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Abstract: This paper mainly investigates the problem of direction of arrival (DOA) estimation for a
monostatic MIMO radar. Specifically, the proposed array, which is called a nested–nested sparse array
(NNSA), is structurally composed of two nested subarrays, a NA with N1 + N2 elements and a sparse
NA, respectively, with N3 + N4 elements. The design process of NNSA is optimized into two steps
and presented in detail. Setting NNSA as transmitter/receiver arrays, we derive the closed-form
expression of consecutive DOFs and calculate the mutual coupling coefficient. Eventually, extensive
simulations are carried out and the results verify the superiority of the proposed array over the
previous arrays in terms of consecutive DOFs, array aperture and mutual coupling effect.

Keywords: nested array; DOA estimation; monostatic MIMO radar; sum and difference co-array;
degrees of freedom

1. Introduction

In recent years, multiple input–multiple output (MIMO) radar has raised significant
attention in the field of signal processing, which can improve the spatial resolution and
direction of arrival (DOA) performance, which benefits from increased degrees of freedom
(DOFs) and reduced mutual coupling effect [1–5]. Various algorithms of DOA estimation
have already been proposed for monostatic or bistatic MIMO radar [6,7]. For instance,
estimation of signal parameters using the rotational invariance techniques (ESPRIT) [8,9]
algorithm was proposed for DOA estimation; multiple signal classification (MUSIC) [10]
algorithm was exploited for joint direction of departure (DOD) and DOA estimation in
bistatic MIMO radar [11]. However, since the conventional MIMO radar usually exploits
the uniform linear arrays (ULAs) in transmitter/receiver arrays, the inter-element spacing
should not be greater than half of the wavelength. Under the condition of finite physical
sensors, it stands to reason that both the array aperture and the attainable DOFs are limited.

To obtain increased DOFs and improve the DOA estimation performance, sparse
arrays with reduced mutual coupling and greater DOFs have been proposed and exploited
in MIMO radars. In [12], sparse nonuniform linear arrays (NLA) based on MIMO radars
was exploited for better DOA estimation performance. The prototype coprime array (CPA)
was exploited in transmitter/receiver arrays, enhancing the DOA estimation performance
with more DOFs [13,14]. In [15], a pair of coprime ULAs was utilized in the MIMO radar
framework, in which a sum co-array viewpoint was introduced and could achieve a better
DOA estimation performance. In [16], the minimum redundancy array (MRA) [17] was
exploited in MIMO radar, which could obtain O(N2) DOFs with only O(N) physical
sensors. However, the specified configuration of MRA requires an exhaustive search and
there is no closed-form expression for consecutive DOFs from the physical position set.
Moreover, a nested MIMO array structure was proposed in [18] by assembling NA [19] in
transmitter/receiver arrays.
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Compared to coprime MIMO radar, nested MIMO radar can produce a hole-free ULA
in virtual array, which is desirable. NA has a dense subarray, in which the closely located
sensors induce a severe mutual coupling effect and can decrease the DOA estimation
performance significantly [20,21], while CPA suffers less from the mutual coupling effect
due to a sparser element distribution. Nevertheless, coprime MIMO radar produces holes
in its sum-difference co-array, which decreases the consecutive DOFs. In response to
these issues, some improved arrays based on NA or CPA with better properties have
been proposed. Augmented coprime array (ACA) in [22] was proposed to obtain more
consecutive DOFs than CPA in second-order difference co-array (2-DC). Unfolded co-prime
linear array (UCLA) [23] was constructed by flipping one subarray along the origin to
reduce the redundancy of 2-DC. The aforementioned arrays are mainly designed based on
2-DC. After introducing fourth-order difference co-array (4-DC), fourth-level nested array
(FL-NA) [24] and three-level nested array (THRL-NA) [25] have been proposed to obtain
more DOFs and less redundancy than NA.

Considering that the process of obtaining 4-DC from physical sensors is equivalent
to obtaining second-order difference co-array of sum co-array (2-DCSC), it provides a
prospective design for a MIMO array configuration. Thus, the design of a MIMO array
configuration can be regarded as solving the problem of obtaining 2-DCSC of a concrete
array. Guiding by this view, we propose a nested MIMO array configuration in this paper.

