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Abstract: Rolling bearings are important supporting components of large-scale electromechanical
equipment. Once a fault occurs, it will cause economic losses, and serious accidents will affect
personal safety. Therefore, research on rolling bearing fault diagnosis technology has important
engineering practical significance. Feature extraction with high price density and fault identification
are two keys to overcome in the field of fault diagnosis of rolling bearings. This study proposes a
feature extraction method based on variational modal decomposition (VMD) and sample entropy
and also designs an improved sequence minimization algorithm with optimal parameters to identify
the fault. Firstly, a variational modal decomposition system based on vibration signals is designed,
and the sample entropy of the components is extracted as the eigenvalue of the signal. Secondly, in
order to improve the accuracy of fault diagnosis, the sequence minimum optimization algorithm
optimized by the bat algorithm is used as the classifier. Certainly, the traditional bat algorithm (BA)
and the sequence minimum optimization algorithm (SMO) are improved, respectively. Therefore, a
fault diagnosis algorithm based on IBA-ISMO is obtained. Finally, the experimental verification is
designed to prove that the algorithm model has a good state recognition rate for bearings.

Keywords: variational mode decomposition; sample entropy; sequence minimum optimization
algorithm; fault diagnosis

1. Introduction

The common faults of electromechanical equipment can be divided into electrical
faults and mechanical faults. Electrical faults are often caused by circuit aging, component
damage, etc., while mechanical faults refer to the phenomenon that electromechanical
equipment loses or reduces its specified functions and cannot continue to operate due to
some inevitable damage. Mechanical faults have a serious impact on the safety state of
electromechanical equipment [1–3]. On the one hand, the root cause of faults is complex
and the evolution time is long; on the other hand, once the mechanical faults lead to an
accident, the impact and consequences are unpredictable.

Many mechanical faults are reflected in the form of vibration, and the vibration signals
contain rich information, which can quickly and directly reflect the operating status of
critical parts in major equipment such as bearings [4–6]. It is very necessary to carry
out vibration monitoring and fault diagnosis. However, extracting feature information
with high valence density and designing a classification space that is suitable for strong
nonlinear and non-stationary information are urgent problems to be solved in the field
of fault diagnosis, and even in the field of machine learning. Reference [7] proposed
an adaptive boundary determination method based on empirical wavelet transform and
applied it to fault detection of high-speed train wheelset bearings. Park et al. [8] proposed
a minimum variance cepstrum based on cepstral analysis, which avoided the influence of
the system frequency and the selection of the resonance band, and realized the detection of
early faults of the rotating parts. Borghesani proposed a method of whitening the signal
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using cepstrum [9]. [10] proposed an improved empirical mode decomposition method to
effectively extract the fault features of rolling bearings. In view of the nonlinear and non-
stationary characteristics of the vibration signal of planetary gears, [11] proposed a feature
extraction method of initial fault based on ensemble empirical mode decomposition (EEMD)
and adaptive stochastic resonance (ASR), which provided the strong initial fault diagnosis
of planetary gears against noise background. However, in practical application, the wavelet
decomposition method has problems such as difficulty in selecting the wavelet basis
function [12], and the empirical mode method often has the problem of end-point effects
and mode mixing, which presents some challenges regarding the extraction of fault features.
As a time-frequency domain analysis method, variational mode decomposition (VMD)
has better adaptability than other analysis methods. This method combines the classic
Wiener filtering, Hilbert transform and frequency mixing in mathematical theory. Based
on these advantages, the number of self-determined modal components and the lower
time complexity are realized, and the non-stationary original signal can be decomposed
into relatively stationary subsequences containing multiple frequency domains by VMD.
Wang et al. [13] proposed the characteristic parameter of spectral kurtosis entropy (SKE)
and combined it with VMD to realize the feature extraction of the bogie vibration signal
under variable working conditions. [14] proposed a sparse VMD (sparsity-oriented VMD)
method, which effectively extracted encoder information and realized gear fault diagnosis.

Fault identification is also an important step for establishing the correlation between
fault features and class labels. Fan et al. [15] proposed a high-performance SVM multi-
feature fusion and self-tuning particle swarm optimization algorithm. The method ex-
tracted multi-dimensional fault features by EMD. Then, the multi-dimensional parameters
of the high-performance SVM were configured by adjusting the particle swarm optimization
algorithm, which has improved the effectiveness in bearing fault detection and classifica-
tion. David E. Runelhart et al. [16] proposed the back propagation (BP) neural network
algorithm, which constituted a multi-layer feedforward perceptron to solve the problem
of connection weight learning in the hidden layer of the multi-layer neural network. Lu
et al. [17] proposed an improved feature selection and neural network classification algo-
rithm for the problem of rotating machinery fault diagnosis. The study extracted the time
domain and frequency domain features of the whole machine under multiple working
conditions and used an optimized backpropagation neural network algorithm for fault
diagnosis. He et al. [18] proposed a bearing fault diagnosis method based on a Gaussian
constrained Boltzmann machine, which takes the envelope spectrum of the resampled
data directly as a feature vector to represent the bearing fault. Wang et al. [19] proposed
an intelligent bearing fault diagnosis method that combined the symmetric point pattern
representation and the compressed excitation convolutional neural network model for the
problems of fault visualization and automatic feature extraction.

