the spectral peak outcomes obtained from
the MUSIC algorithm after applying enhanced spatial smoothing to the two subarrays.
The SNR is set as 10 dB, and the number of snapshots is set as 500. Evidently, only the
peaks aligning with the true DOA of the coherent signals are observed, consistent with
our previous analysis. Figure 5 illustrates a scatter plot of the DOA estimation results
across 100 iterations. The SNR is set as 0 dB and the number of snapshots is set as 500.
It is apparent that the estimation results consistently form a straight line with minimal
variability, suggesting that the proposed algorithm yields highly stable DOA estimates for
coherent sources.
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A comparison of the RMSE curves for the various algorithms, with differing SNRs,
is shown in Figure 6. The simulation was conducted using 200 snapshots. Notably, the
proposed algorithm outperforms other algorithms even under low SNR conditions. This
superiority can be attributed to the effective utilization of an enhanced spatial smoothing
technique, which incorporates information from the signal subspace, resulting in improved
performance. As a result, the performance of the enhanced spatial smoothing technique
surpasses that of the spatial smoothing technique. In Figure 7, we evaluate the RMSE of
different algorithms with a varying number of snapshots while maintaining an SNR of
5 dB. It is evident that the RMSE of the proposed algorithm is smaller compared to that of
other algorithms, indicating a lower estimation error and superior performance.
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The curves of RMSE are compared in Figure 8 as the SNR varies for different numbers
of array sensors. The simulation settings remain unchanged, except for the variation in the
number of sensors. It is evident that as the SNR increases, the RMSE consistently decreases,
indicating enhanced DOA estimation performance. Furthermore, increasing the number
of array sensors also leads to a decrease in RMSE, suggesting that the performance of the
proposed algorithm is enhanced by increasing the number of sensors.
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The curves of RMSE are compared in Figure 9, as the SNR varies for different numbers
of sources. The array parameter is fixed at M = 5, N = 6, m = 3, n = 3. It is evident that as
the number of sources increases, there is a consistent rise in RMSE, implying a decrease in
DOA estimation performance. Conversely, an improvement in SNR results in a decrease in
RMSE, indicating an enhanced DOA estimation performance.
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6. Conclusions

This paper introduces a novel enhanced coprime array designed for the DOA estima-
tion of coherent signals. Additionally, it presents the DOA estimation algorithm tailored
specifically for this array. The algorithm incorporates advanced spatial smoothing tech-
niques to effectively handle coherent signals and exploit the signal subspace of received
signals, resulting in enhanced DOA estimation performance and noise robustness. The
complexity analysis of the proposed algorithm has been demonstrated to be lower than
that of the compressed sensing algorithm. Numerous simulation experiments have been
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conducted to confirm that the proposed array effectively achieves the estimation of DOA
for coherent sources. Furthermore, the performance of the proposed algorithm surpasses
that of both the spatial smoothing MUSIC algorithm and the compressed sensing algorithm.
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