The main contributions of this paper are briefly summarized as follows:

1. We propose a sparse MIMO array configuration called NNSA, which is composed
of two subarrays: a NA and a sparse NA, respectively. The basic idea of designing
NNSA is based on the property of NA.

2. Considering that it is complicated to obtain a consecutive 2-DCSC from physical
sensors directly, we optimize the design process by simplifying it into two steps:
extracting the consecutive DOFs in 2-SC from physical sensors and subsequently
calculating the 2-DC of 2-SC to obtain a consecutive virtual 2-DCSC as long as possible.
This step-by-step simplification enhances the efficiency of designing NNSA. Moreover,
given the total number of physical sensors T, it is specified how to select N1, N2, N3,
and N4 to accomplish the maximal consecutive DOFs.

3. Comparing NNSA with other arrays, we assess the ability of NNSA in DOA estima-
tion. The simulation results confirm the superior properties of NNSA. The proposed
NNSA enjoys increased consecutive DOFs, larger array aperture, weaker mutual
coupling effect and smaller error in DOA estimation.

In this paper, lower-case and upper-case bold characters represent the vectors and
matrices, respectively. E{·} stands for the expectation of a random variable and ‖·‖F
indicates the Frobenius norm. The superscripts (·)T, (·)∗, (·)H and (·)−1 are the transpose,
conjugate, Hermitian-transpose, and inversion, respectively. 〈S〉i refers to the i-th element
in S. ⊗ and ◦ refers to the Kronecker and Khatri-Rao product. vec(·) represents the
vectorization operator. diag{·} implies a diagonal matrix.

2. Preliminaries

This section begins with the definitions of 2-DC, 2-SC, 4-DC, 2-DCSC and signal model
for monostatic colocated MIMO radar.

2.1. Related Definitions

Given a linear array with M sensors and the unit inter-element spacing d, the position
set can be described as follows [26]:

S = {p1d, p2d, ..., pMd}, i = 1, 2, ..., M (1)

where pid denotes the position of the pi-th sensor and d = λ/2.
According to (1), several definitions are introduced for a given linear array with

position set S:
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Definition 1. The second-order difference co-array S2−DC is defined as [27]

S2−DC = {(pi − pj)d, 1 ≤ i, j ≤ M} (2)

Definition 2. The second-order sum co-array S2−SC is defined as [28]

S2−SC = {(pi + pj)d, 1 ≤ i, j ≤ M} (3)

Definition 3. The fourth-order difference co-array S4−DC is defined as [29]

S4−DC = {((pi − pk)− (pj − pl))d, 1 ≤ i, j, k, l ≤ M} (4)

Definition 4. The second-order difference co-array of sum co-array S2−DCSC is defined as [12]

S2−DCSC = {((pi + pj)− (pk + pl))d, 1 ≤ i, j, k, l ≤ M}
= {((pi − pk)− (pj − pl))d, 1 ≤ i, j, k, l ≤ M} (5)

= S4−DC

2.2. Signal Model

Assume that a monostatic MIMO radar consists of a transmitter/receiver array with
M and N elements respectively, the position set of which is depicted in (1), with K far-field
narrowband sources impinging on the receiver array, from directions θ = [θ1, θ2, ..., θK].
The observed output signal of matched filters can be modeled as [30]

x(t) = (Ar ◦At)s(t) + n(t) = As(t) + n(t) (6)

where At = [at(θ1), at(θ2), ..., at(θK)] denotes the transmitting direction matrix while
Ar = [ar(θ1), ar(θ2), ..., ar(θK)] denotes the receiving direction matrix. The steering vectors
are represented by at(θk) and ar(θk).

at(θk) = [e−j2πpt
1dsin(θk)/λ, ..., e−j2πpt

Mdsin(θk)/λ]T ∈ CM×1 (7)

ar(θk) = [e−j2πpr
1dsin(θk)/λ, ..., e−j2πpr

N dsin(θk)/λ]T ∈ CN×1 (8)

And s(t) = [s1(t), s2(t), ..., sK(t)]T ∈ CK×1, sk(t) represents source signal of the k-th tar-
get. In this paper, under the background of monostatic colocated MIMO radar, we ex-
ploit the same array as both the transmitter/receiver array and thus Ar = At. Besides,
n(t) represents the received Gaussian white noise with mean zero and variance σ2,
n(t) ∼ N(0, σ2). The covariance matrix of received signals is given by

