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Abstract: None-Line-of-Sight (NLOS) propagation of Ultra-Wideband (UWB) signals leads to a
decrease in the reliability of positioning accuracy. Therefore, it is essential to identify the channel
environment prior to localization to preserve the high-accuracy Line-of-Sight (LOS) ranging results
and correct or reject the NLOS ranging results with positive bias. Aiming at the problem of the low
accuracy and poor generalization ability of NLOS/LOS identification methods based on Channel
Impulse Response (CIR) at present, the multilayer Convolutional Neural Networks (CNN) combined
with Channel Attention Module (CAM) for NLOS/LOS identification method is proposed. Firstly,
the CAM is embedded in the multilayer CNN to extract the time-domain data features of the original
CIR. Then, the global average pooling layer is used to replace the fully connected layer for feature
integration and classification output. In addition, the public dataset from the European Horizon 2020
Programme project eWINE is used to perform comparative experiments with different structural
models and different identification methods. The results show that the proposed CNN-CAM model
has a LOS recall of 92.29%, NLOS recall of 87.71%, accuracy of 90.00%, and F1-score of 90.22%.
Compared with the current relatively advanced technology, it has better performance advantages.

Keywords: UWB; NLOS/LOS identification; CNN; CAM; CIR

1. Introduction

With the rapid development of Internet of Things (IoT) technology, intelligent mobile
terminal technology, and mobile computing technology, the demand for indoor location
services in many industries is getting higher, and the demand for real-time positioning
of personnel is becoming more urgent [1,2]. Ultra-wideband (UWB) technology stands
out among wireless positioning technologies because of its low power consumption, high-
ranging accuracy, high temporal resolution, strong anti-interference capability, etc. [3].
Nevertheless, it is limited by multi-user interference, clock drift, frequency drift, and Non-
Line-of-Sight (NLOS) propagation in practical application scenarios [4]. Signal propagation
in the NLOS state is affected by obstacles that increase the arrival time, thus causing a
positive bias in the distance measurement. It is considered to be one of the main challenges
faced by high-precision positioning systems. Therefore, NLOS and Line-of-Sight (LOS)
identification before positioning is critical [5].

NLOS/LOS identification methods can be divided into three categories: distance-
based estimation methods, position-based estimation methods, and CIR-based estimation
methods. The distance-based estimation method performs NLOS and LOS identification by
detecting the variance of multiple distance measurements at a given location or by detecting
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whether the current distance measurement conforms to a specified distribution [6]. The
method is relatively simple, but it is limited by the distribution function or time delay. The
position-based estimation method performs NLOS/LOS identification during the position-
solving process or after the position computation is completed. NLOS can be identified by
comparing the position estimates generated using different subsets of the distance estimates
when redundant ranging information is present. However, this method is ineffective in the
absence of redundant ranging information [7]. If additional environmental information,
such as maps, geometric relationships, and path continuity, existed, NLOS identification can
be performed using position constraint analysis after the position calculation is completed.
However, the disadvantages of external information sources can limit the system’s stability
and increase complexity. Over time, CIR-based estimation methods have received extensive
attention from scholars [8–10]. CIR reflects the fluctuation and fading of the signal in the
channel environment, so the channel parameters of CIR are combined with joint likelihood
function [11], machine learning [12], threshold comparison [13], and deep learning [14–16]
to identify NLOS/LOS.

In this paper, a novel method for NLOS/LOS identification based on CIR combined
with deep learning is proposed. This method aims to improve NLOS/LOS identification
accuracy and reduce computational complexity. Our main contributions are summarized
as follows:

1. A multilayer Convolutional Neural Network (CNN) combined with a Channel At-
tention Module (CAM) for the NLOS/LOS identification method is proposed. The
method takes the One-dimensional CIR signal as input, uses three groups of convolu-
tion modules (Convolution + BN + ReLU + Max-pooling) and CAM for self-extraction
of key features, and the global average pooling layer is used to replace the fully
connected layer for feature integration and classification output, which achieves
NLOS/LOS identification.

2. Two schemes are proposed on how to determine the specific structure of the CNN-
CAM network and how to determine the optimal parameters. In the first scheme, the
proposed CNN-CAM model is compared with CNN and CNN-CAM models with
different structures, and it aims to select the optimal model structure for NLOS/LOS
identification. In the second scheme, the effect of different learning rates and batches
on the identification accuracy is compared experimentally for the proposed model,
and it aims to determine the optimal parameters of the model.

