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Abstract: Since the rolling bearing fault signal captured by a vibration sensor contains a large amount
of background noise, fault features cannot be accurately extracted. To address this problem, a rolling
bearing fault feature extraction algorithm based on improved pelican optimization algorithm (IPOA)–
variable modal decomposition (VMD) and multipoint optimal minimum entropy deconvolution
adjustment (MOMEDA) methods is proposed. Firstly, the pelican optimization algorithm (POA) was
improved using a reverse learning strategy for dimensional-by-dimensional lens imaging and circle
mapping, and the optimization performance of IPOA was verified. Secondly, the kurtosis-square
envelope Gini coefficient criterion was used to select the optimal modal components from the decom-
posed components of the signal, and MOMEDA was used to process the optimal modal components
in order to obtain the optimal deconvolution signal. Finally, the Teager energy operator (TEO) was
employed to demodulate and analyze the optimally deconvoluted signal in order to enhance the
transient shock component of the original fault signal. The effectiveness of the proposed method
was verified using simulated and actual signals. The results showed that the proposed method can
accurately extract failure characteristics in the presence of strong background noise interference.

Keywords: vibration sensor; bearing fault; pelican optimization algorithm; variational modal decom-
position; Teager energy operator

1. Introduction

Rolling bearings play a crucial role in rotating mechanical equipment. Their health
status directly affects the operational performance of mechanical equipment and even
determines whether production processes can be performed [1]. Rolling bearing fault
diagnosis mainly contains two aspects. On the one hand, the original signal is prepro-
cessed, and the time–frequency domain’s fault features are extracted via signal processing
methods. On the other hand, the extracted time–frequency domain features are used for
fault identification via deep learning methods [2]. However, due to the harsh operating
environment of rolling bearings and the mutual friction of the transmission system, the
vibration signal contains large amounts of ambient noise, and the fault characteristics
are frequently drowned out and can be challenging to discern. Therefore, the effective
extraction of fault characteristics of rolling bearings in the presence of strong background
noise interference can greatly improve the training efficiency and recognition accuracy of
deep learning fault diagnosis algorithms, which is of immense practical significance for the
normal operation of mechanical equipment [3,4].

Rolling bearing fault signals exhibit nonlinear and non-smooth characteristics, limiting
the effectiveness of traditional signal processing methods for noise reduction analysis [5,6].
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As such, advanced signal processing methods are required to filter out noise components
from the original vibration signal [7,8]. Commonly used methods for vibration signal
denoising include wavelet transform (WT), empirical mode decomposition (EMD), and en-
semble EMD (EEMD) [9]. WT can characterize local signals but lacks self-adaptability and
requires the manual selection of wavelet basis functions [10]. EMD decomposes the signal
into a series of intrinsic mode components (IMFs) that characterize the signal; however, it
is susceptible to modal aliasing and endpoint effects during the signal decomposition pro-
cess [11,12]. EEMD distinguishes high- and low-frequency signals by using a mean square
error criterion but suffers from long decomposition times and signal residue [13]. Although
the aforementioned methods achieve noise reduction in rolling bearing fault signals to
a certain extent, they fail to eliminate modal aliasing and boundary effects encountered
in the signal decomposition process. Dragomiretskiy et al. [14] proposed a variational
modal decomposition (VMD) algorithm to achieve adaptive signal decomposition by solv-
ing the optimal solution of variational modes. This method effectively avoids boundary
effects and modal aliasing in the main frequency component, and it is more conducive
to the processing of complex signals. However, the decomposition effect of the VMD
algorithm is mainly determined by the penalty factor and the number of modal layers,
and the improper selection of parameters can result in over-decomposition and spurious
components of the signal [15,16]. Therefore, to ensure accurate parameter settings in VMD
and avoid subjective errors, it is particularly important to adaptively select the optimal
core parameters of VMD for subsequent feature extraction. Inspired by the application of
swarm intelligence algorithms in the field of parameter optimization, this paper utilizes
metaheuristic algorithms to adaptively determine the core parameters of VMD.

In recent years, scholars have applied swarm intelligence optimization algorithms to
signal processing, which can not only adaptively establish the core parameters of signal
processing algorithms but also improve the signal processing performance of the cor-
responding algorithms. Luo et al. [17] proposed an improved differential search (DS)
optimization algorithm for the adaptive optimization of the core parameters of VMD and
combined it with stochastic resonance theory to extract fault features. Zhang et al. [18]
combined the grasshopper optimization algorithm (GOA) and the maximum weighted
kurtosis index criterion to optimize the core parameters of VMD and extracted rolling
bearing fault features. Yang et al. [19] used the marine predator optimization algorithm
(MPA) to adaptively obtain the optimal parameters of the VMD and combined it with the
fully variational denoising maximum second-order cyclic steady-state blind convolution
(TVD-CYCBD) model for fault feature extraction. Ding et al. [20] proposed a VMD parame-
ter optimization algorithm based on gene mutation particle swarm optimization (GMPSO).
This method used GMPSO to obtain the optimal parameter combination of the VMD algo-
rithm and then performed envelope spectrum analyses on the optimal modal components,
finally extracting the fault features. Wang et al. [21] used an Archimedean optimization
algorithm (AOA) to search for the optimal number of decomposition layers and penalty
factor of the VMD and to find the IMF components that are the most sensitive to fault
features. Although the above swarm intelligence algorithm can optimize the parameters of
VMD to some extent, they are prone to fall into local optimization at the later stages of the
iteration. Mei et al. [22] improved the pelican optimization algorithm (POA) using chaotic
mapping to optimize the random forest model. However, this method only initialized
the pelican population, which did not significantly improve the algorithm’s optimization
seeking ability. Therefore, in order to improve the convergence speed and accuracy of POA
and enhance its ability with respect to global optimization searching, this paper proposes
a new improvement strategy to adaptively adjust the position of pelican individuals in
POA via circle mapping and reverse learning strategies for dimensional-by-dimensional
lens imaging.