R = E[x(t)xH(t)] = ARsAH + σ2IM×M (9)

where Rs = E[s(t)sH(t)] = diag{[σ2
1 , σ2

2 , ..., σ2
K]} represents the signal covariance matrix

while σ2
k denotes the signal power of k-th target. In practice, the covariance matrix of

received signals is estimated by L samplings (t = 1, 2, ..., L), i.e.,

R̂ =
1
L

L

∑
t=1

x(t)xH(t) (10)

By vectorizing R [31],
z = vec(R) = (A∗ ◦A)p + σ2vec(I) (11)

where p = [σ2
1 , σ2

2 , ..., σ2
K]

T . From (11), we can calculate the consecutive DOFs of the
proposed array. Despite the above discussion based on the absence of mutual coupling, it is
necessary to take the mutual coupling effect into account in practical scenarios. The signal
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output of each sensor is influenced by adjacent elements and the output signals of matched
filters can be formulated as [32]

x(t) = CAs(t) + n(t) (12)

where C represents the mutual coupling matrix, which can be expressed by [32]

Ci,j =

0, |〈S〉i − 〈S〉j| > B

c|〈S〉i−〈S〉j |, |〈S〉i − 〈S〉i| ≤ B
(13)

where si, sj ∈ S and the mutual coupling coefficients satisfy 1 = c0 > |c1| > ... > |cB| >
|cB+1|, c1 = 0.5ejπ/4, ck = c1e(−j(k−1)π/8), |cB+1| = 0, k = 2, 3, ..., B, in this paper B = 100.

Furthermore, in a specific array, the mutual coupling coefficient can be quantified by a
parameter named coupling leakage [33].

L(M) =
‖ C− diag{C} ‖F

‖ C ‖F
(14)

From (13), the received signal of virtual array with mutual coupling in (11) can be derived as

z̃ = Cvec(A∗ ◦A)p (15)

where Cvec = (C⊗ C∗)∗ ⊗ (C⊗ C∗).

3. Proposed Array Configuration

The design process of the proposed array is discussed in this section, as well as a
specific example.

3.1. Design of the Proposed Array

Figure 1 illustrates the structure of NA, which consists of two ULA subarrays. Subar-
ray1 is composed of N1 elements with inter-element spacing of d while subarray2 consists
of N2 elements with inter-element spacing of (N1 + 1)d. It has been confirmed in [19] that
the 2-DC of NA is continuous with 2N2(N1 + 1)− 1 consecutive DOFs. This serves as a
crucial foundation of the proposed array.

d  = d d"= (N +1) d

1 2 1 2N N"

Figure 1. The structure of nested array.

In this paper, by means of utilizing the property of NA, we provide a simplified
approach to designing the proposed array. The key to the array design is exploiting the
consecutive part from the 2-SC of the two subarrays and obtaining a virtual NA that is as
long as possible.

Figure 2 illustrates the structure of NNSA. Given a specific number of sensors T, NNSA
is composed of two subarrays: a prototype NA and a sparse NA, respectively. According
to [19], subarray1, a NA, contains two ULAs. Among the two ULAs, the first ULA has
N1 sensors with inter-element spacing d, while the second ULA starts at N1d and has N2
sensors with inter-element spacing (N1 + 1)d. Thus, the position set of physical sensors of
the first NA can be denoted as

S = {n1d, 1 ≤ n1 ≤ N1 − 1} ∪ {N1d + n2(N1 + 1)d, 1 ≤ n2 ≤ N2 − 1} (16)

the DOFs of 2-DCSC can also be calculated: 2(N1N2 + N1 + N2)− 1. Set the starting point of
subarray2 at δ1 = (N1N2 + N1 + N2)d. Likewise, the second subarray has two sparse ULAs.
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The first sparse ULA has N3 sensors with inter-element spacing (δ1 + 1)d, while the second
sparse ULA starts at δ1d and has N4 sensors with inter-element spacing (δ1 + 1)(N3 + 1)d,
respectively. Thus, the position of physical sensors in NNSA can be represented as

S = S1 ∪ S2 (17)

S1 = {n11d, 0 ≤ n11 ≤ N1 − 1} ∪ {N1d + n12(N1 + 1)d, 0 ≤ n12 ≤ N2 − 1} (18)

S2 = δ1d + {n21(δ1 + 1)d} ∪ {N1(δ1 + 1)d + n22(δ1 + 1)(N3 + 1)d} (19)