3. A scheme on how to verify the superiority of the proposed CNN-CAM method is
offered. Firstly, the public dataset of the European Horizon 2020 program project
eWINE is visualized and analyzed to illustrate the feasibility of using this dataset
for experiments. Then, comparative experiments of several machine learning and
deep learning identification methods are conducted using the dataset to validate the
state-of-the-art of the proposed CNN-CAM method.

The rest of the paper is organized as follows. Section 2 introduces the related work of
other scholars in the field of CIR-based NLOS/LOS identification. Section 3 analyzes the
key problems of NLOS/LOS and the performance of CIR in the NLOS/LOS environment.
They provide new ideas for the design of the proposed model. Section 4 describes the
details of the proposed NLOS/LOS identification method based on CNN-CAM. Section 5
performs a series of visualizations on the CIR dataset and designs various experiments to
evaluate the performance of the proposed method. Section 6 summarizes the article and
discusses the advantages and limitations of this approach and future work.

2. Related Work

As mentioned in Section 1, NLOS/LOS identification methods are classified into three
categories. Among them, CIR-based NLOS/LOS identification methods have received
extensive attention from scholars. In this paper, we focus on this class of methods.

The channel parameters proposed in the existing literature mainly include kurtosis,
skewness, maximum amplitude, peak time, rise time, total energy, mean excess delay, root-
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mean-square (RMS) delay spread, saturation, peak-to-average ratio, received signal power,
energy steep rise amplitude, false crests number, first path error, first path distance error,
etc. [9,10]. Ref. [11] proposed a method to identify NLOS and LOS using three-channel
parameters, kurtosis, RMS delay spread, and mean excess delay, as statistical information
and by building a likelihood function. Marano et al. extracted six channel parameters
from CIR waveforms, including kurtosis, received signal power, maximum amplitude, rise
time, mean excess delay, and RMS delay spread, then used Least Squares Support Vector
Machine (LS-SVM) for NLOS and LOS identification [12]. However, the method does not
consider the correlation between channel parameters. Li et al. proposed a new method
that takes the sum of peak time and rise time as a new channel parameter and combines it
with the number of undetected peaks [13]. The method has a high identification accuracy
when the threshold is selected appropriately, but it is prone to identification errors when
the peak time and rise time differ significantly from the expected or when the threshold is
selected incorrectly. NLOS/LOS identification is essentially a binary classification problem.
Additionally, the above methods need to manually extract the channel parameters of
the CIR for NLOS/LOS identification, which can lead to a system whose reliability and
robustness cannot be guaranteed.

In recent years, with the rapid development of deep neural networks, NLOS/LOS
identification methods based on deep learning have received extensive attention from
scholars. This method uses CIR data as system input and accomplishes feature extraction
employing model self-learning. Jiang et al. used invertible transform for denoising the
CIR dataset (European Horizon 2020 Programme project eWINE) and used CNN models
to identify NLOS. The identification accuracy of the method is up to 81.68% [14]. Jiang
et al. trained and tested the Convolutional Neural Network and Long Short-Term Memory
(CNN-LSTM) model using the CIR dataset (European Horizon 2020 Programme project
eWINE) as input. The method achieves an identification rate of up to 82.14% [15]. Li et al.
proposed a method that takes the real and imaginary parts of the original CIR and its
Fourier transform as inputs and utilizes a three-channel Convolutional Neural Network
and Bidirectional Long Short-Term Memory (CNN-BiLSTM) for identification. The article
used public datasets (European Horizon 2020 Programme project eWINE) to verify and
found that the proposed method has an identification accuracy of 85.71% and outperforms
both LSTM and CNN-LSTM [16]. Pei et al. proposed a Fully Convolution Network (FCN)
joint self-attention mechanism for NLOS/LOS identification. The method is validated using
public datasets (European Horizon 2020 Programme project eWINE), and the proposed
method is found to have the highest accuracy of about 88.24% compared to CNN, LSTM,
CNN-LSTM, FCN, and LSTM-FCN [17]. However, this method is affected by the quality
and quantity of the training datasets. Refs. [18,19] proposed a method that converts one-
dimensional CIR data into two-dimensional images and uses deep learning networks for
identification. Its accuracy is affected by image size and inefficient operation.

