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Abstract: Vibration-based damage features are widely adopted in the field of structural health
monitoring (SHM), and particularly in the monitoring of axially loaded beams, due to their high
sensitivity to damage-related changes in structural properties. However, changes in environmental
and operating conditions often cause damage feature variations which can mask any possible change
due to damage, thus strongly affecting the effectiveness of the monitoring strategy. Most of the
approaches proposed to tackle this problem rely on the availability of a wide training dataset,
accounting for the most part of the damage feature variability due to environmental and operating
conditions. These approaches are reliable when a complete training set is available, and this represents
a significant limitation in applications where only a short training set can be used. This often occurs
when SHM systems aim at monitoring the health state of an already existing and possibly already
damaged structure (e.g., tie-rods in historical buildings), or for systems which can undergo rapid
deterioration. To overcome this limit, this work proposes a new damage index not affected by
environmental conditions and able to properly detect system damages, even in case of short training
set. The proposed index is based on the principal component analysis (PCA) of vibration-based
damage features. PCA is shown to allow for a simple filtering procedure of the operating and
environmental effects on the damage feature, thus avoiding any dependence on the extent of the
training set. The proposed index effectiveness is shown through both simulated and experimental
case studies related to an axially loaded beam-like structure, and it is compared with a Mahalanobis
square distance-based index, as a reference. The obtained results highlight the capability of the
proposed index in filtering out the temperature effects on a multivariate damage feature composed
of eigenfrequencies, in case of both short and long training set. Moreover, the proposed PCA-based
strategy is shown to outperform the benchmark one, both in terms of temperature dependency and
damage sensitivity.

Keywords: structural health monitoring; unsupervised learning; environmental variations; principal
component analysis; short baseline; tie-rods; beam-like structures; mahalanobis squared distance

1. Introduction

Structures are naturally subject to deterioration and material degradation, which can
lead to critical damage conditions. When the structural integrity is compromised, system
current or future performances are affected. Thus, being able to detect damage at an early
stage plays a key role in order to carry out prompt maintenance actions, preventing struc-
tural failure. This aspect has a relevant impact, first and foremost in terms of safety for the
users, but also from an economic point of view. Indeed, carrying out effective maintenance
actions, acting only when required, allows a better use of the maintenance resources.

The research area aiming at defining automatic damage detection strategies goes by the
name of structural health monitoring (SHM) [1]. Due to the availability of advanced sensing
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techniques, data acquisition, computing, and information management, these strategies are
mainly data-driven, i.e., they exploit data acquired by sensors on the monitored structure.
Since no device directly measures damage, a crucial point is the extraction of damage
sensitive quantities, or damage features, from the signals acquired by the sensors [2].

Vibration-based approaches are among the most commonly adopted approaches, as
reported by many exhaustive review papers in the literature (e.g., [3–7]). According to
these approaches, damage sensitive features are extracted from the dynamic response of
the monitored structure by adopting, e.g., time series models [8–10] or modal analysis [11],
relying on a simple assumption: damage manifests itself as a change in structural properties
(e.g., a change of mass, stiffness, constraint characteristics or structural connectivity) that
reflects in changes of modal parameters (i.e., eigenfrequencies, mode shapes and damping
coefficients) [12]. Vibration-based approaches are also called global approaches [12], since
the information that can be extracted from the response of a structure is related to the overall
structural condition. This aspect comes with two significant advantages. Firstly, as opposite
to local techniques, vibration-based techniques can be successfully adopted to detect
damage without knowing the expected damage location in advance. Secondly, vibration-
based techniques often use a limited number of sensors and the instrumentation required
can be easily integrated in the monitored structure [5,13]. Vibration-based techniques,
together with their practical advantages, are crucial for all those structures whose dynamic
behaviour is significantly affected by damage, such as tie-rods, which are the main focus of
this study.

Tie-rods are axially-loaded metallic beams used to balance lateral forces in arches
and vaults of civil structures. Due to their characteristics, these slender elements undergo
significant vibration levels under operational conditions, which make the adoption of
vibration-based SHM techniques particularly suitable. Considering real operating tie-
rods, they show a high uncertainty, generally associated to geometrical and material
properties, loading conditions and constraint characteristics. Moreover, many different
damage scenarios are possible and, in most cases, damage-related data are not available at
the beginning of the monitoring phase. These factors make the use of supervised methods
difficult and unreliable. Thus, an unsupervised learning approach becomes interesting,
since damage is assessed when a statistically significant variation of the adopted vibration-
based damage features is observed, with respect to a reference condition [2].

However, the main obstacle to the adoption of unsupervised learning approaches to
real structures is related to the effects of environmental and operational variations [14].
Indeed, changes of environmental variables, e.g., temperature, cause changes to structural
properties that can significantly increase the variability associated to vibration-based dam-
age features [15,16]. For the specific case of tie-rods, it has been observed that this high
variability can mask the effects of damage at an early stage, hampering a prompt damage
detection [17,18].

In the literature of SHM, different approaches have been proposed to face the problems
related to environmental and operational variations. A family of approaches is that of
input-output models, which require measurements of both the environmental variables
(the input) and the structural response (the output) to filter out the environmental effects
through the adoption of, e.g., linear correlation models [19–22], neural networks [23–25] or
support vector machines [26,27]. However, often not all the relevant environmental and
operational variables are measured or known. For this reason, output-only approaches can
be adopted to compensate environmental and operational changes, without relying on any
additional measurement related to these changes.

When output-only techniques are considered, a possible approach to filter out the
temperature effects is to actually include the normal variability of environmental factors
in the training data and to use multivariate data with enough redundancy to remove the
unwanted effects, using the data correlation structure [28]. Some recent examples of such
approach can be found in the literature, based on Kalman filtering [29], Bayesian virtual
sensing [30,31] and principal component analysis (PCA) [32–34]. One of the most popular
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tool is the multivariate metrics known as Mahalanobis squared distance (MSD) [35]. The
MSD is used to assess when a new observation of a multivariate damage feature is an
outlier with respect to a reference data set, called the baseline set. The MSD can naturally
filter out the environmental variability, provided that a proper baseline set, containing the
full range of environmental conditions, is adopted and a high-enough number of variables
is used, to ensure some separability between the damage effects and the environmental
effects [35]. Therefore, a critical aspect for MSD-based damage detection, and in general
for any method relying on an exhaustive baseline, is the amount of time needed to build
such a complete baseline set, representative of most of the natural variability. There are
several cases, indeed, where this aspect prevents a reliable use of monitoring systems, and
where methods not sensitive to changes of operational and environmental conditions are
necessary to properly detect structural damage. This paper aims at solving this problem by
proposing an SHM method able to filter out any change of the considered damage feature
due to environmental effects, and able to work even when short training set, which is
inevitably lacking in information, must be used.

