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Abstract: The rationality of heavy vehicle models is crucial to the structural safety assessment of
bridges. To establish a realistic heavy vehicle traffic flow model, this study proposes a heavy vehicle
random traffic flow simulation method that fully considers the vehicle weight correlation based on the
measured weigh-in-motion data. First, a probability model of the key parameters in the actual traffic
flow is established. Then, a random traffic flow simulation of heavy vehicles is realized using the
R-vine Copula model and improved Latin hypercube sampling (LHS) method. Finally, the load effect
is calculated using a calculation example to explore the necessity of considering the vehicle weight
correlation. The results indicate that the vehicle weight of each model is significantly correlated.
Compared to the Monte Carlo method, the improved LHS method better considers the correlation
between high-dimensional variables. Furthermore, considering the vehicle weight correlation using
the R-vine Copula model, the random traffic flow generated by the Monte Carlo sampling method
ignores the correlation between parameters, leading to a weaker load effect. Therefore, the improved
LHS method is preferred.

Keywords: weigh-in-motion; random traffic flow; correlation; R-vine Copula; Latin hypercube sampling

1. Introduction

Transportation structures such as roads and bridges are designed to carry moving
traffic loads. However, with the rapid economic development, the load capacity and
occupancy of heavy vehicles are increasing [1,2], generating greater safety hazards to in-
service highway bridges and even leading to serious accidents [3]. The heavy vehicle weight
parameters indicate strong randomness and significant correlation between parameters;
therefore, it is of great importance to fully study the randomness and correlation of heavy
vehicle weights and propose a more realistic simulation method for heavy vehicle flow to
evaluate the safety of bridge structures.

Several scholars have implemented random traffic flow simulations considering sev-
eral parameters, such as vehicle type, vehicle weight, axle weight, and vehicle speed, based
on data measured utilizing a dynamic weighing system, weigh-in-motion (WIM). For exam-
ple, Zhouhong et al. [4], Yang et al. [5], and Liang and Xiong [6] developed random traffic
flow models applicable to specific regions using Monte Carlo simulation methods. Notably,
mass parameters, such as vehicle weight and axle weight, are important for the load effect,
and there is a significant correlation between the mass parameters of each traffic model.
To build a model closer to a real traffic flow, numerous scholars have used the Copula
theory to describe the nonlinear correlation of random parameters. For example, Li et al. [7]
analyzed the correlation between vehicle axle weights using the t-Copula function and
established a random traffic flow model based on a Monte Carlo simulation. Li [8] analyzed
the axle weight correlation according to the Copula distribution function, established a
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two-dimensional compound Poisson process for vehicle speed and weight using the Levy
Copula function, and finally established a random traffic flow model utilizing Monte Carlo
simulations. Torres-Alves et al. [9] used the vine Copula model to analyze the axle weight,
wheelbase, and vehicle distance to establish a random traffic flow model that considered the
correlations through random sampling. Sorianoa et al. [10] used the binary Copula function
to construct a joint distribution model for overweight trucks with regard to occupancy
and average daily traffic flow. In general, the accuracy of random traffic flow simulations
can be improved by considering the correlation between the mass parameters of each
vehicle. However, existing simulation methods have the following two shortcomings:
First, the parameters of the C-vine and D-vine Copula models used in random traffic flow
simulations are all based on fixed-type subjective assumptions, whereas the correlation
structure between the variables of each dimension in actual engineering is complex and
variable. Furthermore, accurately describing the parameters using a fixed structure is
difficult. Therefore, accurately constructing a high-dimensional variable correlation model
using the vine Copula model still has certain limitations [11,12]. Second, random traffic
flow simulations are mainly conducted by considering the correlation between parameters
through the Copula theory and Monte Carlo sampling. The correlation between parameters
is difficult to determine using solely the Monte Carlo sampling method because it leads to
inaccurate sampled parameters when correlating them. Therefore, a more rational sampling
method is urgently needed.

