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Abstract: In this paper, we introduce a Reduced-Dimension Multiple-Signal Classification (RD-MUSIC)
technique via Higher-Order Orthogonal Iteration (HOOI), which facilitates the estimation of the target
range and angle for Frequency-Diverse Array Multiple-Input–Multiple-Output (FDA-MIMO) radars
in the unfolded coprime array with unfolded coprime frequency offsets (UCA-UCFO) structure. The
received signal undergoes tensor decomposition by the HOOI algorithm to get the core and factor
matrices, then the 2D spectral function is built. The Lagrange multiplier method is used to obtain a
one-dimensional spectral function, reducing complexity for estimating the direction of arrival (DOA).
The vector of the transmitter is obtained by the partial derivatives of the Lagrangian function, and its
rotational invariance facilitates target range estimation. The method demonstrates improved operation
speed and decreased computational complexity with respect to the classic Higher-Order Singular-
Value Decomposition (HOSVD) technique, and its effectiveness and superiority are confirmed by
numerical simulations.

Keywords: FDA-MIMO radar; HOOI; reduced-dimensionality MUSIC; parameter estimation

1. Introduction

A frequency-diverse array multiple-input–multiple-output (FDA-MIMO) radar is a
nascent radar system that integrates frequency-diverse array and multiple-input–multiple-
output technologies. The system introduces tiny frequency increments to generate range–
angle-correlated transmission beams, which enable highly accurate and interference-
resistant joint estimation of the range and angle of the target. Originally proposed by
USA (United States of America) researchers in 2006 [1] and further developed by UK
(United Kingdom) researchers in 2013 [2], the technique has a wide range of applications
in aerospace, autonomous driving, IoT (Internet of Things), smart cities, and wireless
communications to improve efficiency, security, and user experience [3–7]. An unfolded
coprime array (UCA) with unfolded coprime frequency offset (UCFO) was proposed by
researchers in 2022 [8]. Both the transmitter and receiver used a sparse uniform linear array
(ULA) [9,10]. The signal was expanded by using negatively and positively biased portions
of the transmitted signal by the framework. This increased signal bandwidth and array
aperture and improved parameter estimation.

The parameter estimation algorithms for FDA-MIMO radars can be divided into
two main categories: sparse-representation-based methods [11,12] and subspace-based
methods [13–16]. The first one makes the most of the sparsity of the signal. It transforms
parameter estimation into an optimization problem, which is solved by an iterative al-
gorithm [17]. The latter method utilizes the orthogonality between the signal and noise
subspaces. It constructs a two-dimensional spectral function, or it exploits the translation
invariance property between array elements. Parameter estimation is accomplished by
either finding spectral peaks or by solving for polynomial roots [18]. In later years, re-
searchers began to investigate multidimensional data processing methods. One of the most
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popular is tensor parameter estimation, which uses tensors as the basic data structure to
represent and process multidimensional data. Tensor parameter estimation algorithms
mainly include Higher-Order Singular-Value Decomposition (HOSVD) [19–21] and Par-
allel Factor Analysis (PARAFAC) [22–25]. However, conventional tensor decomposition
methods, such as HOSVD and PARAFAC, suffer from high computational complexity and
memory consumption, especially for large-scale tensors.

In this paper, a tensor-based Higher-Order Orthogonal Iteration (HOOI) [26] is pro-
posed for parameter estimation in a UCA-UCFO framework. HOOI has faster computational
speed and better approximation accuracy compared to HOSVD and PARAFAC [27,28]. We
apply tensor representation and processing to multidimensional data. Then, we use the
HOOI algorithm for tensor decomposition of the received signal to acquire the core tensor
and the orthogonal matrix. Next, they are employed to form a one-dimensional spatial
spectral function to implement the Reduced-Dimension Multiple-Signal Classification
(RD-MUSIC) method and conduct the direction angle estimation in low dimensions. Lastly,
we derive the transmission steering vectors based on the characteristics of the transmission
and the receiving steering vectors of the FDA-MIMO radar using a Lagrange multiplier.
Relative to the traditional two-dimension MUSIC method, our method exhibits higher
computational speed, lower computational complexity, better approximation accuracy, and
improved estimation accuracy. The main contributions of the methodology put forward in
this paper are as follows:

(1) The algorithm proposed in this paper is applied on the UCA-UCFO framework, where
it is shown to be capable of parameter estimation accuracy improvement and has
obvious advantages over ULA.