Many different cases fall in this category and would benefit of an SHM method with
these peculiarities; some examples are listed below:

• when a new structure is considered, the reference data acquired at beginning of the
monitoring campaign refers to the healthy condition of the structure. In this case,
damage detection cannot be effectively carried out until all the temperature conditions
are observed, due to long-term seasonal effects. This can imply excessively long time
before being able to start the actual monitoring of the structure, also resulting in the
impossibility of detecting early damages;

• another critical scenario could be that of a case where an already operating structure
shows a suspicious structural behaviour that suggests the installation of an SHM
system, such as in the case of tie-rods of historical buildings. In this case, since damage
can potentially be already ongoing, the goal would be detecting the possible evolution
of the deterioration process. In such a situation, the need for a long training set
represents a clear limit;

• even when a long and exhaustive training set is possible, there could be cases where
the structure finds itself working in rare operating and environmental conditions, not
accounted for in the training set (e.g., extreme meteorological events, different climate
conditions). In these situations, an SHM method unable to filter out the effects of these
changes on the damage feature would detect a structural damage/alteration, leading
to a false positive.

In these scenarios, the SHM approach here proposed has a great impact with implica-
tions in many fields such as safety, maintenance and system reliability.

It is worth mentioning that another possible approach, which can be used as an
alternative to the one proposed here, is that of adopting damage features which are not
sensitive to environmental and operational variations [36,37]. This approach is attractive,
since it directly tackles the cause of the problem. However, it is also challenging and
difficult to apply, since it is hard to find vibration-based damage features showing a high
sensitivity to damage and, at the same time, a low sensitivity to environmental effects.
This is especially true for the structures considered here, i.e., tie-rods. Indeed, during their
normal operational conditions, temperature variations cause changes in the mechanical
and geometrical properties of both the tie-rod and the structure, which reflects into changes
of the axial load and, thus, of the dynamic response properties. However, at the same time,
other tension variations are due to deformation and displacement of the connecting walls,
that may be caused by terrain crawl, subsidence of foundations or seismic events [17,38].

Tie-rods are, thus, challenging structures for SHM procedure. Most of the works in
the literature related to SHM of tie-rods regard the axial-load identification (e.g., [39–48]);
however none of these works considers the presence of damage in the beam. Moreover, as
already mentioned, a change of the axial load cannot be directly related to the presence of
a crack in the tie-rod, due to the axial load sensitivity to physical variables, not correlated
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to the state of health of the tie-rod, and due to environmental effects, e.g., temperature.
Only recently, the problem of detecting damage in tie-rods has been faced, with a focus
on cracks [17] or corrosion [49,50], and this is an important aspect when SHM of larger
structures where tie-rods are in use must be carried out (e.g., [51]). Lucà et al. showed that
tie-rod eigenfrequencies can be used as synthetic damage features that are representative
of all physical variables which affect the system behaviour, included the axial load. At the
same time, they can be used for MSD-based damage detection, when a long-term baseline
set is available [18]. However, as mentioned, there are cases when short time baseline
is needed.

The novel approach presented in this paper represents a solution to this kind of
problems since it adopts a technique allowing for filtering out the temperature effects
from the damage index which thus results effective, even in presence of an incomplete
set of environmental conditions. This is done by relying on the PCA, which is a well
known multivariate analysis technique, often adopted in data representation or data
compression [52]. This tool allows projecting the original data set into a new space, defined
by the principal components (PCs). The PCs are new variables that are sorted such that
the majority of the variability in the original data set is explained by the first few PCs.
Since under normal operational conditions the majority of the variability of a multivariate
damage feature set is due to environmental effects, it is reasonable to expect that the first
few PCs will be representative of these effects [19,34,53]. The idea behind the damage
detection algorithm developed in this work is to exclude these PCs and, then, to use the
remaining ones to define a damage index which is, thus, insensitive to environmental
effects. To show the effectiveness and the reliability of this novel PCA-based procedure, it
will be compared with one of the most used approaches in this field, which is the MSD-
based method presented in [18]. The comparison will be carried out both on simulated and
experimental data of axially-loaded beams.

The article is organized as it follows: in Section 2, both the MSD-based and the PCA-
based damage detection algorithms are explained. Moreover, the simulated data and the
experimental set-up are described. In Section 3, the results of the simulations are showed
and discussed. The experimental results are presented and commented in Section 4. Finally,
the conclusions are drawn in Section 5.

2. The New PCA-Based SHM Approach and the Validation Plan

In this section, the two methods that are compared in this paper are introduced.
Furthermore, a description of the simulated and experimental data is provided.

Before entering into details of the two compared approaches, it is worth mentioning
that the initial damage feature is a collection of eigenfrequencies of the monitored tie-rod.
This starting point comes from previous research works where it has been proved that the
eigenfrequencies of an axially-loaded beam-like structure, used as a multivariate damage
feature, can be effectively adopted to spot damage in operating tie-rods [18,49,50,54].

Indeed, eigenfrequencies can be used to synthetically represent the state of the moni-
tored tie-rod, since they are representative of the physical variables that mostly influence its
dynamic behaviour (e.g., the axial load). Moreover, the effect of environmental changes is
different from that of damage, if multiple eigenfrequencies are considered as a multivariate
damage feature. As an example, the eigenfrequencies of the first four bending vertical
modes of a healthy tie-rod are considered: a decrease of temperature would cause an
increase in the values of all four eigenfrequencies and the lower the vibration mode consid-
ered, the higher the effect [18]. If, instead, the temperature does not change but damage
(e.g., a reduction of flexural stiffness) is present at midspan, only the eigenfrequencies of
the first and third vibration modes would change, since midspan is a vibration node for the
even vibration modes. Furthermore, the higher the vibration mode considered, the higher
the effect [18].

If a number m of vibration modes are considered, the associated eigenfrequency values
are referred to as f1, f2, . . . , fi, . . . , fm, with i = 1, 2, . . . , m (according to this notation, the
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eigenfrequencies are sorted in ascending order and i = 1 simply indicates the lowest
eigenfrequency value among those considered, not necessarily that associated to the first
vibration mode). The eigenfrequency values can be arranged in a column vector f, defined
as it follows:

f = [ f1, f2, . . . , fi, . . . , fm]
T (1)

where the superscript “T” means the transpose.
The vector f constitutes the damage feature and it is used to represent the state of the

structure with few variables, with respect to the raw acceleration data. When the structure
is monitored over time, the feature vector can be estimated several times. In this case, a
generic number r of feature vectors f1, f2, . . . , fj, . . . , fr, with j = 1, 2, . . . , r can be arranged
in a matrix F as it follows:

F =



fT
1

fT
2
...

fT
j
...

fT
r


. (2)

In the following, the symbol F0 will be adopted to indicate the baseline set, i.e., a matrix
containing a number b of observations (i.e., r = b) of the damage feature when the structure
is in the reference initial condition and which will be used for training the methods. The
symbol f∗ will be adopted to indicate a generic new observation of the damage feature
which does not belong to the baseline set, thus, it is associated to an unknown health
condition. Finally, the symbol F∗ will be adopted to indicate a set containing a number n of
observations of the damage feature (i.e., r = n) that do not belong to the baseline set, thus,
F∗ can potentially include damage-related data.