0 ≤ n21 ≤ N3 − 1, 0 ≤ n22 ≤ N4 − 1

Given the number of total physical sensors T, to simplify the calculation, we set
N1 = N3, N2 = N4 and T = ∑4

i=1 Ni = 2(N1 + N2). According to [19], the number of
consecutive DOFs of 2-SC in subarray1 is N2(N1 + 1) + N1, which is denoted as δ1. Be-
cause of the same geometry of the two subarrays, the number of consecutive DOFs of 2-SC
in subarray2 is also δ2, δ1 = δ2. In next section, we derive the closed-form expression of
consecutive DOFs of 2-DCSC. Extracting the consecutive part from the two 2-SC, its position
can be denoted as

Sc2sc = {m1d, 0 ≤ m1 ≤ δ1} ∪ {2δ1d + m2(δ1 + 1)d, 0 ≤ m2 ≤ δ2 − 1} (20)

According to (20), the 2-DC of Sc2sc is confirmed to be a consecutive virtual array, denoted
as Sc2dcsc. It seems that there is a hole at the position of δd, since δ cannot be obtained based
on the difference of any two elements in Sc2sc. Actually, δ is the difference of elements 0
and δ in the physical position set. Therefore, the position of Sc2dcsc can be represented as

Sc2dcsc = {−[(δ1 + 1)(δ2 + 1)− 2]d, ...,−2d,−d, 0, d, 2d, ..., [(δ1 + 1)(δ2 + 1)− 2]d} (21)

According to (21), the maximal consecutive DOFs can be concluded

DOF = 2[(δ1 + 1)(δ2 + 1)− 2] + 1 = 2δ1δ2 + 2δ1 + 2δ2 − 1 (22)

subarray1

subarray2

d = (N"+1) d

d#=(δ"+1)(N%+1)dd%=(δ"+1)d

1 2

21

1 2

1 2

N" N 

N% N#δ"=( N"N +N"+N  ) d

d"=d

Figure 2. The configuration of the proposed array.

3.2. A Specific Example of NNSA

From the aforementioned analysis, a specific example is given in Figure 3 to vividly
verify the related conclusions. Suppose the number of physical sensors in two subarrays
are N1 = N3 = 2, N2 = N4 = 3, respectively. Thus, the total number of physical sensors
is T = 2(N1 + N2) = 10. The structure of the proposed array is composed of two parts:
subarray1 is a NA with position set denoted as {0, 1, 2, 5, 8}d while subarray2 is a sparse
NA, the position set of which is {11, 23, 35, 71, 107}d. Therefore, we can obtain the posi-
tion set of the example, which can be represented as S = {0, 1, 2, 5, 8, 11, 23, 35, 71, 107}d.
First, we obtain the 2-SC of the two subarrays, respectively, and secondly, we extract
the consecutive part of the two 2-SC. The consecutive part of 2-SC position set of the
first subarray is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}d and the position set of the second subarray is
{22, 34, 46, 58, 70, 82, 94, 106, 118, 130, 142}d. The combined two subarrays can be regarded
as a new virtual sparse NA. Thus, based on Equation (22), the consecutive DOFs in 2-DCSC
can be computed as 285.
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Generally, it is specified how to select N1, N2, N3 and N4 to accomplish the maximal
number of consecutive DOFs. In NNSA, the number of total physical sensors T should be
set as an even number and the choice of N1, N2, N3 and N4 is given as shown below:{

N1 = N2 = N3 = N4 = q; T = 4q, q ∈ Z

N1 = N3 = q; N2 = N4 = q + 1; T = 4q + 2,∈ Z
(23)

0 d 2d 5d 8d 11d 23d 35d 71d 107d

Transmitter/Receiver Array

0 d 2d ...... 10d 13d 16d 22d 34d 46d 58d 70d 82d
......

130d 142d 178d 214d

Extract the consecutive part from 2-SC

2-SC

0 d 2d ...... 10d 22d 34d 46d 58d 70d 82d
......

130d 142d

0 11d
......

142d
2-DCSC

Figure 3. A specific example of the proposed array configuration.