After the preliminary noise reduction in the original signal using the signal decomposi-
tion algorithm, methods for extracting the periodic shock signal from the signal components
are also one of the key steps in fault feature extraction. To address this problem, Endo
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et al. [23] proposed a minimum entropy deconvolution (MED) algorithm. However, this
method can only obtain a single pulse signal, while the rolling bearing fault signal is gener-
ally a periodic pulse signal. McDonald et al. [24] proposed a maximum correlation kurtosis
deconvolution (MCKD) algorithm by combining correlation kurtosis and the deconvolution
algorithm. However, the model of the algorithm is complex, and the accuracy of the model
is determined by multiple parameters. McDonald et al. [25] proposed a multipoint optimal
minimum entropy deconvolution-adjusted (MOMEDA) algorithm and employed it for
the fault diagnosis of rolling bearings [26–28]. MOMEDA eliminates the need for preset
failure cycles, and the model is highly generalizable. MOMEDA overcomes the limitations
of MED and MCKD, which require constant iterations to obtain the optimal filter, and it
can effectively enhance and extract the periodic shock components in vibration signals.

To effectively and precisely extract failure characteristics in the presence of strong
background noise, we propose applying the IPOA-VMD and MOMEDA algorithms to
the fault detection of rolling bearings. Firstly, the POA is improved using circle mapping
and a reverse learning strategy for dimensional-by-dimensional lens imaging, and the
core parameters of VMD are adaptively optimized using IPOA. Secondly, the kurtosis-
square envelope Gini coefficient (K-SEGI) criterion is used to select the optimal modal
components from the decomposed components of the signal, and MOMEDA is used to
further denoise the optimal modal components to obtain the optimal deconvolution signal.
Finally, the Teager energy operator (TEO) is employed in demodulation, and the optimally
deconvoluted signal is analyzed, achieving the accurate extraction of fault features. We
verified the effectiveness of the proposed method for failure characteristic extraction in the
presence of strong background noise interference using simulated and actual signals.

2. Variational Mode Decomposition (VMD)

The constrained variational model constructed by the VMD is described as follows [29]:
min

{uk},{ωk}

{
K
∑

k=1

∥∥∥αt

[(
(δ(t) + j

πt ) ∗ uk(t)
)]

e−jωkt
∥∥∥2

2

}
s.t.

K
∑

k=1
uk = f

 (1)

where {uk} refers to each IMF component that is derived from the VMD decomposition,
and f denotes the original signal. The {ωk} represents the center frequency associated with
each IMF component, δ(t) represents the unit pulse function, and * represents convolutional
operations.

Using an augmented Lagrange function, we can transform a restricted variational
problem into an unrestricted variational problem. The expression is as follows:

L({uk}, {ωk}, λ) = α
K
∑

k=1

∥∥∥αt

[
(δ(t) + j

πt ) ∗ uk(t)
]
e−jωkt

∥∥∥2

2
+

∥∥∥∥ f (t)−
K
∑

k=1
uk(t)

∥∥∥∥2

2

+

〈
λ(t), f (t)−

K
∑

k=1
uk(t)

〉 (2)

where λ is the Lagrange multiplier, and α is the punishment factor.
The alternating direction method of multipliers (ADMMs) is employed to address the

problem of solving the unconstrained variational model. The update formulas for {ωk},
{uk}, and λ, as well as the iteration termination conditions, are as follows:

ωk
n+1 =

∫ ∞
0 ω| û k(ω)|2dω∫ ∞

0 | û k(ω)|2dω
(3)
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û n+1
k

(ω) =

f̂ (ω)− ∑
i 6=k

ûi(ω)+ λ̂ (ω)
2

1+2α(ω −ωk)
2 (4)

λ̂
n+1

(ω) = λ̂
n
(ω) + τ( f̂ (ω)−

k

∑
k=1

ûk
n+1(ω)) (5)

k

∑
k=1

(
∥∥∥ ûk

n+1 − ûk
n
∥∥∥2

2
/‖ ûk

n‖
2

2
) < ε (6)

where û n+1
k

, λ̂n+1, and f̂ are, respectively, denote the Fourier transform corresponding
to u n+1

k
, λn+1, and f ; ε is the convergence accuracy. Cyclic updating is performed using

the aforementioned steps until the termination condition is met, finally yielding the K
IMF components.

