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Abstract: Engine fault detection is conducive to improving equipment reliability and reducing
maintenance costs. In practical scenarios, high-quality data is difficult to obtain. Usually, only
single-sensor data is available. This paper proposes a fault detection method combining Variational
Mode Decomposition (VMD) and Random Forest (RF). At first, the spectral energy distribution is
obtained by decomposing and statistic the engine data of multiple working conditions. Based on
the spectral energy distribution, the overall optimal mode number was identified, and the quadratic
penalty term was optimized using SNR. The improved VMD (IVMD) improves mode aliasing and
iterative efficiency and unifies feature dimensions. Decomposition of real signals demonstrates the
effectiveness. The paper designs a feature vector composed of seven types of attributes, including unit
bandwidth energy, center frequency, maximum singular value and so on. The feature vector is then
fed to RF for classification. Features are selected in order of importance to classification to improve
the training efficiency. By comparing with various algorithms, the proposed method has higher
accuracy and faster training efficiency in single-speed, multi-speed and cross-speed single-sensor
data diagnosis. The results show that the method has application prospects with little training data
and low hardware requirements.

Keywords: fault detection; single-sensor data; variational mode decomposition; vibration;
random forest

1. Introduction

As one of the critical power sources, the reliability of engines has received more
attention in recent years. In time, engine fault detection can detect weak faults, which is
conducive to fault prevention and repair. Data-driven approaches usually require large
amounts of high-quality data for training. However, engine labelled-data is challenging to
obtain and mostly comes from a single sensor due to cost constraints. Research on single-
sensor engine fault detection based on small data amounts and low hardware requirements
is necessary [1].

Vibration acceleration signals are widely used in fault detection research because
of their rich component condition information and ease of measurement [2,3]. Ma et al.
proposed a multi-channel Lanczos quaternion singular spectrum analysis to extract fault
characteristic frequencies from multiple vibration sensor signals [4]. Ribeiro et al. proposed
a multi-head one-dimensional convolutional neural network to diagnose six motor faults
using vibration signals from two directions [5]. However, the engine vibration signal has a
wide frequency band (up to about 12,000 Hz), and sensors with high sampling accuracy
and a wide frequency band with good stability are usually costly. Moreover, the hardware
conditions of the engine control system are ordinary, so the research on single-sensor fault
detection under low hardware requirements is gradually gaining attention. Basuraj et al.
proposed a single-sensor online filtering method for recursive singular spectrum analysis
based on the concept of first-order feature perturbation, which proved its effectiveness
in several data sets. [6]. Ayati et al. used KNN for single-sensor fault classification after
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extracting features using fast Fourier transform and wavelet packet transform [7]. In
general, it is challenging to diagnose faults in different cylinders of an engine separately
using a single sensor.

Engine fault detection methods can be roughly divided into three categories: knowledge-
driven, model-driven, and data-driven. Wang et al. proposed an aero-engine dynamic
threshold fault detection based on the isolated forest method, which requires only normal
data for training to achieve high accuracy [8]. Ellefsen et al. proposed an online diagnosis
method for marine diesel engine degradation based on variational autoencoder and expert
knowledge [9]. Knowledge-driven methods usually diagnose a single type of fault and
require solid expert knowledge. Liu et al. proposed a model-based aero-engine soft fault
detection method, which achieved fault diagnosis by comparing smooth residuals and
preset thresholds [10]. Wang et al. established a mapping model between the shaft radial
vibration average and the misalignment value based on shaft shape characteristics. A
new monitoring scheme has been designed and the accuracy of detecting misalignment is
greater than 90% [11]. Model-driven method research can help explore the failure mech-
anism, but it is usually challenging to achieve. Data-driven methods are widely used
due to their ease of implementation and high accuracy [12,13]. Deep learning methods
have been widely used in engine fault detection in recent years due to their powerful
data mining capabilities [14,15]. These methods require less expert knowledge and more
high-quality training data. However, high-dimensional and huge data processing capability
leads to higher hardware requirements for deep learning methods. In practical scenarios,
high-quality training data is difficult to obtain because of the dangers of engine failure
simulation experiments. Under the constraints of low hardware conditions and lack of data,
the combination of signal processing methods and simple pattern classification methods
still has potential to be explored [16,17].

Variational Mode Decomposition (VMD) is an advanced signal processing method ca-
pable of decomposing a signal into several intrinsic mode functions (IMFs) [18]. Compared
with empirical mode decomposition (EMD), VMD effectively suppresses mode aliasing and
improves the quality of decomposition [19]. However, the mode number K and quadratic
penalty term α, predefined in VMD, strongly influence the decomposition and are difficult
to determine [20,21]. For these reasons, scholars have proposed many optimization ideas
for adaptively selecting K and α [21,22]. The adaptive VMD method leads to a varying
number of IMFs, so component screening is usually performed after decomposition [23,24].
The process of screening IMFs requires expert knowledge and is time-consuming and
labor-intensive. In addition, many scholars optimize (K, α) through swarm intelligence
optimization algorithms [25,26]. This method ignores the problem that the VMD efficiency
drops sharply as K increases (as shown in Section 4).