To address the problems in the above methods, such as manual feature extraction
leads to incomplete database content of candidate classification features, difficulty in se-
lecting appropriate thresholds in multiple scenarios, and low recognition rates of other
neural network methods. The NLOS/LOS identification method based on multilayer CNN
combined with CAM is proposed. In other terms, embedding CAM in the CNN module
reduces the redundant information generated in feature self-extraction and improves the
characterization ability of the CNN. The input layer reduces the computational complexity
by replacing the two-dimensional feature map with a one-dimensional feature map. The
traditional CNN is improved by adding a batch normalization (BN) layer and a Rectified
Linear Unit (ReLU) between the convolutional and pooling layers to speed up the con-
vergence. Moreover, a Global Average Pooling (GAP) layer is chosen instead of a fully
connected layer to reduce the training parameters and improve the model’s generalization
ability. It obtains better identification results using CNN-CAM compared with other ways.
The specific details of the proposed method are described in Section 4.
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3. Preliminaries

In this section, the variability of UWB-ranging performance in the NLOS/LOS envi-
ronment is tested. In addition, the performance of CIR is analyzed using the IEEE802.15.4a
standard channel model.

3.1. NLOS/LOS Problem Statement

In complex indoor environments, the obstacles between the transmitter and receiver
result in signal propagation through multiple paths. Among them, the LOS path means
that the signal propagates directly between the transmitter and the receiver. The NLOS
path means that the signal reaches the receiver by reflection, diffraction, and scattering.
The LOS and NLOS propagation schematic is shown in Figure 1.
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Figure 1. Schematic diagram of LOS and NLOS propagation: (a) LOS paths; (b) NLOS paths.

It can be seen from Figure 1a that the direct physical link between devices is not
obscured in the LOS environment. The distance between the devices can be accurately
estimated using the propagation time of the UWB direct path signal. It can be seen from
Figure 1b that the direct physical link is obscured, causing the direct path signal to be
curtailed and not accurately received. The UWB signals are affected by reflection, refraction,
and scattering from obstacles during propagation, resulting in the additional distance. In
this case, there is a delay in signal arrival time, which leads to reduced ranging accuracy.

UWB-based Indoor Positioning System (IPS) uses distance information from different
channels to calculate positioning results. To test the variability of UWB ranging performance
in LOS and NLOS environments, ranging experiments were conducted in LOS/NLOS
environments. The ranging error results for the LOS and NLOS environments are provided
in Tables 1 and 2, respectively. The bar graph of ranging error at different distances in
LOS/NLOS environments is shown in Figure 2. In addition, the mean and standard
deviation of the ranging errors for each reference distance in both the LOS and NLOS
environments are the result of calculations using 192 data.

Table 1. LOS environment ranging error.

Reference Distance (m) Mean of Ranging Error (m) Standard Deviation of Ranging Error (m)

1.0000 0.0790 0.0253
2.0000 0.0954 0.0232
3.0000 0.0959 0.0306
4.0000 0.0653 0.0270
5.0000 0.1040 0.0343
6.0000 0.0604 0.0305
7.0000 0.1198 0.0497
8.0000 0.0351 0.0289
9.0000 0.0377 0.0322
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Table 2. NLOS environment ranging error.

Reference Distance (m) Mean of Ranging Error (m) Standard Deviation of Ranging Error (m)

1.8023 0.1186 0.0275
2.5000 0.2348 0.0318
3.3541 0.5747 0.2456
4.272 0.3476 0.1922

5.2202 0.9203 0.6075
6.1847 2.0852 0.2191
7.159 1.9741 0.0469

8.1394 3.1719 0.3178
9.1241 2.7760 0.2898
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Tables 1 and 2 and Figure 2 show that the range error between the anchor node and the
target node in the LOS environment is not large, and its mean and standard deviation of the
range error do not exceed 0.1198 m and 0.0497 m, respectively. However, the mean value
of the range error in the NLOS environment is not less than 0.3476 m, and the standard
deviation of the range error is not less than 0.0318 m. Therefore, it is necessary to perform
NLOS identification before positioning to achieve better positioning results.

3.2. CIR Performance Analysis

The CIR is the sum of the received pulses obtained by evaluating the correlation
between the cumulative incoming samples and the expected lead sequence [20].