A literature review found the following theories to resolve the above two problems.
Morales-Nápoles et al. [13] proposed an R-vine Copula model for topology optimization
based on the data-driven nonparametric estimation of the decomposed Copula function,
which has better flexibility and practicality. Latin hypercube sampling (LHS), proposed
by McKay et al. [14], can achieve stratified sampling to avoid the sampling aggregation
phenomenon induced in Monte Carlo sampling while achieving improved accuracy and
efficiency. Iman and Conover [15] proposed a simulation method independent of the data
distribution. It derives the expected rank correlation matrix using multi-parameter input
random variables through matrix transformation to fully preserve the data correlation
characteristics. This method can be applied to any type of distribution sampling.

In light of this, 2020 WIM data was collected from the 49,010 Census Station of
Interstate 80 in the U.S. to analyze the statistical characteristics of daily traffic flow, vehicle
type, vehicle weight, vehicle speed, and other heavy vehicle parameters. Based on this, a
scholastic traffic flow model for heavy vehicles was established using the R-vine Copula
model with an improved LHS method. The applicability and superiority of the method
were verified. This method provides a reference for vehicle load modeling and load design
limit optimization.

2. Statistical Characterization of Heavy Vehicle Load Parameters

A WIM system equipped with dual loop sensors was installed on the 49,010 Census
Station of Interstate 80, the second largest freeway in Vacaville, California, U.S., as shown
in Figure 1. Monitoring data, which includes parameters such as vehicle type, axle weight,
vehicle weight, daily traffic volume, vehicle speed, and lane location, was collected, a total
of 181,800 data for the year 2020.
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Figure 1. Sensor layout at the mainline traffic survey station.

2.1. Model Classification and Lane Occupancy

According to the classification standard published by the Federal Highway Adminis-
tration (FHWA) [16], vehicle classification is based on the number of vehicle axles (Axle)
and the truck towing method. The towing method is subdivided into single unit (SU),
single trailer (ST), and multiple trailer (MT). The vehicle occupancy of each lane at the
assessment site is listed in Table 1, and the last six vehicle types in the table are defined by
the FHWA as heavy vehicles.

Table 1. Lane occupancy by vehicle type.

Vehicle Type Lane 0/‱ Lane 1/‱ Lane 2/‱ Lane 3/‱ Total/‱

2 Axle, 4T SU 1790.3000 1788.9550 2333.1040 965.8129 2985.4270
Bus 108.3499 107.5772 56.7047 104.5149 169.5703

2 Axle, 6T SU 3311.0860 3310.1770 3487.1130 2365.9790 5127.4970
3 Axle SU 302.7385 302.6917 418.3685 334.2686 119.7357

4+ Axle SU 33.4853 32.5274 91.9235 18.3512 7.454761
<4 Axle ST 422.6222 421.4048 370.9372 582.9789 140.6703
5 Axle ST 3178.3480 3178.6290 2240.7240 4686.4910 941.3933

6+ Axle ST 19.2045 18.9485 12.2632 29.1005 6.1783
<5 Axle MT 185.4344 185.2683 174.9283 257.5469 44.1158
6 Axle MT 86.8883 86.2973 36.8910 139.6438 27.8277

7+ Axle MT 3.1873 3.1622 3.0405 4.4789 0.6127

2.2. Vehicle Weight Statistics

Parametric and nonparametric methods are commonly used for estimating proba-
bility density functions. The parametric method assumes that the random variation of
variables conforms to a known distribution and performs parameter estimations based on
the monitoring data, whereas the nonparametric method can estimate probability density
functions without assuming the type of probability distribution. The parametric method
has the following limitations: First, the process of assuming the distribution type is often
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subjective. Second, the random behavior and dispersion of the monitoring data make it
difficult to determine the best assumption of the distribution type. Therefore, based on the
monitoring data, the nonparametric kernel density estimation method was used to fit the
vehicle weight distribution of heavy vehicles.

Estimating the nonparametric kernel density of the variable x as f̂ (x), the expression
becomes as follows:

f̂ (x) =
1

nh

n

∑
i=1

K(
x− xi

h
), (1)

where h is the smooth parameter, n is the sample capacity, and K is the kernel function. The
kernel functions typically used in such applications are the Gaussian, Box, trigonometric,
and Epanechnikov.