Based on the above analysis, this paper intends to use variational modal decomposition
(VMD) and sample entropy for signal decomposition and feature extraction of vibration
signals. The improved sequence minimum optimization algorithm has been chosen as the
pattern recognition method in this study.

The rest of the article is organized as follows: Section 2 focuses on the feature extrac-
tion method based on VMD-Sample Entropy and the sequence minimum optimization
algorithm after optimizing parameters. Section 3 verifies the validity of the fault diagnosis
model proposed in this study through experiments and conducts necessary analysis on the
experiments. The fourth part summarizes the research of the full study.

2. The Enhanced Fault Diagnosis Method

The study plans to decompose the original signal by VMD to obtain the intrinsic mode
component (IMF) and to extract the sample entropy of each component as the eigenvalue
of the bearing fault. The training set is input into the improved sequence minimum
optimization algorithm (ISMO) model for training. At the same time, the penalty factor
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and Gaussian kernel parameters of the ISMO are optimized by an improved bat algorithm
(IBA). The fault diagnosis model established in this study is shown in Figure 1.
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Figure 1. The model of fault diagnosis.

2.1. Feature Extraction Method Based on VMD-Sample Entropy

Signal denoise and feature extraction often play a vital role, respectively. In this
study, the variable scale processing method, known as variational mode decomposition
(VMD), is proposed. VMD satisfies the self-adaptability of the decomposition model in a
non-recursive way and transforms the complex signal decomposition problem in the time
domain and frequency domain into a mathematical model for the solution so as to avoid
the end effect and restrain the mode mixing caused by noise, and an ideal optimal result of
signal decomposition is naturally obtained.

After the optimal result of signal decomposition is obtained through the variational
model, in order to better carry out fault diagnosis, it is necessary to extract the most
prominent feature information from the signal decomposition results. In this study, the
sample entropy is selected as the feature of the vibration signal. As a new algorithm
based on approximate entropy algorithm, the physical meaning of sample entropy can be
expressed as calculating the probability of the change of time series caused by the change
of data bits.

2.1.1. Variational Mode Decomposition

1. Constructing a constrained variational model.

Firstly, the analytic signal uk of the original signal is obtained by Hilbert transform of
the real mode function u+

k .

u+
k (t) =

(
δ(t) +

j
πt

)
∗ uk(t) (1)

In Formula (1), t and δ(t) denote time and influence function, respectively.
The analytical signal u+

k is mixed with each estimated center frequency, and the
spectrum of each mode is modulated to the corresponding fundamental frequency band
as follows:

um
k (t) =

(
δ(t) +

j
πt

)
∗ uk(t)e−jwkt (2)
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Finally, by calculating the L2 norm of the time gradient, the effective value of the
modal component bandwidth can be calculated as follows:

∆w = ‖∂t

[(
δ(t) +

j
πt

)
∗ uk(t)e−jwkt

]
‖

2

2
(3)

Therefore, the bandwidth of the modal components of each frequency can be expressed
as Formula (4):

min
{uk},{wk}

{
K
∑

K=1
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)e−jwkt

]
‖

2

2

}
K
∑

K=1
uk(t) = f (t)

(4)

In Formula (4), {uk} = {u1, . . . , uk} represents the IMF components obtained by
VMD; {wk} = {w1, . . . , wk} represents the central frequency of IMF, f (t) is the original
input signal.

(2) Solving constrained variational model

Formula (4) is constructed as a Lagrangian expression by adding the quadratic penalty
factor and the Lagrange operator λ(t).

L({uk},{wk},λ) := α
{

∑k ‖∂t[(δ(t) +
j

πt )× uk(t)]e−jwkt‖2
2

}
+ ‖ f (t)−∑

k
uk(t)‖2

2

+

〈
λ(t), f (t)−∑

k
uk(t)

〉 (5)

In Formula (5), the appropriate penalty factor is selected to ensure that the recon-
struction accuracy is high enough under variable working conditions, and the Lagrangian
operator λ(t) is introduced to make the solution of Formula (5) theoretical and rigorous.