The unsupervised clustering method is ineffective in diagnosing engine faults because
there are many types of failure, complex operating conditions, and large signal noise [27,28].
Supervised pattern classification methods such as deep neural networks (DNN) are more
suitable due to their powerful learning capabilities. Shahid et al. used a one-dimensional
convolutional neural network (1DCNN) to identify the crankshaft angle degree of the
engine and successfully diagnosed the misfire fault [29]. Zhang et al. proposed a long
short-term memory recurrent neural network (LSTM-RNN) for evaluating bearing degra-
dation and proposed waveform entropy to improve the accuracy effectively [30]. Lee et al.
compared the performance of multilayer perception (MLP), residual network (ResNet),
LSTM, and ResNet-LSTM in diagnosing production failure cases and found that ResNet-
LSTM works best [31]. However, the effectiveness of DNN is built on sufficient high-quality
labeled data. Due to the complex calculation of DNN, the training time is long, and it is
challenging to optimize and retrain the model [32]. Li et al. first used a simplified DNN
to extract the fault features of rotating machinery and then combined random forest (RF)
for fault classification, which has higher efficiency and accuracy than advanced DNN
methods [32]. RF has faster training and classification speed than DNN and may be suitable
for engine fault detection.
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The paper aims to propose a single-sensor, cross-speed fault detection method that is
applicable to low hardware requirements and small data amounts. The work has resulted
in the following contributions.

(1) A new overall K and α optimization method based on spectral energy distribution
and SNR is proposed for VMD, avoiding IMF screening and unifying the feature
dimension to prepare for quick diagnosis.

(2) The center frequencies are preset based on spectral energy distribution, which reduces
the number of VMD iterations and mode aliasing.

(3) A feature set was designed for IVMD-RF to achieve single-sensor fault diagnosis. Fur-
ther filtering of features by feature importance ranking improves efficiency. Different
single-sensor datasets demonstrate the effectiveness of the method.

The rest of the article is organized as follows. Section 2 introduces the basic principles
of the methods used in the paper. In Section 3, the fault data collection experiment of
the diesel engine is presented. Section 4 introduces the optimization of the VMD method
and the verification of its decomposition effect. In Section 5, IVMD-RF is presented and
compared with various DNN methods on two diagnostic cases.

2. Theories
2.1. Variational Mode Decomposition

The purpose of VMD is to decompose an actual signal into several ideal narrowband
signals while satisfying the constraint that the sum of their bandwidths is the smallest.
Assume that each IMF closely surrounds its center frequency in the frequency domain. There-
fore, the objective can be summarized as the following constrained variational problem:

min
{uk},{ωk}

{∑
k

∥∥∥∂t[(δ(t) +
j

πt ) ∗ uk(t)]e−jωkt
∥∥∥2

2
}

s.t.∑
k

uk = f
, (1)

where {uk(t)} = {u1(t), u1(t), . . . , uk(t)} and {ωk} = {ω1, ω2, . . . , ωk} represent the
decomposed IMFs and the corresponding center frequencies, respectively. δ(t) is the
shock function.

The reconstruction constraint can be addressed by introducing a quadratic penalty
α and Lagrange multipliers λ. The constrained variational problem of (1) is transformed
into an unconstrained one by introducing these two parameters. The obtained augmented
Lagrangian is shown in (2):

L({uk}, {ωk}, λ) := α∑
k

∥∥∥∥∂t[(δ(t) +
j

πt
) ∗ uk(t)]e−jωkt

∥∥∥∥2

2
+

∥∥∥∥∥ f (t)−∑
k

uk(t)

∥∥∥∥∥
2

2

+

〈
λ(t), f (t)−∑

k
uk(t)

〉
, (2)

This problem can be solved by Parseval/Plancherel Fourier isometry under the norm.

The expressions of
_
u

n+1
k (ω) and ωn+1

k are shown in (3) and (4).

_
u

n+1
k (ω) =

_
f (ω)−∑i 6=k

_
u i(ω) +

_
λ (ω)

2

1 + 2α(ω−ωk)
2 , (3)

ωn+1
k =

∫ ∞
0 ω

∣∣∣_u k(ω)
∣∣∣2dω∫ ∞

0

∣∣∣_u k(ω)
∣∣∣2dω

, (4)
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where (3) is equivalent to the Wiener filter of the current residual
_
f (ω)− ∑

i<K

_
ui(ω). IMF

can be obtained by inverse Fourier transform of
_
u

n+1
k (ω).The flow of VMD is shown in

Algorithm 1. The default ε value is 1 × 10−7.

Algorithm 1: VMD

Input: A signal f, mode number K and quadratic penalty α.
Output: A set of IMFs

Initialize {_u
1
k}, {

_
ω

1
k}, {

_
λ

1
}, n← 0

repeat
for k← 1 to K do

Update
_
u k for all ω ≥ 0 by (3)

Update ωk by (4)
end for
Dual ascent for all ω ≥ 0:
_
λ

n+1
(ω)←

_
λ

n
(ω) + τ

[
_
f (ω)−∑

k

_
u

n+1
k (ω)

]
until convergence: ∑

k

∥∥∥∥_u n+1
k −_

u
n
k

∥∥∥∥2

2
/
∥∥∥_u n

k

∥∥∥2

2
< ε.

2.2. Random Forests

The random forest algorithm was proposed by Breiman [33], which is suitable for
solving data prediction and classification. A random forest is a combination of decision tree
classifiers. Each tree depends on the value of an independently sampled random vector
and has the same distribution for all trees in the forest.