2.1. The Benchmark MSD-Based Approach

In this paper, the benchmark is represented by an MSD-based damage index. The MSD
is a well-known multivariate metrics, often adopted in the field of SHM to define damage
indexes. In the considered case, the MSD between the new vector f∗ and the baseline set F0

can be evaluated according to the following expression:

dMSD =
(

f∗ − µ0
)T(

Σ0
)−1(

f∗ − µ0
)
= MSD(f∗, F0) (3)

where µ0 is a m × 1 vector where every i-th element is the mean of the i-th column of F0,
Σ0 is the covariance matrix of F0 and “−1” means the inverse. The notation MSD(f∗, F0)
is used here to indicate the result of the application of the MSD operator to the vector f∗

with respect to F0. It is also noticed that the equivalent vector operator MSD(F∗, F0) used
further in the paper indicates the MSD operator applied to each observation contained in
F∗ with respect to F0, resulting in a n × 1 vector. The result of Equation (3), the MSD, is
a scalar number and constitutes the damage feature of the benchmark method.

To detect possible structural changes, the scalar value dMSD has to be checked against
a threshold to state whether the vector f∗ can be considered as an outlier with respect to the
set F0. The threshold can be set according to a procedure based on the Monte Carlo method
explained in [2,55], briefly described in the following:

• construct a matrix of size b × m, where every element is a random number generated
from a zero mean and unit standard deviation normal distribution;

• calculate the MSD between the transpose of each row of the matrix and the the
matrix itself;

• store the maximum of the b obtained distances;
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• repeat the operation for a large number of trials, e.g., 1000, and then sort all the
maxima in terms of magnitude;

• the inclusive threshold t is then defined as the 95th percentile of the distribution of the
MSD maxima (the term inclusive refers to a case when the baseline may also contain
damaged or altered data which will be, thus, considered as outliers);

• if the baseline set does not include outliers, the exclusive threshold tMSD must be
adopted. The threshold tMSD can be calculated according to the following equation:

tMSD =
(b − 1)(b + 1)2t
b(b2 − (b + 1)t)

. (4)

Summarizing, the main steps required by the MSD-approach used as a benchmark in this
work are shown in the flowchart reported in Figure 1.

Figure 1. Flowchart of the MSD-based approach.

The MSD is very popular in the field of SHM since this metric naturally filters out
the variability associated with the environmental effects while keeping a high sensitivity
to structural changes [35]. However, it is known that to properly filter out environmental
effects, a full range of environmental conditions must be included in the baseline set
to describe the whole variability of the considered feature in operational conditions. In
real applications, which are usually characterized not only by short-term trends but also
seasonal ones, this aspect translates in the need for long baseline sets. In the following
section, a new approach is proposed to try to overcome this limit.

2.2. The PCA-Based Approach

The new proposed approach is obtained through the adoption of the PCA. The PCA is
a multivariate analysis technique that allows an orthogonal projection of a given data set
onto a different coordinate system, where each of the new coordinates (the PCs) accounts
for a decreasing amount of the variance of the original data set. The PCs are uncorrelated
each other and they are sorted so that the first few components retain most of the variability
present in the original data set.

This new description of the data set is usually adopted when a dimensionality reduc-
tion is needed. Considering just the very first PCs allows, indeed, to retain most part of
the data set variability with a few number of variables. Here, instead, PCA is used for
a different purpose. Its aim will be the removal of the data variability due to operating and
environmental changes, as will be clarified in the following.

In this case, the data set F0 (of size b × m) must be centred by subtracting the mean
of each column from each value in that column, obtaining the matrix C0. Then, the
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PCA transforms the data in C0 into a new set Z0 (the score matrix) through a rotational
transformation according to the following equation:

Z0 = C0R (5)

where R is an m × m matrix (the loading matrix). The matrix Z0 contains the scores in the
principal directions of C0, arranged such as the first column contains the scores related to
the PC accounting for the largest variance, the second column contains the scores related
to the PC accounting for the second largest variance, and so on. The matrix R can be
evaluated, for example, by adopting the singular value decomposition. The reader can
refer to [52] for a complete theory on the topic.

In the proposed framework, the PCA is used to project the centred baseline matrix C0

and obtain the scores associated to the PCs Z0. As it will be shown in the following sections,
in the baseline data set, where no damage occurs (i.e., the baseline data set is considered as
the reference structural condition), the majority of the variance in the eigenfrequencies is
associated with temperature effects. The idea is, then, to remove the first p columns of the
matrix Z0, associated to the first p PCs, to filter out the temperature effect from the baseline
dataset. Once the first p columns of the matrix Z0 are removed, the matrix Ẑ0 is obtained
(in the following, the hat symbol is used to indicate score matrices after the removal of the
first p columns).

The key idea of the new SHM procedure proposed here is that, when new observations
of the feature vector are available, if they are still referring to the same structural condition
as the baseline, the PCA should project the data in the same principal directions (i.e., the
transformation matrix R is still the same). Let’s consider the matrix F∗, containing n new
feature vectors f∗ which are not included in the baseline. A matrix F0∗ can be assembled as
it follows:

F0∗ =

[
F0

F∗

]
. (6)

Following the same steps previously described for F0, the matrix F0∗ is centred and the
PCA is applied obtaining Z0∗. Then, the first p columns are, again, removed from the score
matrix, obtaining the matrix Ẑ0∗.

Now, the MSD is calculated between each element of Ẑ0∗ and Ẑ0, i.e.,:

d = MSD(Ẑ0∗, Ẑ0
) (7)

and the result is a vector d, containing the MSD of the transpose of each row of Ẑ0∗ with
respect to Ẑ0.

The vector d is a (b + n)× 1 column vector. The first b distances contained in d are
considered, and the number o of these b distances which exceed a reference value (further
indicated as P0.95, see below) is counted. The new damage index is defined as it follows:

dPCA =
o
b

. (8)

In order to calculate the damage detection threshold tPCA, the procedure described in the
following is adopted:

• Only the baseline is considered and the MSDs are calculated between the transpose of

each row of Ẑ0 and the matrix Ẑ0, i.e.,:

d0 = MSD(Ẑ0, Ẑ0
). (9)

• A probability density function is estimated, by fitting a Gamma distribution [56] to
the elements in d0.



Sensors 2023, 23, 1154 8 of 27

• The 95th percentile P0.95 and its lower and upper 95% confidence bounds, P0.95,UB and
P0.95,LB, are extracted.

• The number of the first b elements of d0 exceeding P0.95, P0.95,UB and P0.95,LB are
counted, obtaining respectively c, u and l.

• c, u and l are then normalized with respect to the number b of elements in the baseline,
obtaining the damage threshold tPCA and its 95% confidence bounds, i.e.,:

tPCA = c/b (10)

tPCA,up = u/b (11)

tPCA,lo = l/b. (12)

Finally, the possible presence of a damage is assessed if dPCA exceeds tPCA,up. This indeed
means that more than 5% of the first b elements of d exceed the 95th percentile P0.95
(with a confidence level of 95%), implying that the new d does not belong to the Gamma
distribution fitted on d0, thus suggesting the presence of damage. Finally, the main steps
required by the proposed PCA-based approach are shown in the flowchart reported in
Figure 2.

Figure 2. Flowchart of the PCA-based approach.