(2) The method proposed in this paper solves the problem of angle and distance estima-
tion in the tensor domain as the tensor stores the inherent multidimensional structure
of the signal model, which improves the accuracy of target parameter estimation.

(3) The HOOI algorithm used in this paper ensures the same accuracy as HOSVD while
significantly improving the running speed, making the parameter estimation algo-
rithm more suitable for real-time scenarios.

2. The Basics of Tensor and Signal Representation Using Tensors
2.1. Essentials of Tensors

First, we introduce some tensor basics relevant to this paper.

Definition 1 (Tensor unfolding of mode-n). Suppose G ∈ CI1×I2···×IN is an N-dimensional
tensor, [G](n) is defined as the n-mode tensor unfolding of G. The (I1, I2, . . . , IN)th element of G
maps to the (In, J)th element of G, where J = 1 + ∑N

k=1,k 6=n(Ik − 1)Jk with Jk = ∏k−1
m=1,m 6=n Im.

Definition 2 (Tensor matrix product). The mode-n product of a tensor G ∈ RI1×I2×...×IN

and a matrix V ∈ RJ×In is denoted by H = G ×n V with H ∈ RI1×···×In−1×J×In+1×···×IN ,
and [H]i1,i2,...,in−1,jn ,in+1,...,iN = ∑In

in=1[G]i1,i2,...,in−1,in ,in+1,...,iN .[V]jn ,in
.

Definition 3 (HOSVD). HOSVD is a technique for higher-order tensor decomposition. It extends
the Singular-Value Decomposition (SVD) of matrices to high-dimensional tensors and provides an
efficient way to represent and analyze higher-order data. It is expression as:

G = H×U1 ×2 U2 ×3 · · · ×N UN , (1)

where H is defined as the core tensor of G, the dimension of which is the same as for G. And Un
represents the left singular vector of [G](n).

2.2. Signal Model Based on Tensors

The paper [8] presents a novel FDA-MIMO radar framework called UCA-UCFO for
explicit estimation of target angles and distances; all of the estimation work in this paper is
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based on this model. As shown in Figure 1, we set Q = M + N − 1; the frequency of the
i-th transmitting sensor is given by the formula

fi = f0 + (i−M)R∆ f .

R =

{
N, 1 ≤ i ≤ M
M, M + 1 ≤ i ≤ Q

(2)

pNd

1f 2f 1Mf − Mf

M

pNd

M



pMd

1Mf + 1M Nf + −

N

pMd



N

Transmitting array

Receiving array

r

Target

Figure 1. UCA-UCFO framework.

Nd and Md are the array element spacings of subarray 1 and subarray 2, respectively,
where d is the distance between adjacent elements, as shown below

d ' c/2 f0 = λ0/2. (3)

The transmit signal of the i-th transmitter unit is written as follows

si(t) = ϕi(t)ej2π f t, (4)

where the range of variation of t is the radar pulse duration, and ϕi(t) denotes the baseband
waveform. Setting the time shift to T, provided that the waveforms are orthogonal to each
other, yields ∫ T

0
ϕi(t)ϕ∗i (t− τ)ej∆ f (i−i

′
)2πtdt =

{
0, i 6= i

′
, ∀τ

1, i = i
′
, ∀τ

, (5)
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where τ is the time delay. The echo signal received by the j-th receiving sensor, assum-
ing that electromagnetic waves propagate in space in an independent manner, can be
characterized as

yj(t) =
Q

∑
i=1

σϕi(t− τi,T − τj,R)e
j2π( fi+ fd)(t−τi,T−τj,R), (6)

where σ and fd denote the radar cross section (RCS) and Doppler frequency, respectively.
In addition, τi,T and τj,R transmit and receive the time delay, respectively.