(1) Suppose the original sample is X = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi and yi
represent feature values and labels, respectively. T training samples X1, X2, . . . , XT
are extracted from the original dataset X by bootstrap sampling with return, and
Xi(i = 1, 2, . . . T) and X have the same number of samples.

(2) Build a decision tree hi(Xi, Θk) for each training sample Xi(i = 1, 2, . . . T),
where i =1, 2, . . . T, k =1, 2, . . . . The decision tree model used in the paper is
shown in (5) and (6).

d(x1, x2, . . . , xn, ht) =

{
label(ht) ht is the leaf node
d(x1, x2, . . . , xn, ht) ht is the inner node

(5)

hi(Xi, Θk) = d(x1, x2, . . . , xn, root(ht)) (6)

where root(ht) is the root node of the decision tree. d(x1, x2, . . . , xn, ht) is the division
criterion of the decision tree. The segmentation criterion consists of segmentation variables
and predictions measured by the impurity function.

The Gini coefficient is proportional to the impurity level. The optimal split is to find
the largest split of the Gini coefficient as follows:

Gini(t) = 1−
J

∑
j=1
{p(j|t)}2 (7)

where p(j|t) is the probability of the jth category in node t, that is, the ratio of the jth
category to the total number of sample labels J.

Before selecting attributes for each non-leaf node, randomly select m attributes from
M attributes as the set of categorical attributes for the current node. Take m = int(

√
M),

where int is the rounding function. The nodes are divided according to the optimal division
method of m attributes, and a complete decision tree is established. The growth of each
decision tree is not pruned until the leaf node grows.
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A random forest generated from T decision trees is used to classify the test samples.
Each tree has voting power to decide the classification result. Summarize the output
categories of the decision tree, and the category with the most votes is the final classification
result. The classification decision model H(x) is shown in (8).

H(x) = argmax
γ

T

∑
i=1

I(hi(Xi, Θk) = γ) (8)

where γ is the label variable of the output and I is the indicator function.

3. Diesel Engine Faults Simulation Experiment

To verify the effectiveness of the proposed method, our team conducted a fault sim-
ulation experiment on an in-line 6-cylinder diesel engine. The specific parameters of the
engine are shown in Table 1. The experiment was performed on a bench base supported by
an air spring. The engine and the dynamic dynamometer adopt a flexible connection. The
photoelectric pulse speed sensor is placed at the position of the vertical connecting shaft to
measure the engine speed. The vibration acceleration sensors are arranged on the cylinder
head and block as shown in Figure 1. The data used in this paper are vibration acceleration
signals in the Y-direction in Figure 1. The signal is input to the computer for processing and
recording after passing through the acquisition front end. The models of the instruments
used in the experiment are shown in Table 2.

Table 1. Parameters of diesel engine.

Items Parameters

Displacement 7.14 L
Rated power/Rated speed 220 kW/2300 rpm

Maximum torque/Speed range 1250 Nm/1200–1600 rpm
Intake/Exhaust valve clearance 0.30 m/0.50 m

Figure 1. Sensor positions and coordinate direction.

Table 2. Experimental instrument parameters.

Instruments Parameters

Dynamic dynamometer CAC380, Xiangyi Power
Vibration acceleration sensor 621B40, PCB

Photoelectric pulse speed sensor SPSR-115/230, Monarch
Data acquisition front end SCADAS05, LMS
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Components with the highest failure probability are fuel injection and oil supply
equipment (25.1%), water leakage (13.1%), and valves and sealing (17.4%) [34]. Generally,
leak failure is easy to detect by water temperature sensors. The paper focuses on two other
types of failures. The paper simulates three faults for the fuel supply equipment: abnormal
common rail pressure, abnormal fuel supply, and abnormal injection advance angle. Abnor-
mal rail pressure is set to simulate the fault of the common rail system, and the insufficient
fuel supply is to simulate injector failure. The weak power combustion abnormality is
simulated by slightly changing the injection advance angle. In addition, the abnormal
valve clearance is simulated by adjusting the opening of intake and exhaust valves with
a plug gauge. The abnormal valve clearance conditions all occurred on the first cylinder
only. Experiments were performed at the following rotational speeds: 700 rpm, 1300 rpm,
1600 rpm, 2000 rpm, and 2300 rpm. The parameters of normal working conditions under
each speed condition are shown in Table 3. The fault settings at rated speed (2300 rpm) are
shown in Table 4, where the Roman numerals represent different fault conditions. The fault
conditions of other speeds are also adjusted to the same extent as those in Table 4 on the
basis of the normal parameters in Table 3. The abnormal advance angle failure simulation
is not carried out under 700 rpm idling conditions. The load range of the engine includes
100% and 50%.

Table 3. Normal working conditions under different speeds.

Speed
(rpm)

Valve Clearance-Intake,
Exhaust (mm)

Fuel Supply
(mg/cyc)

Rail Pressure
(bar)

Injection Advance
Angle (◦CA)

700 (0.30, 0.50) 60.0 405 -
1300 (0.30, 0.50) 117.0 1250 9.49
1600 (0.30, 0.50) 117.0 1350 12.98
2000 (0.30, 0.50) 117.0 1500 15.00
2300 (0.30, 0.50) 112.5 1550 18.45

Table 4. Fault type and degree parameter setting (2300 rpm).