A difference between the new PCA-based approach and the MSD-based one is that
dMSD compares a single observation f∗ with the baseline set, while dPCA requires a set of
new samples F∗ to be assembled with the baseline matrix F0. Thus, after the baseline data
set, each time a new observation of the damage feature is available, the matrix F0∗ will
be increased of one row, until the number of new observations is equal to n. From that
moment onward, the matrix F0∗ will always have size b + n, meaning that, every time
a new observation is available, it is included in F∗ and the least recent one is discarded,
proceeding as a travelling window.

The length of the data set F∗ (i.e., n) defines the sensitivity and the readiness of the
method in detecting the damage, as will be mentioned later in the paper. Indeed, if n is
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much lower than b, and F∗ contains data referring to an altered condition, their weight
in the coordinate transformation of F0∗ will be low. If n is much higher than b, when an
alteration occurs the method will show the damage effect only when a certain number of
damaged samples will replace the undamaged ones in F∗. This translates in a transient
effect and the higher n with respect to b is, the slower the transient is. In this application
we, thus, choose to use n = b as a compromise.

Finally, it should be noted that the steps required by the proposed method during the
monitoring phase (see Figure 2) can be carried out through computationally inexpensive
numerical algorithms (e.g., the above mentioned singular value decomposition to carry out
the PCA). This means that the health condition of the considered structure can be evaluated
in near-real time, every time a new observation of the damage feature is available.

2.3. PCA-Based Method Validation: Simulations and Experiments

The two methods presented in Sections 2.1 and 2.2 will be compared using both
simulated and experimental data. Two aspects will be investigated: the effectiveness in
filtering out the effects of environmental variables and in detecting damage of different
severity. To this purpose, different situations were simulated:

1. cases with no damage and with a cyclic (sinusoidal) temperature trend, simulating its
daily or seasonal variations;

2. cases with no damage and two cyclic temperature trends, simulating both daily and
seasonal variations;

3. cases with damage and two cyclic temperature trends;
4. cases with no damage and temperature trends coming from experimental measure-

ments (i.e., real temperature variations);
5. cases with damage and temperature trends coming from experimental data.

Cases 1 and 2 allow comparing the effectiveness of the two methods in filtering out
the temperature effects when considering a whole temperature cycle (i.e., one period of
the main sine) or a fraction of it in the training set. Case 3 allows the assessment of both
the ability of the methods in filtering out the environmental effects and their sensitivity to
damage of different severities. Finally, cases 4 and 5 remove the constraint of pure cyclic
trends using real temperature data, thus allowing for an evaluation of the robustness of the
methods to generic temperature variations.

Furthermore, again with the same aim of validating the proposed method in different
situations and comparing its results with a benchmark SHM method, experimental tests
were then performed. The tests were conducted on a sample structure placed in a room
with monitored but uncontrolled temperature conditions. Data were acquired both without
damage and with a purposely introduced damage with different severity levels, thus
allowing for a validation of the simulation results, in terms of method behaviour.

This section will present in detail the simulations carried out and the experimental
set-up, while the comparison results will be presented in Sections 3 and 4.

2.3.1. The Simulations

The simulations are meant to investigate the sensitivity of the two methods to environ-
mental changes and to estimate their effectiveness in separating temperature and damage
effects. The case of a simply supported axially-loaded beam is considered, for which
the eigenfrequency values for the bending vertical modes can be analytically estimated,
according to the following equation [57–59]:

fi =
i

2L

√√√√S + EJ( i2π2

L2 )

q
. (13)

In Equation (13), L is the tie-rod length, S is the axial load, E is the Young’s modulus, J
is the momentum of inertia of the cross section and q is the mass per unit length. The



Sensors 2023, 23, 1154 10 of 27

simulations were carried out on a beam with rectangular cross-section with height h and
width w. Thus, J = (w h3)/12 and q = w h ρ, where ρ is the material density.

Eigenfrequency time-trends are generated by changing the axial load value, with
respect to an initial reference value S0, which corresponds to a generic initial temperature
T0. A linear relationship between the axial load and the temperature T is assumed, i.e.,
S = S0 + k (T − T0), where k is a constant (i.e., the slope of the line that describes the axial
load as a function of the temperature). For this reason, in Section 3, temperature trends
for simulated data will always be represented as the difference with respect to the initial
temperature T0, i.e., T − T0. The reference values adopted for the simulations are reported
in Table 1.

Table 1. Parameters of the simulated tie-rod.

L [m] S0 [N] E [GPa] ρ [kg/m3] w [m] h [m] k [N/◦C]

4 8 × 103 69 2.7 × 103 1.5 × 10−2 2.5 × 10−2 −60

Temperature trends, made by either a single sinusoidal trend or two sinusoidal trends,
are simulated. If the latter case is considered, both long-term and short-term cyclic trends
are present, to mimic seasonal and daily temperature fluctuations, respectively. A simple
sine function with amplitude equal to 8 ◦C and mean equal to 0 ◦C is used for the long-term
temperature trend, which represents the seasonal trend of the mean daily temperature.
A series of sinusoidal functions characterized by a shorter period are used to represent the
cyclic daily fluctuations. Each of the short-term sinusoidal functions has mean equal to
0 ◦C and amplitude which is randomly extracted from uniformly distributed numbers in
the interval between 1.5 and 4 ◦C, to simulate that the thermal excursion may change from
day to day. The two trends, i.e., the long-term sine function and the series of short-term
trends, are summed up, to obtain the simulated temperature with two cyclic components.
Conversely, simulated temperature trends with a single cyclic component are pure sines
with amplitude equal to 8 ◦C, as the seasonal trend described above. The temperature
values adopted to define the amplitudes of short-term and long-term trends are similar to
those registered by meteorological outdoor stations, located in the north of Italy. Finally,
the possibility to simulate eigenfrequency trends as function of the temperature allows
also to use real temperature data as an input (see Sections 3.4 and 3.5). Also in this case,
temperature data are represented as variations with respect to a reference mean value.

The effect of damage is, then, introduced as a reduction of Young’s Modulus of
a portion of the tie-rod of extent equal to 1% of L, at midspan. The way to introduce the effect
of damage is by reducing each i-th eigenfrequency value, provided by Equation (13), by
a certain percentage ∆ fi. The values for ∆ fi are obtained through finite element simulations
carried out considering a three-dimensional axially-loaded beam model. The reader can
refer to [18], where complete details on the finite element simulations are provided. In
this work, two different damage levels are considered, i.e., 10% and 30% of Young’s
modulus reduction (for both damage conditions, the values for ∆ fi for the first five tie-rod
eigenfrequencies are reported in Table 2). A summary of all the simulated test cases is
shown in Table 3.

Table 2. List of ∆ fi values used to simulate damage.

Young’s Modulus Reduction [%] ∆ f1 [%] ∆ f2 [%] ∆ f3 [%] ∆ f4 [%] ∆ f5 [%]

10 1.0 × 10−2 1.4 × 10−4 5.4 × 10−2 4.4 × 10−4 8.6 × 10−2

30 3.9 × 10−2 5.6 × 10−4 2.0 × 10−1 1.7 × 10−3 3.2 × 10−1
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Table 3. Simulated test cases.