As shown in Figures 3–8 (the red lines in Figures 4–7 represent their respective mean
values), the IEEE802.15.4a standard channel model is chosen to analyze the CIR perfor-
mance in LOS and NLOS environments. Firstly, the indoor residential LOS environment
(CM1) and the indoor residential NLOS environment (CM2) are selected. Secondly, the
corresponding specific parameters are selected according to the channel environment [21].
In addition, the continuous pulse function of the channel is realized according to the spe-
cific parameters, and then the continuous pulse function is discretized. Finally, RMS delay
spread, mean excess delay, number of effective paths with a peak within 10 dB, number of
valid paths with energy greater than 85%, and average power are calculated.
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From Figure 3, it can be seen that the signal attenuation is relatively slow in the LOS
environment, and the peak value of the CIR waveform is high, which is because the signal
can reach the receiver through a direct path. However, in the NLOS environment, the signal
amplitude is relatively tiny and decays quickly due to the obstacle blockage. In the LOS
environment, the RMS delay spread, and the mean excess delay are shorter than the average
time required in the NLOS environment. In the case of the same number of channels, the
average values of the number of effective paths with peaks within 10 dB and the number of
effective paths with energy greater than 85% are smaller in the LOS environment than in
the NLOS environment. A comparison of the average power attenuation curves shows that
the NLOS environment takes longer than the LOS environment when the receiver receives
a signal with the same attenuation power.
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In summary, the performance of CIR in NLOS and LOS environments is significantly
different, so the deep learning method can directly use CIR as the input vector for NLOS
/LOS identification.

4. Method

This paper aims to build a real-time NLOS/LOS identification method with a high
recognition rate, high environmental applicability, and low computational complexity. The
CNN combined with CAM for NLOS/LOS identification method is proposed. In this
section, the related theories of CNN and CAM parts are introduced, and the proposed
CNN-CAM network architecture and identification steps are described in detail.

4.1. CNN Theory

CNN is a feed-forward neural network inspired by natural biological visual cognitive
mechanisms [22], which performs multiple convolution and pooling operations on the
input data using multiple filters to obtain high-level features inside the data [23]. The
structure of One-dimensional CNN mainly consists of convolution layers, pooling layers,
and fully connected layers.

The convolution layer performs convolutional operations by sliding convolution
kernels, and the output of these kernel filters is usually fed into the activation function to
extract features. The one-dimensional CNN formula is as in Equation (1):

yl
j = f

(
N

∑
i=1

wl
ij ∗ xl−1

i + bl
j

)
(1)

where ∗ indicates the convolution calculation; N is the number of kernel in (l − 1)th layer;
xl−1

i is the i feature mapping of the (l − 1)th layer; bl
j is the bias of the jth convolution

kernel of the lth layer; w is the weight; yl
j is the feature map representing the output of the

jth convolution of the lth layer; f (·) represents the nonlinear activation function.
The activation function can enhance the nonlinear expression ability of the model. In

this paper, we use the ReLU function, which enables neurons with sparse activation. The
expression is shown in Equation (2).

fReLU(x) = max(0, x) (2)
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To further reduce the training parameters, the pooling or subsampling operation is
often required, usually using Max-pooling or average pooling to compress the data in
the sliding region. In this paper, Max-pooling is used, and the process is represented by
Equation (3):

pl+1
i (j) = max

(j−1)ω+1≤t≤jω

{
ql

i(t)
}

(3)

where ql
i(t) is the value of the tth neuron corresponding to the ith feature; ω is the pooling

layer width; pl+1
i (j) is the (l + 1)th layer neuron value.

After alternating convolutional and pooling layers several times, the pooling layers
are flattened and connected to one or more fully connected layers to achieve classification.

4.2. Attention Mechanism

Attention mechanisms have been widely used in natural language processing, data
prediction, hydroacoustic identification, image segmentation, etc. Compared to deep
learning network architectures, the attention mechanism is a lightweight module that tunes
the network parameters by generating and assigning weights and trains the network to
focus on key information to improve accuracy [24,25]. In this paper, the CAM is added
to the CNN, and its structure is shown in Figure 9. Firstly, the input feature maps are
transformed Into two one-dimensional vectors by Global Max Pooling (GMP) and GAP,
respectively. Then, they are passed through a shared Multilayer Perceptron (MLP). Finally,
to obtain the weight values of the channels corresponding to the feature maps, the two
output terms of the MLP are summed by channel and normalized using the activation
function sigmoid.
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Figure 9. CAM structure diagram.