Mark Valve Clearance
(Intake, Exhaust)/mm Fuel Supply Rail

Pressure/bar
Injection Advance

Angle/◦CA

I (0.30, 0.50) 100% 1550 18.45
II (0.20, 0.40) 100% 1550 18.45
III (0.35, 0.55) 100% 1550 18.45
IV (0.40, 0.60) 100% 1550 18.45
V (0.30, 0.50) 75% 1550 18.45
VI (0.30, 0.50) 25% 1550 18.45
VII (0.30, 0.50) 100% 1350 18.45
VIII (0.30, 0.50) 100% 1150 18.45
IX (0.30, 0.50) 100% 1550 17.45
X (0.30, 0.50) 100% 1550 16.45
XI (0.30, 0.50) 100% 1550 19.45
XII (0.30, 0.50) 100% 1550 20.45

Note: The shaded green marks the location of the faulty parameter.

4. Optimization of Variational Mode Decomposition

VMD’s denoising ability is better than EMD [35], and the decomposed IMFs have a
better signal-to-noise ratio (SNR). However, the decomposition effect of VMD is greatly
affected by parameter settings, especially the mode number K and the quadratic penalty
term α. Improper K value setting will lead to over-decomposition or under-decomposition.
In addition, as K increases, the efficiency of the original VMD decreases drastically. Figure 2
shows the effect of different K values on the decomposition time of each IMF. The results
show that the efficiency of VMD is much higher when K ≤ 3. From Figure 2, traversing K
to find the optimal value and using various swarm intelligence optimization algorithms
are both inefficient. Therefore, Ref. [36] proposes an adaptive recursive variational mode
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decomposition (ARVMD) that dynamically selects the K in recursive loops. ARVMD
effectively improves efficiency and reduces recursive mode aliasing. The process of ARVMD
is shown in Algorithm 2.

Algorithm 2: ARVMD

Input: A signal f 0, Sampling frequency Fs and quadratic penalty α.
Output: A set of IMFs.
f = f 0; IMFs = []; Eu = []; i = 0;
while Eui > Eth do

i = i + 1;
Pf←Power spectral density (f );
(Pmax, Fmax)←Maximum, corresponding frequency (Pf);
Npeak ←Numbers of maxima points in [Fmax ± 0.027 × Fs];
{F1, F2, . . . , Fn}← Corresponding frequencies of maxima points;

Ki =


1, Npeak < 2
2, Npeak = 2
3, Npeak > 2

{u1, u2, . . . , uKi}← VMD (f, Ki, α, {F1, F2, . . . , FKi});
{Eu1, Eu2, . . . , EuKi}← Unit bandwidth energy ({u1, u2, . . . , uKi});
IMFs←IMFs ∪{u1, u2, . . . , uKi};
Eu ←Eu ∪{Eu1, Eu2, . . . , EuKi};
f = f −∑Ki

1 uKi(t);
end while
IMFs←Selection by Eui > Eth (IMFs)
return IMFs

Figure 2. Decomposition time per IMF of VMD. The curve data come from the average of normal
signals of various speeds. The engine data come from the experiment of Section 3. The bearing data
come from the bearing dataset of Case Western Reserve University [37].

Complex types and working conditions characterize engine faults. However, the
component number obtained by ARVMD is variable, resulting in inconsistent feature
vector dimensions, which is not conducive to diagnosing multi-speed engine vibration
data. A K-value optimization method based on the energy distribution in the frequency
domain is proposed to unify the feature dimension. First, ARVMD decomposes the signals
of various engine working conditions and obtains many IMFs. These conditions contain
data for different speeds and faults (I to XII, as shown in Table 4). Then, the unit bandwidth
energy [36] of each IMFs is calculated, and the center frequency of the IMFs is recorded.
The unit bandwidth energy is shown in (9):

Eu =
eIMFi
BIMFi

(9)
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where eIMFi is the energy of IMF and BIMFi is the bandwidth of IMF. The bandwidth is the
width of the spectrum when the amplitude of the power spectral density is reduced by 99%.
The frequency band [0 Hz, 12,800 Hz] is divided into 128 segments, and the width of each
segment is 100 Hz. The unit bandwidth energy of the components located in each segment
is counted and averaged. Figure 3 shows the unit bandwidth energy spectrum displayed on
divided frequency bands. The results show that there are six prominent energy frequencies:
150 Hz, 1450 Hz, 1950 Hz, 2450 Hz, 4950 Hz, and 7050 Hz. Here, each frequency segment
uses the frequency in the middle as the value of the abscissa. Therefore, the engine data will
be uniformly decomposed using K equal to 6. This approach can improve the consistency
of data processing and help reduce the randomness caused by adaptive decomposition. It
also ensures that the dimension of the feature vectors at different speeds is uniform.

Figure 3. Frequency domain distribution of unit bandwidth energy of engine data.

Furthermore, the iterations of the center frequency of the original VMD are zero-based.
It is beneficial for decomposing low-frequency components, but the decomposition time
for high-frequency components is longer. Presetting suitable initial center frequencies
can significantly improve the efficiency of the VMD [18]. Therefore, the six significant
frequencies in Figure 3 are used as the initial center frequencies to iterate.