3. IPOA-VMD and MOMEDA Fault Feature Extraction Algorithms
3.1. Improved Pelican Optimization Algorithm (IPOA)

POA achieves optimal searches by simulating the hunting process of pelican pop-
ulations in terrestrial organisms [30]. Compared to commonly used optimization algo-
rithms [31–33], POA has advantages, such as fast convergence speed, resilience to local
optima, and strong approximation ability to find optimal solutions [34]. POA comprises
two main phases: the exploration phase and the development phase. However, the prob-
lem of decreasing population diversity occurs at the later stage of iterations. Therefore,
in this paper, we proposed the use of circle mapping and reverse learning strategies for
dimensional-by-dimensional lens imaging to enhance population diversity. First, circle
mapping is employed to initialize the positions of the pelican population so that each
pelican is evenly distributed across the entire search space. Next, the position of each
pelican is optimized using the reverse learning strategy for dimensional-by-dimensional
lens imaging to enhance the diversity of the pelican population during the later iteration
process of the POA in order to improve the convergence rate of the algorithm and reduce
the risk of trapping in local optimality.

3.1.1. Circle Mapping Strategy

Chaotic mapping exhibits properties such as randomness, ergodicity, and regularity,
which can be utilized to improve the optimization performance of POA. Commonly used
chaotic mappings in the field of optimization include logistic mappings, tent mappings,
and circle mappings [35]. As observed in the distribution of the 1500 sequence values
generated using four different methods, as shown in Figure 1, circle mapping generated a
more uniform and stable distribution of chaotic sequence values between 0 and 1 compared
to logistic mapping, tent mapping, and ordinary random numbers. Therefore, in this
study, circle mapping was used to initialize the positions of the pelican population. Circle
mapping can be defined as follows:

numi+1 = mod
(

numi + 0.2−
(

0.5
2π

)
sin(2πnumi), 1

)
(7)

where numi is the i-th chaotic sequence number, and mod is the remainder operation.
The expression for IPOA population initialization is as follows:

Xij = lj + (uj − lj)× numij (8)

where numij is the value of the chaotic sequence generated via circle mapping on the
dimension of the corresponding pelican individual.
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generation, (c) logistic mapping generation, (d) circle mapping generation.

3.1.2. Reverse Learning Strategy for Dimensional-by-Dimensional Lens Imaging

Two methods are mainly used to solve the local optimum problem: (1) maintaining the
current optimal position and expanding the search area and (2) abandoning the current opti-
mal position and searching in a new area. In this study, the first method was used, inspired
by lens imaging [36], and the reverse learning strategy for dimensional-by-dimensional
lens imaging was used to facilitate the POA in escaping from the local optimal region.
Figure 2 illustrates the schematic of the reverse learning strategy for lens imaging [36].

For a space with a search range of [aj, bj] for feasible solutions, the position of the

optimal individual X j
best in the j-th dimension represents the projection of an object p with

a height of h on the x-axis. A convex lens is placed at base point o. An object p creates an
inverted real image p’ with height h’ on the other side of the convex lens. At this point, the
projection of p’ on the x-axis is represented as X′ jbest. The following expression is based on
the principle of lens imaging:

(aj + bj)/2− X j
best

X′ jbest − (aj + bj)/2
=

h
h′

(9)
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Let h/h′ = n. Accordingly, Equation (9) can be transformed as follows:

X′ jbest =
(aj + bj)

2
+

(aj + bj)

2n
−

X j
best
n

(10)

When n = 1, we obtain the following:

X′ jbest = (aj + bj)− X j
best (11)

As observed in Equation (11), when n = 1, a fixed reverse solution is obtained. Thus,
the dynamically varying inverse solution is obtained by adjusting the value of n. First,
the optimal individual position of the pelican is updated using the proposed optimization
strategy, mapping the positions of each dimension into space to obtain the reverse position.
Next, the previous position’s fitness value is compared with the fitness value after reverse
learning. If the fitness value after reverse learning is better than that of the previous
position, the reverse position is selected to replace the previous position. Otherwise, the
original position is retained for the next generation. The reverse learning strategy for
dimensional-by-dimensional lens imaging not only avoids interference between different
dimensions but also expands the search range of the algorithm.
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3.1.3. IPOA Algorithm Performance Experiment

To verify the optimization performance of IPOA, the swarm intelligence algorithms
in the literature [17–21] were compared with IPOA. Multiple benchmark functions were
used for testing. The benchmark test function parameters are presented in Table 1. During
the testing process, for all the algorithms, the limit for the number of iterations was 100,
the initial population was set as 30, and the search space dimension of the population was
30. To avoid the randomness of the experiment, each algorithm was run independently
30 times for each benchmark function. The results of 30 experiments were counted, and
the average value Avg and the total number of times to reach the target optimal value MR
(the target optimum value was set to 10−6) were calculated. The smaller the value of Avg,
the stronger the ability of the optimization algorithm to approximate the optimal solution
and the greater the probability of reaching the global optimum. The larger the value of MR,
the higher the optimization accuracy; moreover, convergence speeds become faster, and
the optimization algorithm exhibits stronger reliability. The iterative curves of different
optimization algorithms under single mode and multimodal benchmark test functions are
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displayed in Figures 3 and 4, respectively. The experimental results of different optimization
algorithms are shown in Table 2.
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Table 1. Benchmarking function parameters.