The variable τ0 is defined as the total delay, which is equal to 2r/c. The structure of the
i-th output signal received by the j-th receiver sensor after going through the i-th matched
filter is as follows:

yji(t) = σej2π fd(t−τ0)e−j2π
fi
c 2re

−j2π( fi+ f d
(

d sin(θ)(i−M)αi
c +

sin(θ)(j−M)αjd
c

)

' σej2π fd(t−τ0)e−j4π
f0
c re−j4π

(i−M)αεi∆ f
c re

−j2π f0

(
(i−M)αid sin(θ)

c +
(j−M)αjd sin(θ)

c

)
,

(7)

where fd � f0, ∆ f � f0; in addition, αi and αj are both N if they are within the scope of
[1, M] or are both M if they are in the range of [M + 1, Q]. The output of the j-th sensor of
the receiver can be a signal that is visually represented below

yj(t) = e−j2π
(1−M)aj sin(θ)

λ0
d



e−4jπ (1−M)N∆ f
c r−j2π

(1−M)N sin(θ)
θ0

d

...

e−j4π
−N∆ f

c r−j2π
−Nsin(θ)

θ0
d

1

e−j4π
M∆ f

c r−j2π
Msin(θ)

θ0
d

...

e−4jπ (N−1)M∆ f
c r−j2π

(N−1)Msin(θ)
θ0

d


s(t), (8)

where yj(t) ∈ CQ×1 and s(t) = σej2π fd(t−τ0)e−j4π f0r/c. The outputs of all the matched
filters are then stacked to form a vector, as shown below:

x(t) =


yT

1
yT

2
...

yT
Q

, (9)

where at(r, θ) and ar(θ) represent the transmitting and receiving steering vectors, respec-
tively, and they both ∈ CQ×1, i.e.,

at(r, θ) =



e−j4π
∆ f N(1−M)

c r−j2π
sin(θ)N(1−M)

λ0
d

...

e−j4π
∆ f (−N)

c r−j2π
sin(θ)(−N)

λ0
d

1

e−j4π
∆ f M

c r−j2π
sin(θ)M

λ0
d

...

e−j4π
∆ f M(N−1)

c r−j2π
sin(θ)M(N−1)

λ0
d


, (10)
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ar(θ) =



e−j2π
sin(θ)N(1−M)

λ0
d

...

e−j2π
sin(θ)(−N)

λ0
d

1

e−j2π
sin(θ)M

λ0
d

...

e−j2π
sin(θ)M(N−1)

λ0
d


. (11)

We consider P independent targets in the presence of noise range and angle (rp, θp),
p = 1, 2, . . . , P in the far field. We can rewrite x(t) in (11) as below:

x(t) =[A1(r1, θ1), · · · , Ap(rp, θp)]s(t) + η(t)

= A(r, θ)s(t) + η(t)
, (12)

where Ap(rp, θp) is defined as Ap(rp, θp) = ar(θp) ⊗ at(rp, θp), p = 1, · · · , P, and
η(t) ∈ CQ2×1 represents the additional white Gaussian noise matrix. The received signal
matrix is generated subsequent to the reception of J snapshots, and it has the following form

X = [Ar �At]ST + N, (13)

where Ar ∈ CQ×P, Ar ∈ CQ×P and S ∈ CJ×P. Using the tensor matrix expansion method
of Definition 1, we can view the received data matrix in Equation (15) as sliced in the
impulse dimension (third dimension). We construct the measurement tensor X by stacking
the matrices X(tj)(j = 1, 2, . . . , J) along the snapshot way. The measurement tensor has
dimensions Q×Q× J, which can be characterized as

[X ]T(3) = X. (14)

For the FDA-MIMO radar with a UCA-UCFO framework, we propose a tensor-based
signal model. By applying multidimensional signals, i.e., tensors, for target localization,
we can significantly improve the accuracy of target parameter estimation.

3. A HOOI Method for Parameters Estimation
3.1. Factor Matrices and Core Tensor Construction Based on the HOOI Algorithm

The HOOI algorithm consists of the following steps:

Step1: Suppose a Z-order tensor X ; the factor matrix is UZ ∈ RIz×Rz , z = 1, · · · , Z (Iz is
the size of the z-th tensor dimension). Let k = 0, initialize the core tensor G as a
zero tensor.