The nonparametric fit and R2 goodness-of-fit tests revealed that the probability density
and distribution functions of the weight of the six types of heavy vehicles are well-described
by the different kernel functions, as indicated in Figure 2. Among them, the values of the
R2 goodness-of-fit of the Gaussian kernel density estimation for the weight distribution of
the six heavy vehicles were all greater than 0.98. These values were slightly higher than the
nonparametric fitting results of the other three kernel functions. In this study, the Gaussian
kernel function was adopted, whose expression is as follows:

Kgausssian =
1

2π
e
(−u2

2 )

. (2)
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Figure 2. Weight of heavy vehicles.

Vehicle weight is the most critical parameter influencing the vehicle load effect. Over-
loaded heavy vehicles are especially hazardous to the safety of highway bridges. The
vehicle weight of each vehicle type in a heavy traffic flow is random, and there is a correla-
tion between the weights of different types of vehicles. To realize an accurate simulation
of the heavy vehicle traffic flow, the correlation between the weights of different types of
vehicles must be analyzed in addition to considering the random behavior of the weight of
each vehicle type. The Pearson correlation coefficient is mainly used to describe a linear
correlation applicable to a single-peaked normal distribution. The Kendall rank correlation
coefficient can accurately measure the consistency of variation trends and the degree of
variation between variables, and is applicable to various distributions. Considering the non-
linear correlation between the vehicle weights of each heavy vehicle type, the Kendall rank
correlation coefficient was used as the index to evaluate the correlation. The calculation is
expressed as follows:

τ = ∑
i<k

(sign(x[j]− x[i])× sign(y[j]− y[i])). (3)

The Kendall rank correlation coefficients of heavy vehicle weights are listed in Table 2.
These coefficients indicate that the correlation of the vehicle weights of certain types of
heavy vehicles is more significant; thus, the correlation needs to be considered when
modeling a heavy vehicle traffic flow.

Table 2. Correlation coefficients of heavy vehicle weight.

<4 Axle ST 5 Axle ST 6+ Axle ST <5 Axle MT 6 Axle MT 7+ Axle MT

<4 Axle ST 1 0.3799 0.1725 0.4082 0.4032 0.0886
5 Axle ST 0.3799 1 0.2246 0.3463 0.3101 0.1076

6+ Axle ST 0.1725 0.2246 1 0.27 0.1613 0.194
<5 Axle MT 0.4082 0.3463 0.2700 1 0.4011 0.1313
6 Axle MT 0.4032 0.3101 0.1613 0.4011 1 0.0874

7+ Axle MT 0.0886 0.1076 0.1940 0.1313 0.0874 1
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2.3. Daily Traffic Statistics

The cumulative probability density of the daily traffic flow is shown in Figure 3. The
daily traffic flow was found to be mainly concentrated from 2500 to 6000 and from 7500 to
11,000 vehicles. When the daily traffic flow is less than 6000 vehicles, it is called the general
operation state, and when it exceeds 6000 vehicles, it is called the intensive operation
state. The average daily traffic volume is approximately 4900 vehicles/day for the general
operation state, 9600 vehicles/day for the intensive operation state, and 7800 vehicles/day
for the annual average daily traffic volume, not considering the operation state.
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2.4. Vehicle Speed Statistics

A statistical analysis of the measured speed for each vehicle in the traffic flow was
conducted. The measured speed data of each vehicle was fitted by Gaussian and multi-
peaked Gaussian distributions. The goodness-of-fit R2 results for each vehicle speed was
greater than 0.96. The results indicated that the speed of each vehicle in the traffic flow
conformed to Gaussian and multi-peaked Gaussian distributions. The fitting formula is
shown in Equation (4), and the fitting parameters of Gaussian and multi-peak Gaussian
distributions are listed in Table 3.

f (x) =
i

∑
1

aixe−
(x−bi)

2

ci . (4)

Table 3. Vehicle speed fitting parameters for each vehicle type.