Benchmark Function Expression Dimension Value Range Optimal Solution

F1 =
n
∑

i=1

(
i

∑
j=1

xj

)2
30 [−100,100] 0

F2 = max
i
{| xi|, 1 ≤ i ≤ n } 30 [−100,100] 0

F3 =
n
∑

i=1

[
x2

i − 10cos(2πxi) + 10
] 30 [−5.12,5.12] 0

F4 = −20exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
+ 20 + e− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
30 [−32,32] 0

Table 2. Comparison of the test results of different optimization algorithms.

Function Statistic DS GOA MPA PSO AOA POA IPOA

F1
Avg 5.9020 × 104 5.2200 × 103 1.5787 × 102 1.5218 × 103 1.0680 × 10−10 5.5570 × 10−17 0
MR 0 0 0 0 53 51 97

F2
Avg 5.9990 × 101 1.9120 × 101 3.9619 × 10−1 5.4721 × 100 7.8481 × 10−7 1.0567 × 10−10 0
MR 0 0 0 0 21 32 97

F3
Avg 1.9642 × 102 1.4376 × 102 1.7388 × 101 2.8763 × 102 3.4106 × 10−13 0 0
MR 0 0 0 0 61 49 98

F4
Avg 9.7789 × 100 1.1971 × 101 8.5541 × 10−2 5.6286 × 100 1.9966 × 101 1.1888 × 10−10 8.8817 × 10−16

MR 0 0 0 0 0 28 97
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The above chart clearly shows the test results of different optimization algorithms. As
observed in Figures 3 and 4 and Table 2, IPOA converged stably to the optimal solution
for single-mode benchmark test functions F1 and F2. It exhibited a better convergence rate,
optimization accuracy, and stability compared to the optimization algorithm proposed
in the literature [17–21]. For multimodal benchmark test functions F3 and F4, IPOA also
converged stably to the optimal solution. By employing a reverse learning strategy to
avoid falling into local optima in the later stages, the optimization effect was significantly
improved. In summary, IPOA exhibits strong stability and robustness.

3.2. Optimization of IPOA-VMD Parameters
3.2.1. Envelope Spectral Entropy (ESE)

To optimize the core parameters of VMD in IPOA, an appropriate fitness function
must be constructed. We introduced the concept of entropy to ensure rational parameter
selection. Entropy is an indicator used to reflect the sparsity characteristics of a signal. A
smaller entropy value indicates that the sequence contains more meaningful information
and is smoother [37]. Among information entropy metrics, envelope spectral entropy (ESE)
has the characteristics of simple calculation and fewer parameter inputs [38]. Therefore,
in this paper, ESE was employed as the fitness function for the IPOA-VMD optimization
model. The expression for ESE is as follows:

Ep = −
N
∑

i=1
ε(i)lgε(i)

ε(i) = a(i)
N
∑

i=1
a(i)

(12)

where a(i) is the envelope signal of the original signal after Hilbert demodulation, the length
of the signal can be denoted as N, and ε(i) is the normalized form of a(i).

3.2.2. IPOA-VMD Optimization Flow

The flow of IPOA for optimizing the core parameters of VMD is illustrated in Figure 5.
The concrete steps can be outlined as follows:
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Step 1: The maximum number of iterations, spatial dimensions, population size,
decomposition layers, and the penalty factor for IPOA are set, and the circle mapping
strategy is used to initialize the population’s position.

Step 2: The VMD decomposition of the original signal yields several IMF components.
The ESE value is calculated for each IMF component, and the fitness function for global
exploration is determined by selecting the component with the lowest ESE value.

Step 3: After each round of iteration, the ESE value corresponding to each set of
parameter combinations is calculated and compared with the current ESE value. If it is less
than the current ESE value, the current ESE value will be renewed.

Step 4: Whether the iteration’s stop condition has been reached is determined. If
the maximum number of iterations is not reached, let t = t + 1. In addition, the pelican
population position updated in the previous iteration is used as the initial population
position in the next round. Steps 1–5 are repeated until the iteration condition is reached.

Step 5: When the loop iteration ends, the optimal parameter combination will
be outputted.
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3.3. Component Screening and MOMEDA Algorithm
3.3.1. Component Screening

Selecting the optimal component from multiple IMF components is important for
accurately extracting fault features. Metrics such as kurtosis, correlation coefficient, and
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sample entropy are generally used to screen valid components [18]. However, a single
screening metric is susceptible to noise interference, resulting in the misidentification of
valid components [39].