Step2: Let k = k + 1, and for z = 1, . . . , Z, perform the following operations

Bk ← X ×1 UT
1 · · · ×z−1 UT

z−1 ×z+1 UT
z+1 · · · ×Z UT

Z. (15)

Then compute the SVD value Bk(z) = UΣVT of the mode-n extension of the tensor
Bk by determining the number of its principal singular values Rz, and then let
Uz ← U(:, 1 : Rz).

Step3: Compute the core tensor for the k-th iteration

G ← X ×1 UT
1 ×2 UT

2 · · · ×Z UT
Z. (16)

Judge whether it converges or not: if the convergence condition is satisfied, then
execute the next step; if the convergence criteria are not met or if the upper limit on
the number of iterations has not been reached, go back to Step 2 and continue with
the iterations.
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Step4: Outputs the factor matrix U1, U2, . . . , UZ and the core tensor G.

The signal model allows the HOOI algorithm to reach the termination condition when
only one iteration is performed. Based on the core tensor and factor matrix obtained from
the HOOI, it can be obtained that

X = G ×1 U1 ×2 U2 ×3 U3. (17)

Moreover, since we assume that the number of targets is P, the rank of X is P. By trun-
cating the HOOI, the tensor-based subspace is obtained as

X s = Gs ×1 Us1 ×2 Us2, (18)

where Gs = X ×1 UH
s1
×2 UH

s2
×3 UH

s3
denotes the truncated core tensor. The singular vectors

of Uz are sorted from largest to smallest by the corresponding singular values, and the first
P singular vectors are extracted for composing Usz(z = 1, 2, 3). Then Gs is substituted into
Equation (18); after simplifying, the result is written as follows:

X s = X ×1 (Us1UH
s1)×2 (Us2UH

s2)×3 UH
s3. (19)

From the above, we have the subspace based on a tensor, which can be characterized as

Us = [X s]
T
(3) = (Us2UH

s2 ⊗Us1UH
s1)[X ]T(3)U

∗
s3. (20)

By the definition of the tensor mode-n expansion, we can get the [X ]T(3), and this is
substituted into Equation (20); the simplification of the formula is the following

Us = (Us2UH
s2 ⊗Us1UH

s1)V
∗
s3Λs3. (21)

So far, the estimation of the signal subspace tensor Us has been completed.

3.2. Angle of Arrival Estimation Using Reduced-Dimension MUSIC Algorithm via the
Tensor-Based Method

The signal and noise subspaces being orthogonal is a fundamental principle of the MU-
SIC algorithm [29]. By orthogonal transformation, the signal subspace can be represented
by an orthogonal column matrix. An expression for the noise subspace can be obtained
using orthogonal projection as

UnoiseUH
noise = I−UoUH

o , (22)

where Uo is defined as the orthogonal basis of Us, and we define Uorth = UnoiseUH
noise.

From the above description, the two-dimensional spectral function is given by

t(θ, r) =
1

[ar(θ)⊗ at(θ, r)]HUorth[ar(θ)⊗ at(θ, r)]
. (23)

Inspired by the literature [30], aiming at the characteristics of FDA-MIMO radar
transceiver steering vectors, we investigate a ranging strategy aiming to reduce the compu-
tational complexity, which is elaborated by the following derivation process.

From the signal model, we can see that ar(θ) and at(θ, r) both satisfy ∈ C(M+N−1)×1.
Before simplifying ar(θ)⊗ at(θ, r), let us briefly introduce an arithmetic property about the
Kronecker product as follows:

(Q⊗W)(E⊗R) = QE⊗WR, (24)
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where Q, W, E, and R are four matrices and there exists a matrix product of QW as well
as ER. In carrying out the derivation, we set a = ar(θ)⊗ at(θ, r); we express this equation
as follows:

a =[ar(θ)I1]⊗ [IQat(θ, r)]. (25)

Combined with the operational properties of the Kronecker product mentioned above,
we can simplify Equation (23) as follows:

a =[ar(θ)⊗ IQ]at(θ, r). (26)

Through the above simplification process, the spectral function mentioned in
Equation (23) can be simplified as follows:

T(θ, r) =
1

t(θ, r)

= aH[IQ2 −UoUH
o ]a

= at(θ, r)H[ar(θ)⊗ IQ]
HUorth[ar(θ)⊗ IQ]at(θ, r)