Vehicle Type Parameters

<4 Axle ST a = 230.2 b = 58.78 c = 4.506

5 Axle ST
a1 = 1588 b1 = 60.68 c = 2.288
a2 = 432 b2 = 62.06 c = 5.881

6+ Axle ST a = 838.8 b = 61.44 c = 3.828
<5 Axle MT a = 1046 b = 61.2 c = 3.003

6 Axle MT
a1 = 306.4 b1 = 61.44 c1 = 1.296
a2 = 273.2 b2 = 60.57 c2 = 4.082

7+ Axle MT a = 188.9 b = 60.58 c = 5.524

3. Six-Dimensional Joint Distribution Model for Heavy Vehicle Weight
3.1. Six-Dimensional Joint Distribution Model for Vehicle Weight Based on R-Vine Copula

The Copula theory enables the modeling of joint distributions of multidimensional ran-
dom variables. Sklar’s theorem [17] provides the relationship between the joint distribution
function F(x1, x2, · · ·, xn) and the Copula distribution function C(u1, u2, · · ·, un),

F(x1, x2, · · ·, xn) = C(u1, u2, · · ·, un). (5)
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By deriving Equation (5), the corresponding probability density function is obtained
as follows:

f (x1, x2, · · ·, xn) = c(u1, u2, · · ·, uN)
N

∏
n=1

fn(xn). (6)

where c(u1, u2, · · ·, uN) =
∂C(u1,u2,···,uN)

∂u1∂u2···∂uN
is the Copula density function, and N is the density

function of the marginal probability density function fn(xn) (n = 1, 2, · · ·, N).
Although the above Copula model can effectively describe the correlation between

random variables, its application to high-dimensional random variables elicits the problems
of dimensional disaster and insufficient model accuracy. To resolve these problems, the R-
vine Copula model can decompose the high-dimensional Copula function into the product
of several two-dimensional Copula functions [18,19]. An n-dimensional R-vine Copula
model consists of n− 1 layer trees T1, T2, . . . Tn−1, where each edge in the tree corresponds
to a two-dimensional Copula distribution function, and the set of nodes in the tree is
denoted as N = {N1, N2, N3, . . . , Nn}. An n-dimensional R-vine structure is subject to the
following conditions:

(1) A tree T1 containing n vertices and n − 1 edges.
(2) The tree Ti contains n − i + 1 vertices and n − i edges.
(3) If an edge of the tree Ti connects two nodes, the two edges in the Ti − 1 tree corre-

sponding to these two nodes share the same node.

The symbol e represents an edge in the tree and the set of edges E in E = (E_1, E_2,
· · · , E_n−1); the edge e = a(e), b(e)|D(e) of Ei represents D(e) as a condition of a(e), b(e),
and a subset consisting of conditional variables. Each edge e = {a, b} ∈ Ei consists of two
nodes connected by an edge e. The density function corresponding to edge e is denoted as
Ca(e), b(e)|D(e). The n random variables are X1, X2, . . . , Xn, and the subvectors denoted
by XD(e) are determined by the condition set D(e). The i random variables of the marginal
probability density function are fi. Based on this, the final joint density function f is shown
in Equation (7).

f (x1, x2, · · ·xn) =
n

∏
k−1

fk(xk)
n−1

∏
i=1

∏
e∈Ei

ca(e),b(e)|D(e)

(
F(xa(e)|D(e)), F(xb(e)|D(e))

)
. (7)

Equation (7) shows that once the marginal probability density function fk(xk) of the six
heavy vehicle weights and the two-dimensional Copula distribution function ca(e),b(e)|D(e)
corresponding to each edge in the tree are determined, the joint probability density function
f (x1, x2, · · ·xn) can be determined, and the initial construction of the six-dimensional joint
distribution model of R-vine Copula can also be realized.

3.2. Optimization of the Joint Distribution Model of R-Vine Copula

For the six-dimensional joint distribution model of the above six-dimensional R-vine
Copula, there exist (6!/2) × 2(6−2)!/[2(6−4)!] possible topologies, and the correlation between
the random variables varies with topology. Therefore, determining the best correlation
between the random variables becomes a critical problem to resolve for the correlation
between high-dimensional random variables. Thus, the joint distribution models of the
six heavy vehicle weights were optimized in terms of the connection structure of each
layer of the tree, and the joint distribution model as follows: (1) Maximum spanning tree
optimization was conducted on the connection structure of each group of trees in the R-vine
structure according to the edge weight coefficients. The empirical Kendall weights τ̂ij were
used as the evaluation index, and the optimization formula for its structure is as follows:

max ∑
edges e={i,j} in spanning tree

∣∣τ̂ij
∣∣. (8)
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(2) To ensure the goodness-of-fit of each marginal distribution model with the final
generated joint distribution model, the optimal Copula distribution function was selected
using two criteria, namely, the Akaike information criterion (AIC) and Bayesian information
criterion (BIC), to optimize each joint distribution model. The AIC and BIC were calculated
as follows:

AIC = 2k− 2 ln{RVine}(θ|u). (9)

BIC = ln n× k− 2 ln{RVine}(θ|u|r). (10)

where k is the number of parameters, and {RVine}(θ|u|r) denotes the set of parameters as θ,
u, and r.