Test Case Damage T Cycle b Total Number of Samples

sim 1 No Long 4320 (b1) 8640
sim 2 No Long 1008 (b2) 8640
sim 3 No Long + short 1008 (b2) 8640
sim 4 Yes Long + short 4320 (b1) 21600
sim 5 No Real 1008 (b2) 12960
sim 6 No Real 4320 (b1) 12960
sim 7 Yes Real 4320 (b1) 12960
sim 8 Yes Real 1008 (b2) 12960

The outcome of the simulations is discussed in Section 3. In the next subsection, the
experimental set-up is described.

2.3.2. The Experiments

The experimental data come from a test bench (see Figure 3) installed in the Mechanical
Engineering laboratory of Politecnico di Milano, in Italy. A full-scale aluminium tie-rod is
considered, characterized by a free length of 4 m and a cross-section equal to 0.015× 0.025 m2.

Figure 3. The experimental set-up.

Clamps made from steel plates are located at the two ends of the beam, to provide
the constraints. The plates are in contact with the upper and lower faces of the tie-rod and
they are held together by bolted joints. During the installation, the bolted joints of one of
the two clamps (clamp 1 in Figure 3) were tightened, while the ones of the other clamp
(clamp 2 in Figure 3) were left loose. In this way, since the beam was not fully constrained
along the axial direction, a tension was applied through a tensioner. When a tension of
8000 N was applied to the tie-rod, also the bolted joints of clamp 2 were tightened up, to
finally obtain a tensioned beam with a clamped-clamped constraint configuration.

Preliminary tests revealed that the broadband excitation provided by the environment,
under normal conditions, significantly decreases for frequencies higher than 200 Hz and
that the vibration modes which are mostly excited by the operational environment are
the first six bending vertical modes (the eigenfrequency values for the first six bending
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vertical modes, identified through an impact hammer test carried out immediately after
the tensioning procedure, are reported in Table 4).

Table 4. Tie-rod eigenfrequencies of the first six bending vertical modes, identified after the tension-
ing procedure.

f1 [Hz] f2 [Hz] f3 [Hz] f4 [Hz] f5 [Hz] f6 [Hz]

13.89 30.98 53.36 81.82 116.55 157.95

The choices related to the sensor layout were aimed to obtain a sufficient spatial
resolution to distinguish the mode shapes associated with the first six bending vertical
modes, using as few sensors as possible, in order to reduce the load effect and to mimic
real applications. Indeed, the use of as few sensors as possible is often desirable in field
applications, for both practical and economic reasons. Many different layouts were evalu-
ated based on the autoMAC matrix [60], to finally select a layout composed of four uniaxial
accelerometers, fixed on the top face of the tie-rod, at distances of 1

20 L, 1
3 L, 1

2 L and 9
10 L from

clamp 1. However, it should be noted that the choice of considering only bending modes in
the vertical plane is specific of this experimental campaign. Indeed, by using, e.g., triaxial
accelerometers, also other vibration modes, as the bending lateral ones, can be included in
the analysis.

More in detail, the adopted accelerometers are general-purpose industrial piezoelectric
accelerometers, model PCB603C01 (sensitivity of 10.2 mV/(m/s2), full scale of ±490 m/s2).
The choice for general-purpose industrial accelerometers comes from the decision to not
adopt high-end sensors, which are typical of laboratory environments and not representa-
tive of real applications. Moreover, axially-loaded beam-like structures are usually subject
to significant vibration levels in operational conditions, due to their slenderness, making
possible the use of, e.g., industrial piezoelectric accelerometers or accelerometers based on
microelectromechanical systems (MEMS). Regarding the acquisition system, it is composed
by NI 9234 modules with anti-aliasing filter on board and the sampling frequency is set
to 512 Hz, obtaining a bandwidth of approximately 200 Hz that includes the range of
frequency significantly excited by the operational environment.

It must be pointed out that neither the temperature nor the excitation are controlled,
thus, even though it is a laboratory experiment, acquired data are similar to those of real
monitoring applications. The temperature reaches minimum values approximately equal
to 5 ◦C, during winter, and maximum values approximately equal to 30 ◦C during summer.
Daily thermal excursion ranges from ±1.5 ◦C to ±4 ◦C.

The characteristics of the operational environment allow for a stable modal identifi-
cation of the first four bending vertical modes, through the adoption of the polyreference
least-square complex frequency-domain method [61]. Thus, the eigenfrequencies used to
calculate the damage indexes in Section 4 are those of the first four bending vertical modes.
However, the proposed strategy is of general validity and can also be used when other
output-only modal identification algorithms are adopted to extract the required number of
modal parameters. Furthermore, since only the eigenfrequency values are used to calculate
either the MSD-based or the PCA-based damage indexes, also the adoption of a single
accelerometer and simple single-degree-of-freedom output-only techniques is possible [50].

The damage effect has been introduced through the addition of a concentrated mass, to
alter the dynamic properties of the tie-rod with a simple and reversible strategy, often used
in literature (e.g., in [62–65]). Damage is simulated close to the constraints, at a distance
equal to 1

10 L, which represents a challenging scenario for eigenfrequency-based damage
detection [18]. Two different masses are used, equal to 1% and 3% of the total mass of the
beam, to test different damage severity.



Sensors 2023, 23, 1154 13 of 27

3. Results: Simulations

In this section, the results of the simulations are presented. The different subsections
discuss the results of the simulations 1 and 2, 3, 4, 5 and 6, 7 and 8, respectively, described
in Table 3 and associated to different temperature and damage conditions.

3.1. Long-Term Temperature Trends and No Damage

At first, the temperature profile reported in Figure 4 is considered, which is composed
by 8640 samples. In this set of simulated data, the eigenfrequency changes are only
associated to the temperature change and the tie-rod is always in the same healthy condition.
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Figure 4. Simulated temperature trend: long-term trend only. Vertical dotted and dashed lines
identify the number of samples used as baseline in sim 1 and sim 2, respectively.

The eigenfrequency trends for the first five vertical bending modes of the simulated
tie-rod are reported in Figure 5.
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Figure 5. Simulated eigenfrequency trends due to long-term temperature trend. Vertical dotted and
dashed lines identify the number of samples used as baseline in sim 1 and sim 2, respectively.

The temperature follows a simple sine function and it completes two identical cycles,
covering the range −8 to +8 ◦C with respect to the initial temperature value. As it is
reasonable to expect, also the eigenfrequency trends follow the cyclical trend of temperature.