The Gini coefficient is an index used for measuring the sparsity of a sequence [40], and
it has been used in the fault diagnosis of rolling bearings due to its high stability against
noise disturbances [41,42]. To better screen the effective components, in this study, the
squared envelope Gini coefficient (SEGI) was used. The value of SEGI is between 0 and
1; the closer it is to 1, the better the balance of the sequence. The expression for SEGI is
as follows:

SEGI = 1− 2
N

∑
n=1

SE(n)

‖ SE ‖1
(

N − n + 0.5
N

) (13)

SE = [SE(1), SE(2), . . . , SE(i), . . . SE(N)] (SE(1) ≤ SE(2) ≤ SE(i) ≤ SE(N)) (14)

where SE represents the squared envelope of the original signal, and ‖ SE ‖1 is the L1
paradigm of the SE.

Kurtosis is sensitive to shock signals and is a good indicator for detecting periodic
shocks. The expression for kurtosis can be described as follows:

K =
1
N

N

∑
i=1

(
x− xi

σ
)

4
(15)

where x is the expected value, the value of N represents the total number of signal points,
and σ denotes the standard deviation.

To utilize the advantages of these two indicators, we proposed a screening criterion
called K-SEGI. Due to the different dimensions and value ranges of these two indicators, it
is necessary to standardize their amplitudes. First, the amplitude is normalized. Next, the
normalized amplitude is exponentially increased based on a base of 2, and the resulting
value is used as the final amplitude. The calculation formula for the K-SEGI screening
criterion is as follows:

K− SEGI = (K′·SEGI′)max (16)

where K’ and SEGI’ are the amplitudes of the two indicators after normalization.

3.3.2. MOMEDA Algorithm

MOMEDA is a weak signal enhancement method and is a non-iterative deconvolution
process for obtaining optimal finite impulse response (FIR) filters [25]. Assuming that the
original vibration signal is x, the following expression holds:

x = h ∗ y + e (17)

where y is the periodic shock signal, h is the transfer function, e is the ambient noise, and *
denotes the convolution operation.

MOMEDA recovers the periodic impulse signal y by searching for the optimal FIR
filter. The process of solving the optimal filter can be translated into finding the maximum
value of the multipoint D-paradigm number (MDN):

MDN(y, t) =
1
‖t‖

tTy
‖y‖ (18)

where fault period T can be defined as the ratio between the sampling frequency and the
eigenfrequency of the fault, and t represents the target vector that signifies the position and
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weight of the deconvolution target shock signal. When MDN reaches the maximum value,
the following expression holds:

max MDN(y, t) = max
f

tTy
‖y‖ (19)

By taking the derivative of Equation (19) and setting it to 0, the optimal filter for
MOMEDA can be obtained as follows:

d
d f

(
tTy
‖y‖

)
=

d
d f

(
t1y1

‖y‖

)
+ · · ·+ d

d f

(
tN−LyN−L

‖y‖

)
(20)

In addition,

d
d f

(
tiyi
‖y‖

)
= ti Mi‖y‖−1 − ‖y‖−3tiyiX0y , Mi =

xi+L−1
...

xi

 (21)

Substituting Equation (21) into Equation (20) yields

d
d f

(
tTy
‖y‖

)
= (t1M1 + t2M2 + · · ·+ tN−L MN−L)‖y‖−1 − ‖y‖−3tTyX0y (22)

Let t1M1 + t2M2 + · · ·+ tN−L MN−L = X0t, and collation is carried out to obtain

(X0t)‖y‖−1 − ‖y‖−3tTyX0y = 0 (23)

Because y = X0
T f and assuming (X0X0

T)
−1 exists, we obtain

tTy

‖y‖2 = (X0X0
T)
−1

X0t (24)

In summary, the optimal filter of MOMEDA can be expressed as follows:

f = (X0X0
T)
−1

X0t (25)

Features extraction using only MOMEDA is less effective due to the interference of
strong background noise. To address this problem, TEO [43] is used to demodulate and
analyze the optimal deconvolution signal obtained after MOMEDA processing to further
suppress the interference of noise in order to accurately extract fault characteristics.

3.4. Fault Feature Extraction Method Process

The method for extracting fault features is outlined in Figure 6. The method consists
of the following steps:

Step 1: VMD core parameters are optimized using IPOA, and the original fault signal
is adaptively decomposed.

Step 2: The K-SEGI value for each IMF component after signal decomposition is
calculated.

Step 3: The modal component with the highest K-SEGI value is chosen as the optimal
IMF component.

Step 4: The optimal modal component is further denoised using MOMEDA to obtain
the optimal deconvolution signal.

Step 5: The optimal deconvolution signal is analyzed using TEO demodulation to
extract the bearing’s fault features.
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4. Experimental Study
4.1. Simulated Signal Analysis
4.1.1. Establishment of Simulation Signals

We construct a generated set of periodic pulse signals, and Gaussian white noise is
added. The simulated signal can be formulated in the following manner:

y(t) = h(t) + n(t)
h(t) = ∑i Aix(t− iT)
x(t) = e−αtsin(2π fnt)
Ai = 1 + A0sin(2π frt)

(26)

where n(t) represents the Gaussian white noise signal, y(t) denotes the simulated signal
for bearing faults, h(t) represents the periodic shock signal, t represents the sampling
time, T represents the repetition period, A0 represents the displacement constant, α rep-
resents the attenuation constant, fr is the rotation frequency of the bearing, and fn is the
intrinsic frequency.