= at(θ, r)HT(θ)at(θ, r),

(27)

where T(θ) = [ar(θ)⊗ IQ]
HUorth[ar(θ) ⊗ IQ]. In order to eliminate the effect when the

emission guidance vector at is a zero matrix, the constraint is set, denoted as

eHat(θ, r) = 1 =⇒ at(θ, r) =
1

eH , (28)

where eH = [1, 0, · · · , 0]T ∈ CQ×1.
From Equation (27), the problem is essentially an extreme value problem with con-

straints. To solve the problem, we use the Lagrange multiplier method to construct the
Lagrange function, and after simplifying and organizing, we get the following specific
form:

L(θ, r) = at(θ, r)HT(θ)at(θ, r)− λ(eHat(θ, r)− 1), (29)

where λ denotes the Lagrange multiplier. Based on Lagrangian extreme conditions, the first-
order partial derivatives of Equation (29) can be specified in the following way:

2T(θ)at(θ, r)− λe = 0. (30)

Equation (30) associates the extreme value condition, i.e., by substituting Equation (28)
into Equation (30). Accordingly, we can deduce that

λ

2
T(θ)−1e = at(θ, r) =

1
eH

⇒λ =
2

eH T(θ)−1e
.

(31)

After simplification, at(θ, r) can be characterized as

at(θ, r) =
T(θ)−1e

eHT(θ)−1e
. (32)
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Substituting at(θ, r) into Equation (23) yields the RD-MUSIC space spectral function,
expressed in the following way:

t(θ, r) =
1

T(θ, r)

=
1

at(θ, r)HT(θ)at(θ, r)

= eHT(θ)−1e.

(33)

After reducing the dimension of the spectral function, we obtain a two-dimensional
MUSIC spatial spectral function related only to the target angle. In this way, we can simplify
the calculation and analysis of the spatial spectral function.

A spectral peak search is performed on the RD-MUSIC space spectral function,
and since P targets are preset, the angles corresponding to the first P maximal peaks
are chosen, i.e.,

θ̂ = arg max t(θ, r)

= arg max eHT(θ)−1e.
(34)

So far, the estimation of the target angle parameters θ̂p(p = 1, 2, · · · , P) has
been completed.

3.3. Range Estimation

After estimating the angle of DOA, θ̂p(p = 1, 2, · · · , P) can be substituted into T(θ)
to get T(θ). Then T(θ) and Equation (32) are used to reconstruct at(θ, r). Based on the
observation in Equation (10), we can find that at(θ, r) has rotational invariance, which leads
to the derivation that

ΦANG = a†
t (1 : M− 1, p)at(2 : M, p) ·ΦAN , (35)

ΦAMG = a†
t (M : M + N − 2, p)at(M + 1 : end, p) ·ΦAM , (36)

where p = 1, . . . , P, ΦAN = e−j2πdN sin(θ̂)/λ, ΦAM = e−j2πdM sin(θ̂)/λ, ΦAN and ΦAM elim-
inate the angular components, and the above ΦANG and ΦAMG are the resulting diagonal
matrices of eigenvalues associated with the range.

Define range estimate sets SRN,p and SRM,p as

SRN,p =

{
(angle(diag(Φ̂ANG))

T
p + 2K′Nπ)c

−4π∆ f N

}
, K′N ∈ [0, N − 1)

p = 1, 2, . . . , P

(37)

SRM,p =

{
(angle(diag(Φ̂AMG))

T
p + 2K′Mπ)c

−4π∆ f M

}
, K′M ∈ [0, M− 1)

p = 1, 2, . . . , P

. (38)

Comparing the actual range estimates and the ambiguous range estimates of a single
target using SRN,p and SRM,p, the formula for the actual range estimate is as follows:

r̂p =
r̂N,p + r̂M,p

2
,

p = 1, 2, . . . , P
(39)

where r̂N,p and r̂M,p are the closest range estimations selected from SRN,p and SRM,p,
respectively.
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By employing our proposed method, we have successfully achieved accurate estima-
tion of target angle and range parameters. This proves the effectiveness and practicality of
our algorithm.