3.3. Design Procedures

The design procedure of the proposed array can be outlined into two steps:
Step 1: Given the number T, the respective number of elements for two subarrays is set

as N1, N2 and N3, N4 (N1 = N3, N2 = N4). The two position sets are denoted in (18) and (19);
Step 2: Acquire 2-SC from physical sensors; extract the consecutive part from 2-SC and

subsequently calculate 2-DC of the consecutive part. The element set of 2-SC is shown in
(20). Eventually, a consecutive 2-DCSC is attained by leveraging the consecutive property
of 2-DC in NA, the position set of which is represented as (22). Hence, through progressive
simplification, the process of attaining a consecutive 2-DCSC is streamlined as above.

4. Performance Comparison

In this section, we assess the performance of NNSA by conducting a comparative
analysis with several arrays in the scenario of a monostatic colocated MIMO radar. The eval-
uation is based on a range of performance indices, including the attainable consecutive
DOFs, the closed-form expression of consecutive DOFs from the number of physical sensors,
a mutual coupling coefficient and redundancy.

The closed-form expressions for consecutive DOFs are listed in Table 1.

Table 1. The closed-form expression for consecutive DOFs via the number of total sensors.

Arrays Total Number of Sensors Consecutive DOFs
(Ni, i = 1, 2, ..., 4) (Ni, i = 1, 2, ..., 4)

ACA 2N1 + N2 − 1 6N1N2 + 2N1 − 2N2 − 1
NA N1 + N2 4N2(N1 + 1)− 3

UCLA N1 + N2 4N1N2 − 1
FL-NA N1 + N2 + N3 + N4 − 3 2N1N2N3N4 − 1

THRL-NA N1 + N2 + N3 4N3(N2 + 1)(N1 + 1)− 3
Proposed 2(N1 + N2) 2(N1N2 + N2 + N1 + 1)2 − 3

In Table 2, the normalized position of physical sensors, the redundancy distribution
diagram of 2-SC and 2-DCSC, consecutive DOFs, SS-MUSIC spectrum and mutual coupling
coefficient L(M) are provided. The total number of physical sensors is set as 10. Ar = At.
Letting the position set of physical sensors for each array divided by inter-element spacing
d, the normalized position is obtained. The redundancy is measured in terms of weight
function; more specifically, the times of each element’s appearance at the corresponding
point. In SS-MUSIC spectrum, there are 27 sources impinging on the arrays from direction



Sensors 2023, 23, 9230 7 of 12

[−39◦,−36◦, ..., 0, 3◦, ...39◦]. SNR = −5 dB and the number of snapshots is set as 100. We
evaluate the ability to distinguish multiple targets of each array from peaks in spectrums.

Redundancy diagrams depict the times of the elements’ appearance in the correspond-
ing positions. The graphs of 2-SC and 2-DCSC clearly illustrate that the proposed array
configuration enjoys a broader distribution, except for UCLA, indicating reduced redun-
dancy. From SS-MUSIC spectrum, it is confirmed that the spatial peaks of the proposed
array are sharper and all the targets can be detected. In comparison, the mutual coupling
coefficient of the proposed array turns out to be slightly greater than UCLA but smaller than
ACA, NA, FL-NA and THRL-NA. A smaller mutual coupling coefficient indicates a weaker
mutual coupling effect, leading to improved DOA estimation performance. Moreover,
according to Table 1, the consecutive DOFs of ACA, NA, UCLA, FL-NA, THRL-NA and
the proposed NNSA can reach 85, 117, 157, 215, 253 and 285 respectively. As illustrated
above, the proposed array NNSA can obtain the greatest consecutive DOFs with 10 sensors
and outperforms other arrays in terms of DOA estimation. Further simulations are carried
out in the subsequent section.

Table 2. The performance comparison with different arrays.

Arrays ACA NA UCLA

Normalized position {0, 3, 5, 6, 9, 10, 12, 15, 20, 25} {1, 2, 3, 4, 5, 6, 12, 18, 24, 30} {−25, −20, −15, −10, −5, 0, 6, 12,
18, 24}
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Table 2. Cont.