In order to compare the MSD-based and the PCA-based strategies in their capability
to filter out the environmental effects, first, a number b1 = 4320 of observations of the
damage feature are considered (see Table 3, sim 1), i.e., half of the total number of samples
shown in Figure 5 (the limit of the baseline set is represented as a vertical dotted line
in Figures 4 and 5). In this way, the baseline set F0 includes data referring to an entire
temperature cycle, i.e., all the environmental conditions to which the tie-rod is subject.
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For MSD-based strategy, the damage index dMSD is evaluated by calculating the MSD
of each observation subsequent to the baseline (i.e., samples after b1) and compared with
the threshold tMSD. As for the PCA-based strategy, Figure 6 shows the PC scores for the
baseline set of eigenfrequencies F0, i.e., the columns of matrix Z (see Section 2.2). As it is
possible to see, the scores in the first principal direction show a deterministic trend that
is strictly related to the temperature trend (compare the first plot of Figure 6 with that of
Figure 4). Conversely, the scores in the other principal directions do not show deterministic
trends. Since the first PC seems to be highly correlated with temperature, it is removed
from the damage feature, before the evaluation of dPCA (p = 1, according to Section 2.2).
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Figure 6. PC scores for the baseline set of eigenfrequencies containing a number b = 4320 of
observations, considering a long-term temperature trend.

Figure 7 shows the comparison of the two approaches on the data which are not
included in the baseline (i.e., from sample 4321 to sample number 8640). To allow for
a direct comparison of the two approaches, from now on, the two indexes dMSD (blue
dotted line) and dPCA (red solid line) will always be plotted as normalized on the respective
damage detection threshold (tMSD and tPCA, respectively). For this reason, the damage
detection threshold is represented by a black horizontal dot-dashed line of value 1 (from
now on, referred to as the unitary threshold) for both the methods. In the same way,
the upper and lower bounds for the PCA-based threshold (see Equations (11) and 12),
tPCA,up and tPCA,lo, respectively, will be presented as normalized on the damage detection
threshold tPCA and indicated by black horizontal dashed lines.
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Figure 7. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 4320,
considering a long-term temperature trend.

As it is possible to see by observing the results presented in Figure 7, both the strategies
are effective in filtering out the temperature effect. Indeed, dMSD is below the damage
detection threshold and dPCA is inside the range defined by tPCA,up and tPCA,lo. Thus, no
false positives are detected due to the environmental effects, which are correctly filtered
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out since all the temperature conditions from sample 4321 to 8640 were included in the
baseline set.

The second case discussed considers a shorter baseline set. In this case, the baseline
includes a number b2 = 1008 of samples (see Table 3, sim 2), which is approximately one
quarter of the entire temperature cycle (see the black vertical dashed lines in Figures 4 and 5,
which indicate the end of the baseline set). In more detail, in this case F0 contains only the
eigenfrequencies associated to temperatures in the range 0 to +8 ◦C.

Figure 8 shows the comparison of the two approaches. In this case, also the tem-
perature is plotted on the right axis of the figure with a black thin line, to facilitate the
interpretation of the results. As it is possible to see, the PCA-based strategy is still filter-
ing out the temperature effect correctly. Indeed, dPCA is always inside the range defined
by tPCA,up and tPCA,lo. This confirms that most of the variability of the data, which is
associated to temperature, is explained by the first PC. Therefore, removing the first PC
from the damage feature allows to filter out any change due to temperature effects. On
the contrary, dMSD clearly shows a deterministic trend, with values that increase when
data outside of the training set are considered. This can be stated by observing that dMSD

increases when the temperature is in the range 0 to −8 ◦C, which is not included in the
baseline (e.g., compare dMSD and the temperature trend from sample 7008 to sample 8008
in Figure 8). The influence of temperature causes the index dMSD to exceed the damage
detection threshold even if no damage is present, thus producing false positives.
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Figure 8. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 1008,
considering a long-term temperature trend (black thin line).

3.2. Short-Term and Long-Term Temperature Trends with No Damage

The second set of simulations considers a different temperature profile, characterized
by two cyclical trends: a long-term trend (which is the same as the first set of simulations)
and a short-term trend. This data set is meant to mimic the presence of both seasonal and
daily temperature trends. Indeed, the long-term trend again covers a range of temperature
from −8 to +8 ◦C in 4320 samples, and it simulates the seasonal trend of the daily mean
temperature. The short-term trend, instead, completes an entire cycle in 144 samples.
For every daily cycle, the range of temperatures around the daily mean temperature is
generated as described in Section 2.3.1.

The temperature trend shown in Figure 9 is used to simulate the eigenfrequency trends
which are reported in Figure 10. As it is expected, also the eigenfrequency trends show
both daily and long term trends.

Also in this case, the first b2 = 1008 samples are used as a baseline (see Table 3, sim 3),
as indicated by a black vertical dashed line, both in Figures 9 and 10.
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Figure 9. Simulated temperature trend: long-term and short-term trends. The vertical dashed line
identifies the number of samples used as baseline in sim 3.
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Figure 10. Simulated eigenfrequency trends related to long-term and short-term temperature trends.
The vertical dashed line identifies the number of samples used as baseline in sim 3.

As in the case of the first set of simulations, the PCA confirms that the first PC has
a clear deterministic trend which is highly correlated with the temperature (compare the
plot labelled as PC 1 in Figure 11 with the first 1008 samples in Figure 9). Thus, also in this
case, the first PC is removed before calculating dPCA.

The comparison of the two approaches is reported in Figure 12 and it shows results
which are similar to those commented in Figure 8. The PCA-based strategy is able to
filter out the effects of temperature, also in presence of both short-term and long-term
temperature trends. The index dPCA is always in the range defined by tPCA,up and tPCA,lo.
The MSD-based index, instead, shows the same deterministic trend observed in Figure 8,
i.e., it increases when the temperature ranges from 0 ◦C to −8 ◦C, thus exceeding the
damage detection threshold. Moreover, it is possible to notice that also a short-term trend
is present in the damage index, which has the same periodicity of the short-term trends
in temperature (e.g., compare dMSD and the temperature trend between samples 3008 and
4008, in Figure 12).

The outcome of these first simulations (sim 1, 2 and 3 of Table 3), where the effect of
damage is not accounted for, is that both the strategies are potentially able to be insensitive
to temperature effects in the data. However, a strong difference emerged: while the MSD-
based strategy requires a complete set of environmental effects to filter them out, the
PCA-based strategy can provide a temperature-insensitive damage index without needing
for a complete set of environmental conditions. This aspect is relevant in situations where
a short baseline set is available, e.g., at the beginning of a monitoring campaign.
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Figure 11. PC scores for the baseline set of eigenfrequencies containing a number b = 1008 of
observations, considering both long-term and short-term temperature trends.
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Figure 12. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 1008,
considering both long-term and short-term temperature trends (black thin line).

3.3. Short-Term and Long-Term Temperature Trends with Simulated Damage

This set of simulations aims at answering a central question: are the damage indexes in-
sensitive enough to temperature to allow for damage detection? The simulations discussed
in the following, thus, consider the presence of damage.

As mentioned in Section 2.3.1, damage is simulated as a reduction of Young’s modulus
of a portion of the tie-rod of extent equal to 1% of the free-length. The portion of the
tie-rod which is affected by damage is located at mid-span and two levels of damage are
considered: 10% and 30% of Young’s modulus reduction. In order to simulate damage,
a change of eigenfrequency value is introduced, using the corresponding eigenfrequency
decrease ∆ fi (see Section 2.3.1).