4. Proposed Algorithm Performance Evaluation
4.1. Computational Complexity Analysis

In order to evaluate the efficiency of the proposed algorithm, we analyze its complexity
in this subsection. The complexity analysis is shown as:

(1) The HOSVD computation complexity of X ∈ CQ×Q×J in Equation (17) is O(Q2 J).
(2) Constructing a signal subspace in Equation (21) requires O(Q4 + QK2 + Q2 J).
(3) Dimensionality reduction of a two-dimensional spectral Function (27) requiresO(Q2).
(4) The search for one-dimensional spectral peaks in Equation (34) requires O(∆θ

rθ
Q3),

where ∆θ denotes the DOA search scope, and rθ is the step size of the search.
(5) Estimating range using rotational invariance requires O(M + N + P(M + N − 4)).

From the above analysis, it can be proved that the complexity of the proposed algorithm
is O(Q2 J + Q4 + QP2 + Q2 J + Q2 + ∆θ

rθ
Q3 + M + N + P(M + N− 4)). For the 2D-MUSIC

algorithm, its algorithmic complexity isO(Q4 J +Q6 + 90c(Q2 + 1)(Q2− P)/∆ f adrd), where
ad = 0.002 and rd = 0.02. Numerical analyses show that the conventional 2D-MUSIC algo-
rithm suffers from high computational complexity, whereas the computational complexity
of the algorithm presented in this paper is significantly reduced.

4.2. Cramér–Rao Bound (CRB)

From Equation (13), the received signal can be represented in the following way:

X = [Ar �At]ST + N. (40)

The Fisher information matrix (FIM) can be characterized as

CRB−1
θ = Fθ = 2JξRe

{(
∂a(θ, r)

∂θ

)H
R−1

N

(
∂a(θ, r)

∂θ

)}
, (41)

CRB−1
r = Fr = 2JξRe

{(
∂a(θ, r)

∂r

)H
R−1

N

(
∂a(θ, r)

∂r

)}
, (42)

where RN = σ2I, σ2, ξ, and L represent the covariance matrix of the noise, the power of the
noise, the power of the signal, and the number of snapshots, respectively.

The partial derivatives in Equations (41) and (42) are shown as

∂a(θp, rp)

∂θp
=

∂ar(θp)

∂θp
⊗ at(θp, rp) + ar(θp)⊗

∂at(θp, rp)

∂θp
, (43)

∂a(θp, rp)

∂rp
= ar(θp)⊗

∂aι(θp, rp)

∂rp
, (44)

with
∂ar(θp)

∂θp
= −j2π

cos(θp)

λ0
dDcopar(θp), (45)

∂at(θp, rp)

∂θp
= −j2π

cos(θp)

λ0
dDcopat(θp, rp), (46)

∂at(θp, rp)

∂rp
= −j4π

∆ f
c

Dcopat(θp, rp), (47)

where Dcop = diag
[

N(1−M), · · · ,−2N,−N, 0, M, 2M, · · · , M(N − 1)
]
.



Sensors 2023, 23, 9682 10 of 17

5. Simulation Results

In this part, we demonstrate the performance of the suggested algorithm by numerical
simulations. We employ the Root Mean Square Error (RMSE) to assess the precision of
angle and range estimation as below:

RMSEr =

√√√√ 1
P

1
J

P

∑
p=1

J

∑
j=1

(r̂p,j − rp)2, (48)

RMSEθ =

√√√√ 1
P

1
J

P

∑
p=1

J

∑
j=1

(θ̂p,j − θp)2, (49)

where r̂p,j and θ̂p,j represent the estimates of range and angle, respectively, in the Monte
Carlo experiment. In this paper, we examine and benchmark the holistic performance
of the presented method with the ensuing methods: Estimation of Signal Parameters via
Rotational Invariance Techniques (ESPRIT) [31], HOSVD-ESPRIT [32], and SUIT [8].

In all simulations, three non-coherent targets with (θ1, r1) = (−10.44◦, 4000 m),
(θ2, r2) = (5.22◦, 5000 m), and (θ3, r3) = (35.56◦, 6000 m) are considered. Unless otherwise
stated, all simulations are performed using the following operating conditions: M = 6,
N = 5, Monte Carlo experimental number L = 500, reference frequency f0 = 10 GHz, the
speed of light c = 3× 108 m/s, and according to Equation (3), the array element spacing
d = 0.015 m.