For A0 = 0.01, α = 700, and t = 0.2 s, the number of sampling points is 2400, intrinsic
frequency is fn = 4 kHz, bearing rotation frequency is fr = 30 Hz, repetition period is
T = 0.0067 s, characteristic frequency of the bearing’s failure is fi = 149.25 Hz, and sampling
frequency is fs = 12 kHz. Figure 7 illustrates the basic characteristics of the periodic
shock signal.

To create a simulation of high background noise environments, Gaussian white noise
with a signal-to-noise ratio (SNR) of −15 dB was introduced to the periodic shock signal.
Figure 8 displays the basic characteristics of the simulated signal. As depicted in Figure 8a,
the characteristics of the periodic shock signal are heavily contaminated by Gaussian white
noise signals. Furthermore, as depicted in Figure 8b, noise submerged the characteristic
frequency and its octave in the simulated signal, making it impossible to extract fault
features from the simulated signal.
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4.1.2. IPOA-VMD Signal Decomposition

The adaptive decomposition of the simulated signal was performed using IPOA-VMD.
The initialization parameters for IPOA are presented in Table 3. The optimization iteration
curve of IPOA-VMD is shown in Figure 9.

As illustrated in Figure 9, the ESE value decreased with the increase in the number of
iterations during the optimization process, and the minimum ESE value occurred in the 15th
generation, after which the minimum ESE value remained constant. When the loop iteration
ended, the optimal combination of parameters was [4, 19,219]. The VMD decomposition
of the simulated signal by using the optimal parameter combinations yielded four IMF
components. The waveforms of these components are displayed in Figure 10a,b, both in
the time and frequency domains.
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Table 3. IPOA initialization parameters (simulated signal).

Parameter Name Specific Value

population size 80

spatial dimension 2

number of iterations 30

penalty factor range [100, 20,000]

range of values of decomposition layers [2, 15]

As illustrated in Figure 10b, the simulated signals were distributed in different fre-
quency bands after the adaptive decomposition of IPOA-VMD, effectively avoiding the
boundary effects and modal aliasing phenomena. To accurately select the optimal modal
components from each IMF component, the evaluation parameters of each IMF component
were calculated and are presented in Table 4. As evident from Table 4, the K-SEGI value of
IMF1 was the largest, indicating that this component contained more shock components
and less noise content; thus, it was selected as the optimal modal component. The kurtosis
index selected IMF1 as the optimal modal component, while the SEGI index selected IMF4
as the optimal modal component. This indicated that a single screening indicator can easily
lead to the misidentification of the optimal modal component, which proved the superiority
of the comprehensive screening indicator proposed in this paper.

Table 4. Evaluation parameters of each IMF component (simulated signal).

Index IMF1 IMF2 IMF3 IMF4

Kurtosis 3.9309 2.7432 2.6481 3.3938

SEGI 0.5552 0.4590 0.4551 0.5636

K-SEGI 3.7923 1.0787 1.0000 2.9924
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4.1.3. Fault Feature Extraction

IMF1 was further denoised using MOMEDA by setting the period of deconvolution
as T = fs/fr = 80 and the filter length as L = 700. The optimal deconvolution signal time-
domain waveform of IMF1 after MOMEDA processing is shown in Figure 11, and the
results obtained via demodulation analysis using TEO are displayed in Figure 12. As
observed in Figure 11, the periodic shock component of the simulated signal was very
obvious, and the noise reduction effect was good.
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The results analyzed for IMF1 using only TEO demodulation are depicted in
Figure 13a, and the results processed using only MOMEDA are depicted in Figure 13b.
By comparing Figures 12 and 13, it can be observed that the analyses of the signal using
only TEO demodulation and processing using only MOMEDA are not satisfactory, the
fault characteristics are not obvious, and the peaks are not prominent. This suggested
that using TEO or MOMEDA alone did not accurately extract the fault features, and the
characteristic frequency is still disturbed by a small amount of noise. In contrast, the fault
characteristics frequency of IMF1 obtained via demodulation analysis using MOMEDA
combined with TEO were extremely obvious, and peak fi and its octave were very promi-
nent, corresponding to fi–6fi. Therefore, the proposed method enables the precise extraction
of fault characteristics.
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4.1.4. Signal Processing Performance of the Proposed Method

In order to prove the reliability of the method proposed in this paper, experiments
were conducted by adding noise signals with an SNR of −16 dB, −17 dB, and −18 dB to
the pure signal. According to the calculation formula of SNR, the noise power in the above
four (including the noise signal with SNR of −15 dB) simulated signals was 31.6 times,
39.8 times, 50.1 times, and 63.1 times the signal power, respectively. Figure 14 shows the
spectrum of the components of each simulated signal after IPOA-VMD decomposition,
and Figure 15 shows the TEO spectrum of the optimal IMF of each simulated signal after
MOMEDA processing. As observed in Figure 14, the IMFs are distributed in different
frequency bands without mode aliasing.
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As observed in Figure 15, the peaks of fault characteristic frequency and its octave are
extremely prominent. This proved the reliability of the proposed method in this paper at
different SNR levels. During the experiment, when a noise signal with an SNR of −20 dB
was added to the pure signal (the noise power was 100 times the signal power), it was
observed that the signal processing time was too long and always exceeded the limit value
of the preset parameters. This indicated that the limits of the signal processing method
proposed in this paper were about to be reached.