The corresponding theoretical Equation is (4):

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= σ

(
W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))
) (4)

where σ denotes the sigmoid function, both W0 and W1 are weights of MPL, and Fc
avg and

Fc
max are the characteristics of GAP and GMP, respectively [26].

4.3. NLOS/LOS Identification Method Based on CNN-CAM

In this section, the advantages of the fusion of both CNN and CAM are explained, the
CNN-CAM network structure is constructed, the parameters of each layer and the identifi-
cation steps are described in detail, and the performance evaluation metrics are given.

4.3.1. CNN-CAM Network Architecture

The CIR of UWB can be considered a time series, and there is a correlation between
the before and after data under LOS conditions. The data under NLOS conditions have
apparent differences. Therefore, the CNN network is introduced into the paper, which
has more advantages in learning the structural relationship between CIR data. However,
traditional CNN takes the same way to convolve each channel of the feature map. In fact,
different channels carry different importance of information, so processing each channel
in the same way will degrade the accuracy of the network. CAM is a lightweight and
universal module. It can not only assign different weights to input features to highlight
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important features and suppress useless feature responses but also integrates seamlessly
with any CNN architecture for end-to-end training. Its advantages have been validated on
different classification and detection datasets. Therefore, this paper embeds CAM in the
multilayer CNN and builds the NLOS/LOS identification system based on CNN-CAM.
The CNN-CAM network architecture is shown in Figure 10, and its specific parameters are
shown in Table 3.
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Table 3. CNN-CAM specific parameters table.

Network Composition Designation Parameter

Part 1

Sequence Input 1016 × 1 × 1
Convolution_1 (stride) 4 × 1 × 10 (2)

BN, ReLU ——
Max-pooling_1 (stride) 2 × 1 (2)
Convolution_2 (stride) 5 × 1 × 20 (2)

BN, ReLU ——
Max-pooling_2 (stride) 2 × 1 (2)
Convolution_3 (stride) 3 × 1 × 32 (2)

BN, ReLU ——
Max-pooling_3 (stride) 2 × 1 (2)

Part 2

GMP, GAP ——
Convolution_4/Convolution_6 1 × 1 × 8

BN, ReLU/BN, ReLU ——
Convolution_5/Convolution_7 1 × 1 × 32

Part 3
Convolution 1 × 1 × 128

GAP ——
Dropout 0.5

Training
Epoch 25

Learning rate 0.001
Batch size 64

As can be seen from Figure 10 and Table 3, the CNN-CAM network architecture
consists of three parts.
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The first part contains three convolution layers, and each convolution module consists
of a convolution layer, a BN layer, a ReLU function, and a Max-pooling layer. The input
vector was the CIR data with the size 1016 × 1. Moreover, the first convolution layer uses
the 4 × 1 convolution kernel with a number of 10 to perform the initial feature extraction
operation. The second convolutional layer uses the 5 × 1 convolution kernel with a number
of 20. The third convolutional layer uses the 3 × 1 convolution kernel with a number of
32 to mine deeper information from the output features of the upper layer. The stride size
of all convolution layers is 2. The sizes of the convolution kernels used in this network’s
first and second convolution layers were obtained from the literature [11,12]. In the third
convolutional layer, we have used a 3 × 1 convolution kernel. This convolution kernel
was obtained after conducting experiments on the effect of different sizes of convolutional
kernels on the identification accuracy. In the experiment, 1 × 1, 2 × 1, 3 × 1, 4 × 1, and
5 × 1 are selected as the selection list of convolution kernel size. The BN can make the
input samples become normally distributed with mean 0 and variance 1, thus solving
the problem of slow learning speed due to the scattered distribution of sample features.
Therefore, the paper adds BN layers after each convolutional layer to speed up the model
training. And chooses ReLU as the activation function after BN layers. The pooling layer
not only reduces the size of the parameter matrix but also allows filtering operations for
additional noise introduced by the CIR signal under the influence of hardware circuits,
transmission paths, NLOS receiving surfaces, and other factors. Therefore, the paper adds
a 2 × 1 Max-pooling layer with a step size of 2 after each convolution layer.