In this case, the total number of samples is equal to 21600, which includes five entire
long-term temperature trends (see Figure 13). A number equal to b1 = 4320 samples (see
Table 3, sim 4) is used to define the baseline, in order to include a complete long-term
temperature trend (see the black vertical dotted line in Figure 13).

Damage is introduced after two and a half temperature cycles and the beginning of
the sample set containing damage-related data is indicated by a red vertical dot-dashed
line in Figure 13.

The performances of dMSD and dPCA in presence of damage can be compared, for the
two damage levels 10% and 30%, in Figures 14 and 15, respectively.

In both cases, the two indexes are below the respective threshold, when the samples
before the beginning of damage are considered, thus they are not producing false positives
due to temperature fluctuations (same conclusions of Sections 3.1 and 3.2). However,
the two indexes perform differently when damage occurs: dPCA is always able to detect
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damage, exceeding the upper limit of the range defined by tPCA,up and tPCA,lo, both with
low and high damage severity. Moreover it is sensitive to different levels of damage, as
proved by the higher level reached by dPCA in Figure 15 (around 12) than in Figure 14
(around 1.75). In both cases, a transient can be observed that finishes approximately b1
samples after the beginning of damage. This is because, due to the travelling window used
to calculate dPCA (see Section 2.2), for the first b1 samples after the introduction of damage,
F∗ still contains data referring to the healthy structure.
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Figure 13. Simulated temperature trend: long-term and short-term temperature trends. The vertical
dotted line identifies the number of samples used as baseline in sim 4. The beginning of the damage-
related data is indicated by a red vertical dot-dashed line.
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Figure 14. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 4320, con-
sidering long and short-term temperature trends and damage (10% reduction of Young’s modulus).
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Figure 15. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 4320, con-
sidering long and short-term temperature trends and damage (30% reduction of Young’s modulus).
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As for dMSD, the MSD-based damage index is not able to detect the lowest simulated
damage, as proved by the fact that dMSD stays below the unitary threshold in Figure 14.
Only the most severe simulated damage is detected (dMSD almost always above the unitary
threshold in Figure 15). However, the conclusion is less clear, if compared with the index
dPCA, on the same conditions (compare the blue dotted line with the red-solid line in
Figure 15).

Results proved that, when the PCA-based strategy is used, removing the first principal
component filters out the temperature effect, while preserving sensitivity to damage.
Moreover, dPCA has a higher sensitivity than dMSD.

3.4. Real Temperature Trends without Damage

Before moving to the experimental results, a last set of simulations is discussed. In this
case, temperatures are not numerically defined but real temperature values are used. In
more detail, the temperature trend comes from the experimental data, collected by a thermo-
couple in the laboratory where the experimental set-up, described in Section 2.3.2, is located.
This set of simulations is meant to check the conclusions of previous Sections 3.1–3.3, where
simple temperature trends were adopted, to easily separate the effects.

The temperature trend used is presented in Figure 16 and refers to the acquisition of
the temperature every ten minutes, for a total number of samples equal to 12960 (90 days of
data). Data are presented as the difference with respect to the average temperature value.
The temperature shows both short-term and long-term trends. The short-term trends show
a cyclical behaviour and they are related to the daily temperature trends. Moreover, it is
possible to see that the mean daily temperature drifts during the observation window, from
values approximately around +4 ◦C to values approximately around −4 ◦C.

Two different baselines will be adopted in the following: a short baseline, containing
b2 = 1008 samples, see Table 3, sim 5, (the end of the short baseline is indicated by a black
vertical dashed line in Figure 16), and a long baseline, containing b1 = 4320 samples, see
Table 3, sim 6 (the end of the long baseline is indicated by a black vertical dotted line
in Figure 16). As opposite to the previous simulations, it must be noted that even when
the longest baseline is considered, it is not enough to include all the temperature values
that characterize the remaining part of data. Indeed, the long baseline will include only
temperature higher than, approximately, −2 ◦C, while, in the remaining part of the data,
the temperature reaches lower levels.
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Figure 16. Real temperature trend, including daily trends and long-term drift. Black vertical dotted
and dashed lines identify the number of samples used as baseline in sim 6 and sim 5, respectively.
The beginning of the damage related data of sim 7 and 8 of Table 3 is indicated by a red vertical
dot-dashed line.
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The results of the PCA of the baseline matrix F0 again confirmed that the first PC is
that presenting a deterministic trend which is highly correlated with that of temperature
(see Figure 17). For this reason, again the index dPCA is calculated after removing the first
principal component.
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Figure 17. PC scores for the baseline set of eigenfrequencies containing a number b = 1008 of
observations, considering real temperature trends.

Cases where no damage is present are here discussed. The results are presented in
Figure 18 for sim 5 (short baseline), and in Figure 19 for sim 6 (long baseline).

With respect to the results presented in Sections 3.1 and 3.2, the insensitivity of
dPCA to temperature is confirmed: when either 1008 or 4320 samples are considered,
dPCA never exceeds the range defined by tPCA,up and tPCA,lo, i.e., no false positives are
produced. Furthermore, also the performances of the MSD-based strategy are confirmed.
Indeed, dMSD significantly exceeds the damage threshold with the baseline containing
1008 samples, causing false positives. As an example, when the mean trend of tempera-
ture decreases around sample 9008 (see Figure 18), the mean trend of dMSD increases and
stays constantly above the threshold. In this case, damage would be detected even if the
structure is in healthy condition. Toward the end of the observation window, while tem-
perature increases, dMSD decreases, coming back to threshold level. Moreover, despite
the effect is reduced by adopting a larger baseline (see Figure 19), it is still possible to
notice that dMSD sometimes exceeds the threshold and shows cyclic trends due to daily
temperature variations.
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Figure 18. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 1008, in
case of a real temperature trend (black thin line).
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Figure 19. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 4320, in
case of a real temperature trend (black thin line).

3.5. Real Temperature Trends With Damage

Finally, the performances in presence of damage are discussed. The results are pre-
sented in Figure 20, for the long baseline (see Table 3, sim 7), and in Figure 21, for the
short baseline (see Table 3, sim 8). The damage simulated in this case is a 30% reduction
of Young’s modulus at midspan and it is indicated by the red vertical dot-dashed line, in
Figures 16, 20 and 21.

4320 5320 6320 7320 8320 9320 10320 11320 12320 12960

Sample #

0

1

2

3

4

5

6

N
o

rm
a

liz
e

d
 i
n

d
e

x

0

T
e

m
p

e
ra

tu
re

 [
°

C
]

d
MSD

d
PCA

Temperature

Figure 20. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 4320, con-
sidering a real temperature trend (black thin line) and damage (30% reduction of Young’s modulus).
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Figure 21. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 1008, con-
sidering a real temperature trend (black thin line) and damage (30% reduction of Young’s modulus).
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When a baseline of b1 = 4320 samples are adopted (see Figure 20 and Table 3, sim 7),
both strategies are able to detect damage. However, dPCA shows a clear increasing trend
unlike dMSD. The decreasing trend of dMSD due to temperature, previously observed in
Figure 19 (i.e., from about sample 10700 to sample 12960), seems to be mitigated by the
effect of damage; however, this effect is still present.