4.2. Measured Signal Analysis

The experimental data were obtained from the vibration acceleration signal collected
by a university in the US on the rolling bearing fault experimental platform [44]. Figure 16
illustrates the schematic of the experimental platform. The basic parameters of the bearing
are presented in Table 5 [44]. In this paper, the fault data of the inner race of the bearing at
the driving end of four kinds of motors with different actual load power (0 kW, 0.735 kW,
1.47 kW, and 2.205 kW) are selected for experimental analyses. The motor load is generally
measured using percentages, which are calculated as the ratio of the actual load power to
the rated power of the motor multiplied by 100%. The number of sample points is 2400,
the sampling frequency fs2 is 12 kHz, and the rated power of the motor is 1.47 kW. Table 4
lists the parameters, such as the speed, diameter, and motor load of the bearings. The
motor rotation frequency fr and the characteristic frequency fi of the inner race fault were
calculated as follows: {

fi = 0.5Z(1 + d
D cosβ) fr

fr =
n
60

(27)

where D represents the pitch diameter of the bear’ng’s raceway, Z represents the number
of balls, d represents the diameter of the ball, β represents the contact angle of the bearing,
and n represents the motor’s speed.
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Table 5. Rolling bearing dataset.

Fault Condition Fault Diameter(mm) Motor Load (%) Motor Speed (r/min)

Inner race fault 0.3556

0 1797

50 1772

100 1750

150 1730

Based on the parameters presented in Table 6, when the motor load was 0% (indicating
that the motor was in a no-load state), the fault characteristic frequency was calculated
using fi2 = 162.19 Hz in Equation (27), and the motor rotational frequency was calculated
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as fr2 = 29.95 Hz. To create a simulation of a high background noise environment, Gaussian
white noise with a signal-to-noise ratio (SNR) of −6 dB was introduced to the actual signal.
Figure 17 displays the basic characteristics of the inner ring fault signal.

Table 6. Fundamental characteristics of the rolling bearing.

Bearing Model Rolling
Diameter Pitch Diameter Number of

Balls Contact Angle

SKF6205-2RS 7.94 mm 39.04 mm 9 0◦

The adaptive decomposition of inner-ring bearing fault signals was performed using
IPOA-VMD. The initialization parameters for IPOA are presented in Table 7. The IPOA-
VMD optimization search iteration curve is displayed in Figure 18.
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Table 7. IPOA initialization parameters.

Parameter Name Specific Value

population size 80

spatial dimension 2

number of iterations 30

penalty factor range [100, 20,000]

range of values of decomposition layers [2, 15]

As observed in Figure 18, the minimum ESE value occurred in the 11th generation,
after which the minimum ESE value remained constant. When the loop iteration ended,
the optimal combination of parameters was [3, 2536]. We applied the optimal parameter
combination to perform VMD decomposition on the inner ring fault signal, and three
modal components were obtained. The waveforms of these components are displayed in
Figure 19a,b, both in the time and frequency domains.
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Figure 19. Time- and frequency-domain waveforms of each IMF component after IPOA-VMD
decomposition (actual signal): (a) time domain and (b) frequency domain.

The evaluation parameters of each IMF component are presented in Table 8. As
evident from Table 8, the K-SEGI value of IMF2 was the largest. Thus, IMF2 was selected as
the optimal modal component. As observed in Figure 19a, the fault shock characteristics
of IMF2 were more obvious; however, a small amount of noise interference remained.
Thus, MOMEDA was used for further noise reduction in IMF2 by setting the period of
deconvolution as T = fs2/fr2 = 73.99 and filter length as L = 700. The optimal deconvolution
signal time-domain waveform of IMF2 after MOMEDA processing is shown in Figure 20,
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and the results obtained via performing demodulation analysis using TEO are shown in
Figure 21.
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Table 8. Evaluation parameters of each IMF component (actual signal).

Index IMF1 IMF2 IMF3

Kurtosis 2.8668 9.0051 5.3069

SEGI 0.4953 0.6656 0.6294

K-SEGI 1.0000 4.0000 2.2734
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To further illustrate the effectiveness of the method proposed in this paper, the rolling
bearing inner ring fault data with motor loads of 50%, 100%, and 150% were selected
for experiments. According to Equation (27), when the motor load is 50%, the fault
characteristic frequency fi3 is 159.91 Hz, and the rotation frequency fr3 is 29.53 Hz. When
the motor load is 100%, the fault characteristic frequency fi4 is 157.96 Hz, and the rotation
frequency fr4 is 29.17 Hz. When the motor load is 150%, the fault characteristic frequency fi5
is 156.12 Hz, and the rotation frequency fr5 is 28.83 Hz. According to the above fault feature
extraction process, Gaussian white noise with an SNR of −6 dB was added to the inner race
signals of rolling bearings under different loads, and the parameters of the decomposition
algorithm were consistent with those shown in Table 7. Figure 22 displays the time-domain
waveforms and TEO spectrum of each optimal IMF after MOMEDA processing.
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Figure 22. Time-domain waveforms and TEO spectrum of each optimal IMF of the fault signal under
different loads after processing via MOMEDA: (a) motor load is 50%, (b) motor load is 100%, and
(c) motor load is 150%.