The second part adds CAM on top of the above to further enhance the feature extrac-
tion capability of the model. The Max-pooling layer in the third convolution module is used
as the input of CAM, and the GMP and GAP operations are performed, respectively. Subse-
quently, the two pooling layers sequentially perform a convolution of 1 × 1 of the number
8, the BN layer, the ReLU function, and the convolution of 1 × 1 of the number 32. Finally,
the operations of superposition, sigmoid function, and multiplication are experienced.

The third part uses a convolution layer to transform the data dimensions and a
GAP layer instead of a fully connected layer for feature integration. Finally, the softmax
activation function accomplishes the identification of NLOS/LOS.

4.3.2. NLOS/LOS Identification Process

The NLOS/LOS identification process based on CNN-CAM is shown in Figure 11.
The steps are as follows:

1. The obtained CIR data is divided into training sets, validation sets, and test sets in the
ratio of 7:2:1.

2. Train the CNN-CAM model with the training sets and validate the performance of
the trained model with the validation sets. Furthermore, the trained model is saved
when the epoch is reached.

3. The trained model is tested with test sets to obtain the final NLOS/LOS identification result.

In this paper, the order of the training set is randomly disrupted with the aim of
improving the robustness of the model. In addition, the Adam optimizer is used for each
training period, the learning rate decay period is set to 10, and the learning rate decay is
0.5 times the original.

In addition, to evaluate the performance of the proposed model, we use four metrics:
Accuracy, LOS recall, NLOS recall, and F1-score. As shown in Equations (5), (6), (7), and (8),
respectively [8,9].

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Recall-LOS =
TP

TP + FN
(6)

Recall-NLOS =
TN

TN + FP
(7)
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F1-score =
2TP

2TP + FN + FP
(8)

where TP is the number of data correctly identified as LOS, TN is the number of data cor-
rectly identified as NLOS, FN is the misjudgment data for LOS, and FP is the misjudgment
data for NLOS.
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Figure 11. NLOS/LOS identification process of CNN-CAM.

5. Results and Discussion

In this section, firstly, the dataset was briefly described and visualized. Secondly,
experiments on model parameters are designed to determine the optimal values of learn-
ing rate and batch size. Finally, to verify the advancedness and effectiveness of the
model, experiments with different structural models and different identification meth-
ods were conducted.

5.1. Visual Analysis of Datasets

The public dataset was used for experiments [27]. The data are measured in seven
indoor scenarios, including office 1, office 2, a small apartment, a small workshop, a kitchen
with a living room, a bedroom, and a boiler room. In addition, 3000 LOS and 3000 NLOS
channel measurements were collected in each scenario. Figure 12 shows the CIR sampling
points in the seven environments, and Figure 13 shows the numerical distribution of the
signal characteristic parameters in LOS and NLOS environments.
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From Figure 12, it can be seen that the CIR waveform is not clearly distinguished
in each environment, reflecting the complexity of this dataset. From Figure 13, it can be
seen that the maximum amplitude, rise time, noise standard deviation, received signal
power, kurtosis, skewness, total energy, RMS delay spread, peak time, mean excess delay,
peak-to-average ratio, the amplitude of the steep rise in energy have relatively high overlap.
And it shows that the difference between LOS and NLOS datasets is not apparent.

In summary, the dataset selected in this paper has the test conditions to verify the
proposed method.

5.2. Experiments and Results

In NLOS/LOS identification based on CNN-CAM, there are mainly three parts of
the experiment. Firstly, we conducted experiments for different sizes of learning rates
and training batches to select the appropriate parameters. In addition, we designed six
models with different structures to verify the effectiveness of adding the CAM and the
three-layer convolution module (Convolution + BN + ReLU + Max-pooling). Finally, to
verify the model’s advancedness, we compare the proposed method with the state-of-the-
art NLOS/LOS identification methods, such as the identification method of joint machine
learning of channel parameters and the identification method of other deep learning.