In addition, the BIC can solve the problrm that the sample size n result to the complex
model possesing of large amount of calculation. Moreover, smaller values of AIC and BIC
indicate a more accurate description of the correlation between random variables.

The vine structure of the joint distribution model of the six heavy vehicle weights is
shown in Figure 4. The marginal distribution models of each layer of the tree, the Copula
distribution function, Copula distribution function coefficients (par1 and par2), and AIC
and BIC results of each marginal distribution model are listed in Table 4. The AIC and BIC
of the joint distribution models of the six heavy vehicles after optimization were −969.2181
and −921.9249, respectively.
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Table 4. Parameters of R-vine Copula model.

Tree Edge Copula Par1 Par2 AIC BIC

1

1,6 Frank −0.7304 0.0157 2.9716
1,5 Frank 2.1041 −13.9431 −10.9872
1,2 Clayton 0.3003 −4.8657 −1.9099

2,3 Rotated
Clayton 1.3532 −25.6906 −22.7348

3,4 Gumbel 1.7000 −900.3170 −897.3612

2

2,5|1 Frank −0.5347 1.2936 4.2492
2,6|1 Student −0.0234 −39.9868 −34.0751
1,3|2 Frank −0.0837 1.9577 4.9134

2,4|3 Rotated
Joe 1.0329 1.9902 4.9460

3
5,6|21 Gaussian 0.0137 1.9094 4.8652
3,4|12 Gumbel 1.0623 2.0451 5.0009
1,4|23 Frank 0.2530 2.0387 4.9946

4
4,5|123 Frank −0.6243 0.4744 3.4302
3,6|125 Frank −0.2696 5.5349 2.0123 4.9682

5 4,6|1235 Clayton 0.0544 1.8483 4.8041

4. Application of Improved Latin Hypercube Sampling

The Monte Carlo method is often used for sampling in existing random traffic simula-
tions because of its advantages of simplicity and ease of implementation. However, when
the number of simulations is small, this method exhibits an aggregation phenomenon,
resulting in the neglect of small probability events. Furthermore, this method tends to
destroy the correlation between parameters when sampling multidimensional random vari-
ables. The LHS method avoids data aggregation by stratifying the probability distribution
and is suitable for multidimensional variable sampling with high accuracy and efficiency.
Diagrams of the two sampling methods are shown in Figures 5 and 6.
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Fundamentals of Improved Latin Hypercube Sampling

The improved random simulation method proposed by Iman and Conover [15] pre-
serves the correlation between random variables and is applicable to any distribution type.
This method is based on the following principle.

If the elements of the random vector x are uncorrelated and there is a correlation matrix
I, C is the expected correlation matrix generated by transforming x. C is positive, definite,
and symmetric and is equal to the target correlation coefficient matrix C*. According to the
Cholesky determinant used by Scheuer and Stoller [20], a lower triangular matrix P can be
obtained such that PP’ = C. The desired correlation matrix C is obtained by transforming
the vector XP’. The Cholesky determinant used is as follows:

pi,i = (ci,i −
i−1

∑
k=1

p2
i,k)

1
2

, (11)

pi,j = (ci,j −
i−1

∑
k=j

pi,k pj,k)÷ pj,j, (12)

where ci, i and pi, i are the diagonal elements in the matrix; i and j represent the rows and
columns in the matrix, respectively; and ci, k represents the elements of the i-th row and
k-th column in matrix C.

5. Simulation of Random Traffic Flow of Heavy Vehicles and Analysis of Load Effect

Based on the results of the analysis of statistical characteristics of heavy vehicle
load parameters, the six-dimensional joint distribution model of vehicle weight, and the
improved LHS method mentioned above, the simulation flow chart of the random traffic
flow of heavy vehicles is shown in Figure 7. based on the idea of this figure, the simulation
program for the random traffic flow of heavy vehicles was prepareand, and this random
traffic flow contains 300 vehicles during one hour, which considering the vehicle weight
correlation. Notably, the wheelbase-to-axle weight distribution ratios for the six types of
heavy vehicles were calculated according to the standard vehicle model provided by the
FHWA [21]. Due to sensor performance limitations, the WIM device was not able to collect
the following distance during system acquisition, so the authors used the average distance
in this article.