The quadratic penalty term α is a parameter introduced to improve the convergence
when solving the variational model. The role of α in the decomposition is reflected in
the noise reduction of the signal. The SNR is the best criterion for choosing a suitable α.
However, it is difficult to obtain the SNR of the actual signal after decomposition. Therefore,
a set of simulated signals is constructed according to the spectral energy distribution of
Figure 3. The expression of the simulated signal is as (10). {s1, s2, . . . , s6} are single-
frequency components, which restore the amplitude ratio and frequency of each component
in Figure 3. The amplitude of s3 is set to 100, and the other components are reduced
proportionally. s7 is the noise component with a power of 25 dbW. S1 is decomposed
using VMD, where K is six, and the initial center frequency is preset. Set the variation
range of α to [1000, 20,000], and the step size is 100. Calculate the SNR between IMFs and
{s1, s2, . . . , s6}, and the results are shown in Figure 4. With the increase of α, the SNR has a
trend of increasing first and then decreasing. Summing the SNR of each component, it is
found that the total SNR does not change much when α is 6000 to 8000. The value of α used
in the paper is 6800, and the inset of Figure 4 shows that the SNR reaches the maximum at
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this value. After the optimized α is obtained, it is used in the mode number optimization
for reverse verification, and the results show that it does not affect the results in Figure 3.

s1(t) = 27 sin(2π ∗ 150t), 0 ≤ t ≤ 0.053
s2(t) = 64 sin(2π ∗ 1450t), 0 ≤ t ≤ 0.053
s3(t) = 100 sin(2π ∗ 1950t), 0 ≤ t ≤ 0.053
s4(t) = 57 sin(2π ∗ 2450t), 0 ≤ t ≤ 0.053
s5(t) = 13 sin(2π ∗ 4950t), 0 ≤ t ≤ 0.053
s6(t) = 8 sin(2π ∗ 7050t), 0 ≤ t ≤ 0.053
s7(t) = η
S1 = s1 + s2 + s3 + s4 + s5 + s6+s7

(10)

Figure 4. The effect of α on the decomposition SNR.

The optimization of K, α and the iterative optimization of the center frequency have
been completed. Next, decompose an actual signal using the improved VMD (IVMD) to
verify the effect. A signal of valve clearance increase at 1600 rpm (Condition III in Table 4)
was randomly selected for decomposition. The signal’s time and frequency domain are
shown in Figure 5a,b. Decompose this signal using VMD and IVMD. Figure 6 shows the
frequency domain image of the decomposed IMFs. VMD decomposes four components
in the [2000 Hz, 3000 Hz] while IVMD decomposes three. The results show that using the
same K, VMD focuses on decomposing low-frequency components, while IVMD is more
balanced. The average bandwidth aliasing ratio RABA is introduced to measure the effect of
suppressing mode aliasing [36]. The expression of RABA is shown in (11):

RABA =
K

∑
i=1

1
K

BA
BIMFi

, i = 1, 2, . . . , K. (11)

where K is the mode number, BA is the aliasing bandwidth of the IMFi and other com-
ponents, and BIMFi is the bandwidth of IMFi. The smaller the RABA, the better the effect
of suppressing mode aliasing. The RABA for VMD and IVMD results is 0.13 and 0.05,
respectively. IVMD suppresses mode aliasing better than VMD. In addition, the center fre-
quency iteration curves of IMFs are shown in Figure 7. Figure 7 shows that IVMD performs
87 iterations, less than VMD’s 194 iterations, effectively improving efficiency. The results
show that the presetting center frequency can significantly improve the iteration efficiency.
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Figure 5. A signal of valve clearance increase at 1600 rpm. (a) The signal in time domain. (b) The
signal in frequency domain.

Figure 6. Frequency domain image of the decomposed IMFs. (a) Result of VMD. (b) Result of IVMD.

Figure 7. Center frequency iterative curves for IMFs. (a) Iterative curves of VMD. (b) Iterative curves
of IVMD.

5. VMD-RF Fault Detection Method

After the IVMD decomposition of the engine signal, calculating proper features is
beneficial to improve the diagnostic accuracy. The RF method can automatically select
a subset of features for classification by bootstrap sampling with return. Instead of con-
sidering the feature dimension, features are required to describe the data information as
comprehensively as possible. Therefore, the used features include overall features and local
features. Finally, seven types of local features are selected. Namely, maximum singular
value, energy, unit bandwidth energy, kurtosis, variance, root mean square value (RMS),
and center frequency. The seven types of features are calculated for the six IMFs obtained
by IVMD. In addition, maximum singular value, energy, RMS, and variance are calculated
for the original signal. Feature names and symbols are shown in Table 5.
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Table 5. Attribute names and symbols.

Attribute Name Symbols

Maximum singular value S_1, S_2, S_3, S_4, S_5, S_6
Energy E_1, E_2, E_3, E_4, E_5, E_6

Unit bandwidth energy Eu_1, Eu_2, Eu_3, Eu_4, Eu_5, Eu_6
Kurtosis K_1, K_2, K_3, K_4, K_5, K_6
Variance V_1, V_2, V_3, V_4, V_5, V_6

Root mean square R_1, R_2, R_3, R_4, R_5, R_6
Center frequency C_1, C_2, C_3, C_4, C_5, C_6

Original signal attributes S, E, R, V
Note: The features calculated for IMF1 to IMF6 are denoted by the symbols with suffixes 1 to 6, respectively. The
symbols without suffixes indicate the features calculated for the original signal.