5.2.1. Parameter Analysis

Model parameters play an essential role in the performance of the network. Suitable
parameters not only improve the convergence speed in the training phase but also help to
achieve better classification results. Different learning rates and batch sizes were selected to
find the best value of learning rate and batch sizes for performance comparison, as shown
in Figure 14a,b.
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The learning rate refers to the magnitude of each update of the parameters. If the
learning rate is too low, the convergence speed of the network will be slow. If the learning
rate is too large, the optimized parameters will fluctuate repeatedly near the optimal value,
making network convergence difficult. From Figure 14a, it can be seen that there is a
relationship between the model’s accuracy and the learning rate, with a maximum value
of 89.62% achieved at 0.001. However, the accuracy rate decreases when the learning rate
decreases to 0.0001. Therefore, the best learning rate determined using the CNN-CAM
model is 0.001.

When the training batch is too small, the difference in the samples leads to an extensive
range of statistical characteristics of the batch, which makes the direction of gradient descent
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unstable, so the identification accuracy fluctuates wildly. When the training batch is too
large, due to the limitation of the training set size, its number of gradient descents is too
tiny to find the global optimal solution easily. At this time, the statistical characteristics
of large-scale samples are considered, which do not accurately represent the direction of
gradient update in the training set. From Figure 14b, it can be observed that the model
achieves the highest accuracy when the training batch size is set to 64, suggesting that
optimal results can be achieved by setting the model batch size to 64.

5.2.2. Performance Analysis

Various comparative experiments were designed to compare the proposed model’s
performance: different structural models, identification methods for joint machine learning
of feature parameters, and other deep learning identification methods. In addition, we
use four metrics: Accuracy, Recall-LOS, Recall-NLOS, and F1-score to evaluate the model
performance.

(a) Comparative Experiments of Different Structural Models

To verify the validity of the proposed model, the paper constructed six models with
different structures and analyzed their performance, as shown in Figures 15 and 16 and
Table 4, respectively.
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Table 4. Comparison table of model performance of different structures.

Model Names Number of Parameter Accuracy
(%)

Recall-LOS
(%)

Recall-NLOS
(%)

F1-Score
(%)

Model_A 1736 84.57 86.71 82.42 84.89
Model_B 2124 86.40 90.76 82.05 86.97
Model_C 4804 88.40 91.38 85.43 88.74

Model_proposed
CNN-CAM 8764 90.00 92.29 87.71 90.22

Model_D 7756 89.19 91.90 86.48 89.47
Model_E 70,204 89.05 90.57 87.52 89.21

As can be seen from Figures 15 and 16 and Table 4, Model A did not add CAM, and its
accuracy was the lowest. Model B consists of a layer of convolutional modules (Convolution
+ BN + ReLU + Max-pooling), CAM, and “Convolution + GAP”. The accuracy leveled off
when the training model increased with the number of iterations. At this point, the accuracy
of model B has increased by 1.83%, the LOS recall has increased by 4.05%, the NLOS recall
has remained essentially unchanged, and the F1-score has increased by 2.08%, indicating
that the addition of CAM can improve the identification accuracy. Model C adds a layer of
convolution module (Convolution + BN + ReLU + Max-pooling) on the basis of Model B. Its
accuracy is 88.40%, LOS recall is 91.38%, NLOS recall is 85.43%, F1-score is 88.74%, and the
number of parameters is 4804. The proposed CNN-CAM model is based on model B with
the addition of a two-layer convolution module (Convolution + BN + ReLU + Max-pooling),
which achieves an accuracy of 90.00%, a LOS recall of 92.29%, an NLOS recall of 87.71%, an
F1-score of 90.22%, and a parameter count of 8764. Model C and the proposed CNN-CAM
model increase the number of parameters, but improve the accuracy by 2.00% and 3.60%,
the LOS recall by 0.62% and 1.53%, the NLOS recall by 3.38% and 5.66%, and the F1-score
by 1.77% and 3.25%, respectively, when compared to Model B. It indicates that adding the
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convolution module can improve the identification accuracy. Model D continues to add a
layer of convolution module, which reduces the recognition rate, verifying the feasibility
of using a three-layer convolution module. Model E replaces the GAP in the proposed
model with a fully connected layer. Every neuron in the fully connected layer is linked
to all the neurons in the previous layer, and the number of trainable parameters increases
from 8764 to 70,204, which causes an overfitting phenomenon.

In summary, by analyzing the performance of the above models with different struc-
tures, it is found that the CNN-CAM model proposed in this paper ensures good fitting
performance with fewer trainable parameters and the highest model accuracy, which
verified the effectiveness of the CNN-CAM model proposed.