When 1008 samples are adopted (see Figure 21 and Table 3, sim 8) dPCA is able to
clearly detect damage, exceeding the range defined by tPCA,up and tPCA,lo, confirming that
not only the damage index is insensitive to temperature, but it is sensitive to damage.
Conversely, the trend of dMSD is similar to that of Figure 18, where no damage is present.
Indeed, damage is detected even when the tie-rod is healthy since dMSD is above the
threshold before damage is introduced (i.e., dMSD exceeds the threshold approximately at
sample 9008). Moreover, the trend of dMSD immediately before the introduction of damage
is similar to that after the introduction of damage. This observation confirms that the
increase of dMSD is mainly due to temperature and not to damage.

4. Results: Experiments

In this section, the results obtained by considering real data coming from the exper-
imental set-up (see Section 2.3.2) are presented. Two damage scenarios are considered,
where the effect of damage is obtained through the addition of concentrated masses of 1%
and 3% of the total mass of the tie-rod, close to one of the two fixed ends.

A set of 1008 samples is used to define the baseline matrix F0 (i.e., b = 1008), composed
by the experimentally identified eigenfrequencies for the first four vibration modes (see
Section 2.3.2). Considering that an estimate of the four eigenfrequencies is available every
10 min, the baseline set includes 7 days. The temperature trend related to the baseline set is
reported in Figure 22, and the temperature trends of the validation and damage sets are
reported in the following Figures 23 and 24, together with the damage indexes. It is noticed
that, in all the figures related to the experiments, the temperature T is plotted in place of
T − T0. The gap of temperature data noticeable in Figures 23 and 24 is due to missing data
caused by a malfunctioning of the temperature sensor. As it is possible to observe, the daily
temperature cycles can be clearly noted. Furthermore, a drift in the daily mean temperature
is also present. The available baseline set approximately covers the range of temperatures
10.5 to 17.5 ◦C.

100 200 300 400 500 600 700 800 900 1000

Sample #

10

11

12

13

14

15

16

17

18

T
e

m
p

e
ra

tu
re

 [
°

C
]

Figure 22. Temperature trend for the baseline set of real data.

The comparison between the two approaches is presented in Figures 23 and 24, for
an added mass of 1% and 3% of the total mass, respectively. The indexes (blue-dotted
trend for dMSD and red-solid trend for dPCA) are normalized on the respective damage
detection threshold, as done in the simulations. The horizontal dot-dashed line represents
the threshold for dMSD, while the two horizontal dashed lines, below and above the unitary
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threshold, indicate the range defined by tPCA,up and tPCA,lo, for dPCA (see Section 2.2). The
right y-axis is used to represent the temperature (black-thin line).
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Figure 23. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 1008, for
added mass equal to 1% of the total mass. A black thin line identifies the temperature.
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Figure 24. Comparison between dMSD (blue dotted line) and dPCA (red solid line), with b = 1008, for
added mass equal to 3% of the total mass. A black thin line identifies the temperature.

As for the PCA-based strategy, the effects of temperature on the variance of F0 is
retained by the first two PCs. They indeed show deterministic trends and, thus, were
removed from the damage feature. The proposed procedure proved to be able to effectively
filter out the temperature effect, as it can be seen from Figures 23 and 24. Indeed, dPCA does
not show any temperature-correlated trend (compare the red and black curves) and, when
no damage is present, it does not exceed the range limited by tPCA,up and tPCA,lo.

In both cases, dPCA shows a clear growing trend when damage is introduced, thus the
PCA-based damage index is able to promptly detect damage. By comparing the trends of
dPCA in Figures 23 and 24, it is possible to observe that the PCA-based damage index is
sensitive to different magnitudes of damage: indeed, when damage is 3% the index grows
faster than when damage is 1% (compare the values of the red solid trends in Figure 23
with those of Figure 24).

It is worth noticing that only the most severe damage condition (i.e., 3% of added
mass) is clearly detected by dMSD. For the case of 1% of added mass, instead, it remains
below the threshold for most of the samples and just a slight damage index increase can be
deduced, not allowing for a clear damage detection.

The experimental results confirmed what observed on the simulated data: when just
few temperature conditions are available to define the baseline data set, the PCA-based
strategy can provide a damage index which is robust with respect to the environmental
effects, while the MSD-based index is still sensitive to temperature. Moreover, not only
dPCA is less sensitive to temperature than dMSD, but dPCA has a higher sensitivity to damage
than dMSD. Thus, the novel approach, based on the PCA, is expected to outperform
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the traditional approach, based on the MSD, in applications where few baseline data
are available.

5. Conclusions

This paper presented an unsupervised learning vibration-based damage detection
strategy for SHM applications where only few data are available to build the training set.
In these cases, indeed, the whole variability of the damage feature due to operational and
environmental conditions is not described in the training set. This leads to changes of
the damage feature which can possibly either mask a damage or lead to false positives.
The proposed SHM approach is based on the use of a damage index obtained through
the PCA of the selected damage features. Indeed, relying on the assumption that under
healthy reference conditions the variability of the collected damage features is only due
to environmental and operational variations, these variations will affect the first few PCs,
which explain most of the variability in the data. Thus, by discarding these few PCs, the
remaining ones are not correlated to the environmental effects and can be used to define
a temperature-insensitive damage index.

The effectiveness of the proposed approach was proved on both simulated and ex-
perimental data related to an axially loaded beam-like structure and considering the first
bending natural frequencies as a multivariate damage feature. In both the cases, the pro-
posed approach was compared with the MSD-based outlier detection method, widely
adopted in unsupervised learning SHM literature. The simulations allowed highlighting
the behaviour of the method when seasonal temperature trends are present. Both strategies
showed similar performances when a complete temperature cycle is contained in the base-
line set. Conversely, by reducing the baseline, and thus limiting the temperature conditions
included in the training set, the PCA-based damage index outperformed the MSD-based
one. It, indeed, did not produce any false positive and showed a higher sensitivity to
damage, even when only a quarter of the simulated seasonal trend was included in the
training set. Moreover, unlike the MSD-based approach, the PCA-based one successfully
identified the smallest damage which was intentionally introduced in the experimental
set-up. The experimental campaign proved the PCA-based method robustness, sensitivity
and effectiveness in presence of real and uncontrolled temperature conditions.

It is worth mentioning that, when a damage is introduced in the structure, a transient
of the PCA-based damage index is noticed. Although the effect of the damage can be
clearly detected even during the transient, it may represent a limit of the approach. Thus,
future studies will be devoted to the investigation of the effect of some parameters (e.g., the
length of the new data added to the training set and used to calculate the damage index)
on the transient duration and on the method sensitivity. Moreover, also the number of
PCs to discard in the damage index evaluation is worthy of a deeper analysis. Future
studies could, indeed, allow for an automated strategy able to define the PCs which have
to be neglected in the damage index evaluation. The proposed approach, together with
the future studies on its optimisation, will constitute a step forward in the monitoring of
all those structures where long training is not possible and whose most relevant damage
features are also the most sensitive to environmental and operating conditions.
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