5.1. Case 1: Diesel Engine Fault Diagnosis

Once the complete feature set is obtained, the feature set can be fed into the RF for
classification. The whole flow of fault diagnosis is shown in Figure 8. The data of the first
cylinder head (1H), the third cylinder head (3H), and the first cylinder block (1B) at 2300 rpm
and the data of the first cylinder head at 2000 rpm were selected for preliminary verification
of the algorithm’s validity. Each dataset contains four types of faults in Table 4, with a total
of 12 fault conditions. Each fault condition includes 200 samples, and the training/test
ratio is 4:1. The number of decision trees in RF is 100. The depth of the decision tree is
not limited. Then, the training samples are used to generate a random forest. The results
of the diagnostic accuracy are shown in Table 6. The proposed method is compared with
sequential minimum optimization for support vector machines (SMO-SVM), Multilayer
Perceptron (MLP) [31], one-dimensional convolutional neural networks (1DCNN) [29],
long and short term memory recurrent neural networks (LSTM-RNN) [30], and residual
neural networks (ResNet) [31]. The 1DCNN and LSTM-RNN ran for 200 epochs, while
ResNet ran for 30 epochs. The parameters of each algorithm are as follows:

(1) SVM: The RBF kernel is chosen, and the penalty term C is set to 1. The inverse of the
radius of influence of the support vector gamma is set to 0.1.

(2) MLP: Two hidden layers are used, both with 30 neurons. The momentum is 0.2, and
the learning rate is 0.3.

(3) 1DCNN: The network consists of two convolutional layers (kernel size = 5), two
maximum pooling layers (kernel size = 2), and a linear layer. The activation function
is ReLU, and the optimizer is Adam.

(4) LSTM-RNN: The network contains two LSTM layers with 64 nodes in each layer.
(5) ResNet: The network uses the 18-layer ResNet model, as described in Ref. [38].

SMO-SVM, MLP, 1DCNN, and IVMD-RF achieved high accuracy from the results
of single-speed data. The LSTM-RNN had the lowest accuracy, which shows its poor
classification ability for non-time series. Compared to the 1H data set, the diagnostic
accuracy of the 1B and 3H datasets decreased significantly due to the increased distance of
the sensor location from the combustion chamber and valve. The vibration signal may be
distorted or coupled with other disturbances when it is transmitted.

The next step is to use these methods to diagnose multiple speed conditions. All types
of failure data for the first cylinder head (1H) at 700 rpm, 1300 rpm, 1600 rpm, 2000 rpm,
and 2300 rpm were made into one dataset. Since there are no abnormal injection advance
angle faults in the 700 rpm data, a total of 56 labeled categories of data are included. The
diagnostic results are shown in Table 6. Compared to the single-speed dataset for the
first cylinder head (1H), the accuracy of each method decreases to varying degrees as the
number of failure types increases. The accuracy of SMO-SVM dropped the most. SMO-
SVM method is suitable for single-speed data classification but not as effective as other
methods for multi-speed and multi-class data. The proposed method still maintains high
accuracy. The results show that IVMD-RF has advantages for multi-speed and multi-type
fault diagnosis scenarios.
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Figure 8. IVMD-RF fault detection process.

Table 6. Accuracy comparison of different algorithms (%).

Methods 1H-2000 rpm 1H-2300 rpm 1B-2300 rpm 3H-2300 rpm 1H-Multi-Speed

SMO-SVM 99.06 97.50 93.75 92.91 92.59
MLP 97.81 98.13 92.36 92.71 96.79

1DCNN 94.06 99.06 92.89 94.06 96.56
LSTM-RNN 59.06 75.16 78.12 68.75 56.23

ResNet 91.09 96.88 88.28 86.72 92.19
IVMD-RF 98.75 99.38 92.91 93.54 97.32

Note: “3H” represents the third cylinder head, “1B” represents the first cylinder block.

In addition, the proposed method requires less training time to achieve high accuracy.
For comparison, all algorithms are run in the same environment (Python 3.8, Windows
11, Intel Core i7-10700 CPU @ 2.9 GHz), and the running time is recorded in Table 7 The
results show that SMO-SVM has the highest training efficiency, followed closely by IVMD-
RF. ResNet has the longest training time due to the deep network layers. Therefore, the
proposed method has high efficiency and high accuracy. It is worth noting that deep
learning may provide better diagnostic results for the original raw signal. However,
the significant increase in data dimensionality leads to an increase in computation time
and higher hardware requirements, which deviates from the purpose of this paper. No
diagnostics were performed on the original raw data to keep the variables consistent.