(b) Comparison Experiments of Different Identification Methods

To verify the advancedness of the proposed CNN-CAM model, CNN-LSTM [15],
CNN-SVM, and Random Forest (RF) models are selected for comparison with the model
proposed in this paper. The CNN-SVM model is based on the feature vectors extracted
from the CNN fully connected layer as input, and the kernel function of the SVM classifier
is the radial basis function (RBF). The RF (single feature) approach takes a kurtosis feature
as input and uses RF for identification. RF (multiple features) method is used to extract
12 feature parameters of CIR data, including kurtosis, skewness, total energy, RMS delay
spread, peak time, mean excess delay, peak-to-average ratio, amplitude of the steep rise
in energy, maximum amplitude, rise time, noise standard deviation, and received signal
power, and then use RF to identify them. In addition, the paper sets the number of decision
trees in the RF algorithm to 100, and the minimum number of samples of leaf nodes is set to
1. A comparison of the performance of different identification methods is shown in Table 5.

Table 5. Performance comparison of different identification methods.

Methods Accuracy (%) Recall-LOS (%) Recall-NLOS (%) F1-Score (%)

CNN-LSTM 84.94 84.91 84.97 84.93
CNN-SVM 86.12 85.67 86.57 86.06

RF (single feature) 54.52 54.08 54.96 54.10
RF (multiple features) 87.43 85.52 89.59 87.85
CNN-CAM proposed 90.00 92.29 87.71 90.22

As shown in Table 5, the CNN-CAM model proposed in this paper achieves 90.00%
accuracy, 92.29% LOS recall, 87.71% NLOS recall, and 90.22% F1-score. In terms of accuracy,
compared to CNN-LSTM, CNN-SVM, RF (single feature), and RF (multiple features), the
accuracy of the CNN-CAM model is improved by 5.06%, 3.88%, 35.48%, and 2.57%, respec-
tively. In terms of LOS recall, CNN-CAM has a significant improvement effect compared to
CNN-LSTM, CNN-SVM, RF (single feature), and RF (multiple features), with a minimum
improvement of 6.62% and a maximum of 38.21%. In terms of NLOS recall, CNN-CAM
outperforms CNN-LSTM, CNN-SVM, and RF (single feature) and is slightly lower than
RF (multiple features). However, the use of multiple feature parameters for identification
improves the NLOS recall, but the accuracy and stability are affected because there is some
irrelevant and redundant information between the artificially extracted features. In terms of
F1-score, CNN-CAM shows significant improvement compared to CNN-LSTM, CNN-SVM,
RF (single feature) and RF (multiple features). Furthermore, the lowest improvement is
2.37%, and the highest is 36.12%. In summary, the CNN-CAM network model proposed
in this paper extracts features with higher sensitivity and has obvious performance im-
provement effects compared to the neural network models and machine learning models
in existing studies. Moreover, it is more suitable for NLOS/LOS identification.

6. Conclusions

In this paper, firstly, the features of CIR data in LOS and NLOS environments are ana-
lyzed in detail, and the factors affecting range are identified. Then, aiming at the problem
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of low accuracy and poor environmental adaptability of existing UWB CIR identification
methods, the NLOS/LOS identification method based on multilayer CNN combined with
CAM is proposed. The method takes the one-dimensional CIR signal as input, uses three
groups of convolution modules (Convolution + BN + ReLU + Max-pooling) and CAM
for feature self-extraction, and uses a GAP for feature integration to achieve NLOS/LOS
identification. A Max-pooling layer is used to achieve the filtering operation for the extra
noise introduced by the CIR signal. The overfitting phenomenon is avoided by replacing
the fully connected layer with the GAP layer, which reduces the parameters by 87.52%
compared to Model E. In addition, to compare the proposed model’s performance, a vari-
ety of comparative experiments were designed using public datasets: different structural
models, identification methods for joint machine learning of feature parameters, and other
deep learning identification methods. It is found that the proposed model has 90.00%
accuracy, 92.29% LOS recall, 87.71% NLOS recall, and 90.22% F1-score, which achieves high
identification results in NLOS/LOS identification of UWB and verifies the effectiveness
and advancement of the model.

However, the inability to collect large datasets in real emergency scenarios limits the
application scenarios of this network to some extent. Therefore, NLOS/LOS identification
in the small sample case will be considered in future work.
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