Arrays FL-NA THRL-NA Proposed

2-DCSC
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5. Simulations Results

Relevant simulations are carried out in this section to validate the superior properties
of the proposed array through Root Mean Square Error (RMSE) with 500 Monte Carlo
experiments. The definition of RMSE is defined below [34]:

RMSE =

√√√√ 1
500K

500

∑
i=1

K

∑
k=1

(θk,i − θk)2 (24)

where θk denotes the real angle of the k-th target while θk,i denotes the estimated angle of
direction of the k-th target in the i-th experiment. Suppose the total number of sensors is
10 and there are 2 sources, θ = [10◦, 30◦], impinging on the monostatic colocated MIMO
radars—ACA, NA, UCLA, FL-NA, THRL-NA and the proposed NNSA included. Ar = At.
Simulation experiments are conducted using the SS-ESPRIT algorithm in subsections A, B,
C and D.

5.1. RSME Performance of Different Number of Sensors

Suppose that there are 2 sources K = 2 from the direction θ = [10◦, 30◦], SNR = 0 dB.
Ar = At. Figure 4 depicts three RMSE curves for different numbers of sensors. In this
subsection, SNR varies from −10 dB to 8 dB and L is set as 100. It can be observed from
Figure 4 that the number of sensors has an impact on the performance of DOA estimation:
as the number of sensors increases, the proposed NNSA monostatic colocated MIMO radar
exhibits improved accuracy in RMSE.

5.2. RSME Performance of Different Number of Snapshots

In this subsection, assuming that there are 2 sources K = 2 from the direction
θ = [10◦, 30◦], T = 10. Ar = At. As illustrated in Figure 5, the RMSE diminishes as
the number of snapshots increases, thereby enhancing the performance of DOA estimation.
The outcome can be interpreted that more snapshots lead to the presence of more samples
in the signal, resulting in better DOA estimation accuracy. However, considering the satu-
ration of samples, the extent of improvement is not unlimited and diminishes as the same
amount of snapshots increases.
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Figure 4. RMSE performance of different numbers of sensors (K = 2, SNR = 0 dB, L = 100).
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Figure 5. RMSE performance of different number of snapshots (K = 2, T = 10).

5.3. RSME Comparison of Different Arrays versus SNR

To vividly illustrate the superior property of NNSA monostatic colocated MIMO
radar for DOA estimation, we statistically compare it with several other arrays: ACA,
NA, UCLA, FL-NA and THRL-NA. Simulations are conducted under the conditions that
Ar = At, θ = [10◦, 30◦], K = 2, T = 10 and L = 100. As depicted in Figure 6, there are five
RMSE curves of DOA estimation versus SNR. It is clear that the proposed array NNSA
outperforms other arrays and enjoys smaller RMSE because of the greater consecutive
DOFs and larger array aperture, verifying its superior property.

5.4. RSME Comparison of Different Arrays versus Snapshots

Assume that θ = [10◦, 30◦], K = 2, T = 10, SNR = 0 dB and Ar = At in this subsection.
From Figure 7, it can be concluded that benefiting from greater consecutive DOFs and
larger array aperture, the proposed NNSA monostatic colocated MIMO radar is able to
accomplish smaller RMSE than ACA, NA, UCLA, FL-NA and THRL-NA. The simulation
outcomes have verified its superior property.
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Figure 6. RMSE comparison of different arrays versus SNR (K = 2, T = 10, L = 100).
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Figure 7. RMSE comparison of different arrays versus snapshots (K = 2, T = 10, SNR = 0 dB).

6. Conclusions

In this paper, we propose an array configuration specially for monostatic colocated
MIMO radar. This configuration, which is called NNSA, combines a NA and a sparse NA.
Through offering a specific example, the design procedure involves two steps: acquiring
2-SC from physical sensors and subsequently calculating the 2-DC of the 2-SC. By ex-
tracting the consecutive part in 2-SC from physical sensors, we can obtain a consecutive
virtual 2-DCSC with increased DOFs. Given the total number of physical sensors T, it is
specified how to select N1, N2, N3, and N4 to accomplish the maximal consecutive DOFs.
Additionally, we derive the closed-form expression of consecutive DOFs from physical
sensors and it turns out that NNSA has increased consecutive DOFs compared to other
arrays. In comparison, the proposed NNSA enjoys advantages over consecutive DOFs,
SS-MUSIC spectrum and mutual coupling coefficient L(M). Monte Carlo experiments have
been conducted and the results strongly indicate that compared with ACA, NA, UCLA,
FL-NA and THRL-NA, NNSA obtains smaller RMSE in DOA estimation, confirming its
superiority. In the future, it is significant to advance the work in nested MIMO array design
based on NA if the 2-SC of physical sensors can satisfy the condition of optimal NA.
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