As observed in Figure 22, when the motor load is 50%, the actual frequency of fault
characteristics is 159.42 Hz. When the motor load is 100%, the actual frequency of fault
characteristics is 157.52 Hz. When the motor load is 150%, the actual frequency of fault
characteristics is 156.21 Hz. They are all very close to the theoretically calculated frequency,
and the peak and octave frequencies are extremely prominent. This showed that the
algorithm proposed in this paper can accurately extract the characteristics of the inner
race fault signal under different motor load conditions. This proved the effectiveness and
reliability of the proposed method.

4.3. Comparative Analysis of Different Feature Extraction Methods

To substantiate the excellence of the proposed method in fault feature extraction in the
presence of strong background noise interference, the EEMD algorithm, fixed-parameter
VMD algorithm (FP-VMD), and empirical wavelet decomposition–independent component
analysis (EWT-ICA) algorithm were compared with the proposed method in this paper.
The penalty factor in the FP-VMD algorithm was 20,000, and the number of decomposition
layers was eight. The EWT-ICA algorithm first performed an EWT decomposition of the
signal. Then, several IMF components were selected as observation signals for the ICA
algorithm based on the screening index, and other IMF components were used as virtual
noise channel signals for the algorithm. Finally, the obtained source signals were enveloped
and demodulated to extract the fault features. To increase the credibility of the experiment,
the actual signals and screening metrics selected are consistent with this paper. Figure 23
shows the optimal IMF envelope spectra obtained using the EEMD algorithm for rolling
bearing inner race fault signals under different loads. Figure 24 shows the optimal IMF
envelope spectrum obtained using the FP-VMD algorithm for rolling bearing inner race
fault signals under different loads. Figure 25 shows the optimal source signal envelope
spectrum obtained using the EWT-ICA algorithm for rolling bearing inner race fault signals
under different loads.
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Figure 23. Optimal IMF envelope spectra of rolling bearing inner race fault signals obtained using
the EEMD algorithm under different loads: (a) motor load is 0%, (b) motor load is 50%, (c) motor
load is 100%, and (d) motor load is 150%.
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ures 21 and 22, the actual characteristic frequency of the inner race fault approached the 
theoretical value in an extreme manner, and the fault characteristics were very obvious, 
enabling the accurate extraction of the characteristic frequency and its multiplicative fre-
quency. The above results indicated that the EEMD, FP-VMD, and EWT-ICA algorithms 
cannot fully extract fault features in strong background noise environments, thus fully 
demonstrating the superiority of the method proposed in this paper. 
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As observed in Figures 23–25, the EEMD, PF-VMD, and EWT-ICA algorithms were
only able to extract the rotational frequency of the motor for the signals of the inner
race of the rolling bearing under different loads, and the characteristic frequency and its
multiplicative frequency were swamped by noise. In addition, the EEMD algorithm was
only able to extract the rotational frequency of the motor when there was no load. but all
the other characteristic frequencies are submerged by noise. In contrast, as observed in
Figures 21 and 22, the actual characteristic frequency of the inner race fault approached
the theoretical value in an extreme manner, and the fault characteristics were very obvious,
enabling the accurate extraction of the characteristic frequency and its multiplicative
frequency. The above results indicated that the EEMD, FP-VMD, and EWT-ICA algorithms
cannot fully extract fault features in strong background noise environments, thus fully
demonstrating the superiority of the method proposed in this paper.

5. Conclusions

We combine the improved POA-VMD with MOMEDA-TEO to research the rolling
bearing fault feature extraction method in the presence of strong background noise envi-
ronments. The main conclusions of this paper are as follows:

(1) The POA is improved to form the IPOA using circle mapping and reverse lens imaging
learning strategies, and the IPOA is used to optimize the penalty factor and the
number of modal layers in the VMD algorithm to adaptively obtain the optimal
parameter combination. This method overcomes the over-decomposition of the signal
and modal aliasing problems caused by the improper setting of parameters based on
human experience and subjectivity.

(2) Based on the advantages of SEGI and kurtosis screening metrics, a new optimal
modal component screening metric of K-SEGI is proposed. It can effectively screen
the components with the most periodic shocks and the most stable components while
avoiding the mis-selection problem of the optimal component caused by using a
single screening metric of SEGI and kurtosis.

(3) After the preliminary noise reduction in the original signal using the IPOA-VMD
decomposition algorithm, the optimal IMF component is further denoised by using
MOMEDA, and the impact signal is highlighted better using TEO demodulation
analyses. We conducted fault extraction experiments using simulated signals and four
measured signals of inner race fault under different loads. The experimental results
show that the proposed method can accurately extract the fault frequency and its
octave. In addition, compared with EEMD, FP-VMD, and EWT-ICA feature extraction
algorithms, the proposed method exhibits obvious advantages with respect to fault
feature extraction in strong background noise environments.
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