Next, the 1300 rpm, 1600 rpm, 2000 rpm, and 2300 rpm data were mixed into one
dataset. The data were labeled into 12 categories according to Table 4, regardless of the
speed change. The cross-speed datasets include the 1H dataset, 1B dataset, and 3H dataset.
The above methods are still used for classification, and the results are shown in Table 8.
The results show that the accuracy of each algorithm has a certain drop compared to
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Table 6, especially the SMO-SVM. The 1DCNN and IVMD-RF still maintain a relatively
high accuracy rate. The overall accuracy of the 3H dataset is low because the sensor
in the third cylinder head is far from the cylinder where some failures occurred. The
proposed method still has some advantages over other algorithms. Table 8 also shows
the classification precision, recall, and f1-score. These indicators are weighted averages,
where the weights are determined by the proportion of each class sample distribution. The
results show that the proposed method also performs well on these metrics. For the 3H
dataset with relatively poor diagnostic results, Figure 9 shows the comparison of recall and
precision of each algorithm for the 12 classes. The results showed low recall and accuracy
for reduced valve clearance (condition II) and abnormal injection advance angles (condition
IX to XII). The reason for the low precision and recall of Fault II is the slight increase in valve
clearance and the long distance of the sensor from the cylinder where the fault occurred.
Faults IX to XII, on the other hand, are due to small changes in injection advance angle,
causing only minor differences in combustion conditions. The training efficiency of the
proposed method is much higher than that of the deep learning method and slightly lower
than that of SMO-SVM. Figure 10 shows the confusion matrix for the 1H dataset, indicating
that most of the misclassified samples are data of the same type but with different failure
levels, which proves the effectiveness of the proposed method.

Table 7. Comparison of training time of various algorithms (s).

Methods 1H-2000 rpm 1H-2300 rpm 1B-2300 rpm 3H-2300 rpm 1H-Multi-Speed

SMO-SVM 0.05 0.06 0.05 0.07 2.84
MLP 9.60 9.91 9.55 9.53 274.21

1DCNN 13.02 14.10 14.65 14.87 167.38
LSTM-RNN 17.85 18.21 20.26 20.48 224.95

ResNet 49.32 47.66 54.53 51.66 446.92
IVMD-RF 0.26 0.28 0.31 0.29 4.30

Note: “3H” represents the third cylinder head, “1B” represents the first cylinder block.

Table 8. Comparison of fault diagnosis results of each algorithm for cross-speed dataset.

/ Methods SMO-SVM MLP 1DCNN LSTM-RNN ResNet IVMD-RF

First cylinder head
Y-direction (1H)

Accuracy 0.81 0.92 0.93 0.68 0.87 0.97
Precision 0.82 0.92 0.94 0.65 0.89 0.97

Recall 0.81 0.92 0.92 0.63 0.88 0.96
F1-score 0.82 0.92 0.92 0.62 0.88 0.97
Time (s) 0.99 70.19 130.02 189.29 219.77 2.20

First cylinder block
Y-direction (1B)

Accuracy 0.81 0.89 0.93 0.67 0.86 0.92
Precision 0.81 0.89 0.94 0.75 0.87 0.92

Recall 0.80 0.89 0.91 0.72 0.85 0.92
F1-score 0.80 0.89 0.91 0.72 0.86 0.92
Time (s) 1.13 70.69 145.99 192.59 224.21 2.74

Third cylinder head
Y-direction (3H)

Accuracy 0.65 0.75 0.83 0.47 0.78 0.94
Precision 0.66 0.76 0.83 0.42 0.72 0.93

Recall 0.65 0.76 0.80 0.42 0.71 0.94
F1-score 0.65 0.76 0.81 0.40 0.71 0.93
Time (s) 1.03 70.28 143.31 203.47 221.34 2.92

The datasets with different training/testing ratios are set up for classification to verify
the diagnostic effectiveness of various methods for the small sample case. Figure 11 shows
each algorithm’s accuracy and time consumption curves for the 1H dataset at different
training test ratios (0.1 to 4). When the training test ratio <0.25, the accuracy of 1DCNN,
RNN, and MLP significantly decrease, while SMO-SVM and IVMD-RF decrease more
smoothly. When the training test ratio is 0.1, IVMD-RF has the highest accuracy of 88.77%.
Figure 11b shows that the training efficiency of each algorithm increases as the training/test
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ratio decreases. The efficiency of IVMD-RF and SMO-SVM remains higher than the other
methods. The results illustrate the good diagnostic effect of the proposed method for small
samples of single-sensor data. Figure 12 shows the accuracy and training loss curves when
the three deep learning methods are applied to the 1H dataset. Figure 12 indicates that the
1DCNN has converged while the RNN clearly shows over-fitting, which is the reason for
its low accuracy. Continuing to train ResNet may improve the accuracy, but the training
efficiency is too low compared to other methods. Therefore, IVMD-RF has a high fault
diagnosis accuracy and high efficiency for cross-speed data. It is worth noting that deep
learning methods still have more advantages and potential when the amount of labeled
data and computational resources are sufficient.

Figure 9. Precision and recall results of each algorithm for the 3H dataset. (a) Precision result.
(b) Recall result.

Figure 10. Confusion matrix for 1H dataset of IVMD-RF.
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Figure 11. Comparison of each algorithm with different training/testing ratios (0.1 to 4). (a) Compar-
ison of accuracy. (b) Comparison of the training time.