The traffic flow samples generated were used with the R-vine Copula model and
improved LHS method, called working condition I. To further verify the superiority of this
method, working condition II (R-vine Copula model and Monte Carlo sampling method)
and working condition III (Monte Carlo sampling method) was also set up, and its samples
were calculated separately. The comparison results between the samples generated by
the two working conditions and actual model occupancy are listed in Table 5. Working
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condition I was found to be closer to the monitoring data than working conditions II and
III, indicating that the method proposed in this study is superior.
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Table 5. Total weight of each vehicle in traffic.

<4 Axle ST 5 Axle ST 6+ Axle ST <5 Axle MT 6 Axle MT 7+ Axle MT

Monitoring data 0.0881 0.1329 0.1463 0.1637 0.1614 0.3075
Working condition 1 0.0883 0.1330 0.1463 0.1637 0.1614 0.3074
Working condition 2 0.0905 0.1343 0.1427 0.1682 0.1592 0.3055
Working condition 3 0.0891 0.1348 0.1460 0.1645 0.1609 0.3047

In order to further verify the necessity of considering the correlation of heavy vehicle
weight parameters, the load effects of three one-spans simply-supported beams under three
working conditions were calculated separately. Firstly, ANSYS, a finite element analysis
software, was used to build one-spans of 10 m, 20 m, and 30 m, respectively. The vehicle
load samples under the three working conditions were input into the structure to obtain
the maximum bending moment of the span section in turn, and the results are shown in
Table 6. When the correlation is not considered, the bending moment is the smallest; when
the correlation is considered by the R-vine Copula and the Monte Carlo sampling is used,
the bending moment is the second largest; when the traffic load sample is obtained by the
method of this paper, the bending moment is the largest. This shows that the load effect is
conservative if the correlation of the heavy vehicle weight is not fully considered. This is
since even if the R-Vine Copula theory is used to consider the vehicle weight correlation,
the sampling method still uses Monte Carlo, which leads to the concentration of the sample
on the lighter vehicle weight models and, thus, leads to the small load effect results, which
is noteworthy.

Table 6. The total weight share of each model in the traffic flow.

Working Condition 1/kN·m Working Condition 2/kN·m Working Condition 3/kN·m
10 m 3725 3348 3288
20 m 7511 7062 6491
30 m 12,255 11,253 10,776
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6. Conclusions

In this study, based on the monitored traffic data, a random traffic sample of heavy
vehicles considering vehicle weight correlations was generated using the optimal R-vine
Copula model and improved LHS method. The following conclusions were obtained.

(1) The nonparametric kernel density estimation can effectively estimate the probability
distribution function of the vehicle weight, and there is a correlation between the weight of
each type of heavy vehicle. The vehicle speed conforms to the Gaussian and multi-peaked
Gaussian distributions.

(2) Various Copula distribution functions of the R-vine Copula model can be selected to
connect the marginal distribution functions of each dimension flexibly. Using the maximum
spanning tree to choose the optimal topology, the AIC and BIC selected the R-vine Copula
model to achieve an accurate description of the joint distribution of the vehicle weight of
each vehicle model in the heavy vehicle traffic flow.

(3) The Monte Carlo sampling method destroys the correlation between multidimensional
variables, whereas the improved LHS method adequately preserves the data correlation.

(4) The random traffic samples of heavy vehicles generated by considering the vehicle
weight correlation based on the optimal R-vine Copula model and improved LHS method
are more in line with actual scenarios than other methods. Moreover, the calculated load
effect will be smaller if the vehicle weight correlation is not considered.

The authors concluded that the correlation between heavy vehicle weights may be
correlated with the industrial distribution and industrialization of each region. Subsequent
in-depth exploration of the statistical laws of heavy vehicle weight correlation needs to be
investigated based on a large amount of WIM data, using the improved method proposed
in this paper, and in conjunction with stochastic process theory.
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