In the first experiment, we set the number of snapshots to J = 200 and the signal-to-
noise ratio (SNR) to 20. The estimated angles and ranges closely align with the predefined
values, as depicted in Figure 2. As illustrated in the figure, the experimental results confirm
the reliability and performance of the method presented in this work.
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4800

5000

5200
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5800

6000

R
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g
e(

m
)

The estimated targets

The setting targets

Figure 2. Estimation outcomes of the approach.

In the second experiment, we configure SNR = 10 dB and examine how the algorithm
execution time changes with the snapshot number. Figure 3 shows the factor matrix
time cost for the core tensor and parameter estimation using HOOI and conventional
HOSVD, respectively. Since the signal model in this paper allows HOOI to reach the
termination condition at an iteration number of 1, whereas HOSVD requires singular-
value decomposition of all modes, the running time of HOOI is much smaller than that
of HOSVD.
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Figure 3. Algorithm runtime comparison.

In the third experiment, we assess the effectiveness of the previously mentioned
methods using different signal-to-noise ratios while J = 200. The RMSEs for range and
DOA are shown in Figure 4 and Figure 5, respectively. Our results indicate that the
proposed method exhibits exceptional accuracy and stability, outperforming all other
methods, including conventional HOSVD-RDMUSIC. This results from our presented
method’s application of a multidimensional structure by tensors, which boosts the precision
of target localization.
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Figure 4. SNR versus DOA estimation error.
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Figure 5. SNR versus range estimation error.

In the fourth trial, Figures 6 and 7 illustrate the DOA and range estimation RMSE
obtained by the previously mentioned methods under different snapshot conditions at an
SNR of 10 dB. Similarly, we also present the comparison method. It is clear that the curve
of the RMSE for the suggested method is nearer to the Cramér–Rao Bound (CRB).
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Figure 6. Snapshot number versus DOA estimation error.
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Figure 7. Snapshot number versus range estimation error.

In the fifth experiment, Figures 8–11 illustrate a comparison of the estimation per-
formance across different array geometries and frequency offset designs, comparing the
UCA-UCFO framework used in this paper with the ULA arrays and utilizing the algorithm
proposed in the paper for parameter estimation. As obtained from the figure, UCA-UCFO
significantly improves the accuracy of angle and range estimation, outperforming ULA.
The reason for this is that the UCA-UCFO framework is characterized by an unexpanded
homogeneous number structure in both the angle and range domains, which gives it the
best performance.
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Figure 8. SNR ratio versus angle estimation error under different frameworks.
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Figure 9. SNR versus range estimation error under different frameworks.
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Figure 10. Snapshot number versus angle estimation error under different frameworks.
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Figure 11. Snapshot number versus range estimation error under different frameworks.

6. Conclusions

In this paper, a tensor-based Higher-Order Orthogonal Iteration (HOOI) is proposed
for parameter estimation in a UCA-UCFO framework. The received signal is decomposed
into a tensor by the HOOI algorithm to obtain the core matrix and factor matrix. Then,
the 2D spectral function is built, and the dimensions are reduced to enable 1D spectral peak
search and DOA estimation. After that, the transmission steering vector is obtained by
taking the partial derivative of the Lagrangian function. Finally, its rotational invariance
is exploited for target distance estimation. The suggested approach shows advantages:
higher operation speed and reduced computational complexity relative to the conven-
tional 2D MUSIC method, and its advantages are proved by the numerical analysis and
simulation results.
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Nomenclature

Y (bold Euler letters) tensor
CM×N M× N matrix set
Y (bold capital letters) matrix
y (bold lowercase letter) vector
(·)∗ conjugate
(·)T transpose⊗

Kronecker product
� Khatri-Rao product
(·)H conjugation-transpose
IN N × N elementary matrix
(·)−1 inverse
(·)† pseudo-inverse
angle(·) Extract the phase of the matrix
diag(·) diagonalization of matrix
◦ Hadamard product
0N N × N zero matrix
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