Figure 12. Accuracy and training loss of deep learning methods for 1H dataset. (a) Accuracy and
training loss of 1DCNN. (b) Accuracy and training loss of LSTM-RNN. (c) Accuracy and training loss
of ResNet.
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The study of feature importance can further improve the performance of the method.
Using the RF to rank the importance of features, the results for the 1H dataset are shown
in Figure 13. Singular values, energy, and center frequency contributed more to the clas-
sification, followed by variance and unit bandwidth energy. However, kurtosis has little
contribution to the classification results. Figure 13 shows that features with suffixes 1 and
4 contribute significantly to the classification, i.e., IMF1 and IMF4 contribute the most
to the classification, followed by IMF5 and IMF6. For different working conditions, the
difference in the body surface vibration is mainly reflected in the low-frequency (IMF1) and
high-frequency components (IMF4~6). IMF2 and IMF3 have high energy but weak contri-
bution. This conclusion is valuable for the study of unsupervised engine fault diagnosis.
Figure 14 shows the impact of using different numbers of features in order of importance
on training time and accuracy. Finally, we found an optimal point. When using fifteen
features, it only takes 1.23 s to train and can achieve 97% diagnostic accuracy as marked
in Figure 14. The selected fifteen categories of features are marked in Figure 13. Feature
selection significantly improves training time with little change in accuracy.

Figure 13. The order of feature importance.

Figure 14. The impact of changing the number of features used.

5.2. Case 2: Gasoline Engine Fault Diagnosis

To verify the effectiveness of the proposed method on different engines, the gasoline
engine fault data will be diagnosed in the following. The fault data came from a two-
cylinder, two-stroke gasoline engine with the specific engine parameters shown in Table 9.
The sensor locations and coordinate system for the engine are shown in Figure 15. The
data used are from the Y-direction of cylinder 1 and the X-direction of cylinder 2 (the two
sensors connected by the white wire in Figure 15). Three common faults were simulated:
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abnormal injection advance angle, abnormal air-fuel ratio, and misfire. Among them, the
abnormal injection advance angle occurs in both cylinders, while the other two failures
occur only in cylinder 1. The specific fault level settings are shown in Table 10. Use Roman
numerals I through VII to indicate individual faults. Signals from 5000 rpm and 7000 rpm
were collected. Each working condition contains 200 samples, each containing data from
one working cycle.

Table 9. Parameters of gasoline engine.

Items Parameters

Displacement 0.294 L
Rated power/Rated speed 35.5 kW/8500 rpm

Maximum torque/Speed range 44.5 Nm/7000 rpm

Figure 15. Sensor positions and coordinate direction of the engine. (a) Position of sensor 1Y.
(b) Position of sensor 2X.

Table 10. Fault type and degree parameter setting.

Mark Injection Advance Angle Air/Fuel Ratio Misfire Rate

I 10 ◦CA 1 0
II 5 ◦CA 1 0
III 15 ◦CA 1 0
IV 10 ◦CA 1.1 0
V 10 ◦CA 1.2 0
VI 10 ◦CA 1 0.05
VII 10 ◦CA 1 0.1

Note: The shaded green marks the location of the faulty parameter.

The 5000 and 7000 rpm data were mixed to form the cross-speed dataset. Various
algorithms diagnose the fault data of 1Y and 2X sensors separately. The settings of each
algorithm are shown in Section 5.1. A comparison of the diagnostic results for each
algorithm is shown in Table 11. The results show an overall decrease in the diagnostic
accuracy of each algorithm due to the increase in signal noise as the two-cylinder, two-
stroke engine vibrates more than the diesel engine. The higher speed is also one of the
reasons. SMO-SVM is still the fastest, but its accuracy is low. The proposed method works
best for fault diagnosis of 1Y data, and 1DCNN works best for 2X data. The difference in
accuracy between the two is not significant. The proposed method is more efficient and
suitable for low hardware conditions. The results show that IVMD-RF can be used for
gasoline engine fault diagnosis.
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Table 11. Comparison of fault diagnosis results of each algorithm for gasoline engine data.

Methods SMO-SVM MLP 1DCNN LSTM-RNN ResNet IVMD-RF

First cylinder head
Y-direction (1Y)

Accuracy 0.67 0.75 0.82 0.52 0.78 0.85
Precision 0.68 0.77 0.81 0.69 0.78 0.85

Recall 0.67 0.75 0.82 0.51 0.79 0.84
F1-score 0.67 0.72 0.82 0.52 0.78 0.84
Time (s) 0.33 15.83 9.45 6.44 11.02 1.16

Second cylinder
head X-direction (2X)

Accuracy 0.72 0.74 0.82 0.59 0.79 0.79
Precision 0.72 0.74 0.82 0.58 0.77 0.78

Recall 0.72 0.74 0.81 0.58 0.76 0.79
F1-score 0.72 0.74 0.82 0.58 0.74 0.79
Time (s) 0.25 15.80 9.61 6.51 11.05 1.12

6. Conclusions and Discussion

This article proposes an IVMD-RF for single-sensor multi-fault detection of the engine.
In IVMD, the engine data spectral energy distribution is obtained through multiple decom-
positions and statistics. The alpha value was chosen based on the spectral distribution and
the SNR. By presetting the center frequency and the optimal K and α values, the efficiency
is improved, the mode aliasing is reduced, and the feature size is unified. The effectiveness
of IVMD is proved by decomposing the engine signals. Seven types of attributes are calcu-
lated to form a feature group for IMFs, which is input into RF for classification. Compared
with various machine learning and deep learning algorithms, it is proved that the proposed
method has advantages in training efficiency and accuracy. Through the feature importance
study, it is found that the high-frequency and low-frequency IMFs contribute more to the
classification. Fifteen optimal features have been selected to improve the efficiency of
RF. The IVMD-RF method has application prospects in engine single-sensor multi-class
fault detection.
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