The alternating direction multiplier algorithm is introduced to solve the above varia-
tional problems. The main idea is to obtain the saddle point of the extended Lagrangian
expression by alternately updating the parameters uk(t), wk(t) and λk(t). The updated
Formula is as follows (6):

un+1
k (t) = argmin

uk∈X

{
α

K
∑

K=1
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)e−jwkt

]
‖

2

2

+‖ f (t)−∑
i

ui(t) +
λ(t)

2 ‖
2

2

} (6)

Under the condition of L2 norm, Equation (6) is transformed into the frequency
domain by Fourier isometric transform, and the variable w in the equation is replaced by
the updated w− wk. According to the Hermitain symmetry theorem, the expression of the
k eigenmode function (IMF) is obtained as follows:

∧
u

n+1

k (w) =

∧
f (w)−∑ i<k

∧
un+1

i (w)−∑ i>k
∧
un

i (w) +
∧
λ(w)

2

1 + 2α(w− wn)
2 (7)

The central frequency expression of the updated modal IMF is:

∧
w

n+1

k =

∞∫
0

w
∣∣∣∣∧un+1

k (w)

∣∣∣∣2dw

∞∫
0

∣∣∣∣∧un+1

k (w)

∣∣∣∣2dw

(8)
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The updated expression of all non-negative center frequencies is w ≥ 0. and the
updated expression of operator λn+1 is:

∧
λ

n+1
(w) =

∧
λ

n
(w) + τ

[
∧
f (w)−∑

k

∧
u

n+1

k (w)

]
(9)

Summing up the above description, the decomposition process of VMD algorithm can
be summarized as follows:

(1) Initialize the value of u1
k(t), w1

k(t) and λ1
k(t), n is 0.

(2) Set the out-of-loop condition: n = n + 1.
(3) Update uk(t) and wk(t) until the number of intrinsic mode decomposition of the

original sample meets the preset number of the decomposition, ending the current
internal cycle.

(4) Get a new λk(t) license.

(5) Give the jump condition ε as the operator precision, and the ∑k ‖un+1
k −un

k ‖
2
2

‖un
k ‖

2
2

< ε as the

stop condition, when the condition is satisfied the loop ends. If not, the outer loop
operation is performed again (step 2).

From the solving process of the above VMD algorithm, it can be concluded that the
VMD algorithm adaptively decomposes the characteristic frequency of the original signal
to get its frequency bandwidth. Through the termination condition to control the IMF and
the center frequency to calculate repeatedly in the time-frequency domain of the signal.
The adaptive decomposition process ends when the stop condition is satisfied.

2.1.2. Sample Entropy

Sample entropy, which can better measure the complexity of time series, is widely
used in signal analysis and processing.

Suppose that there are N pieces of data, and the time series of data sampling is defined
as X = [x(n), n = 1, 2, . . . , N]. The theoretical derivation of the definition of sample entropy
is as follows:

(1) According to the sampling time of the signal, a vector sequence based on time series is
constructed, and the dimension of the vector sequence is m, Xm(1), . . . , Xm(N −m + 1).
Each element in the vector sequence can be represented by the following array:
Xm(i) = {x(i), x(i + 1), . . . , x(i + m− 1)}, 1 ≤ i ≤ N −m + 1. The array represents
the continuous x values of the time series from i to m + i;

(2) Define the distance between Xm(i) and Xm(j): d[Xm(i), Xm(j)] is the absolute value
of the difference between Xm(i) and Xm(j).

d[Xm(i), Xm(j)] = maxk=0,...,m−1(| x(i + k)− x(j + k)| ) (10)

(3) For the constructed d[Xm(i), Xm(j)], the number of j (1 ≤ j ≤ N −m, j 6= i) is calcu-
lated and marked as Bi, 1 ≤ i ≤ N −m, Bi is defined as follows:

Bm
i (r) =

1
N −m− 1

Bi (11)

(4) Average B(m)(r) as Formula (12):

B(m)(r) =
1

N −m

N−m

∑
i=1

Bm
i (r) (12)
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(5) Update the vector dimension to m + 1, and recalculate the number of distances and
d[Xm(i), Xm(j)]≤ r bands, where (1 ≤ j ≤ N −m, j 6= i) benchmark is marked as Ai.
Define Am

i (r) and Am(r) as the following expressions:

Am
i (r) =

1
N −m− 1

Ai (13)

Am(r) =
1

N −m

N−m

∑
i=1

Am
i (r) (14)

From the above steps, B(m)(r) is the probability of two sequences matching m points
under the similar tolerance r, while Am(r) is the probability of two sequences matching
m + 1 points. Therefore, the definition of sample entropy is:

SampEn(m, r) = lim
N→∞

{
− ln

[
Am(r)
Bm(r)

]}
(15)

When N is a finite value, the following Formula can be used:

SampEn(m, r, N) = − ln
[

Am(r)
Bm(r)

]
(16)

As can be seen from the above description, the sample entropy has the
following characteristics:

(1) This feature quantity can avoid the disadvantage of approximate entropy, prevent the
data length from being compared by itself and can make the operation results more
accurate and consistent.

(2) Comparing the two sequences, no matter what the scale of the two sequences is, if the
m and r values are changed, the calculation results will not change.

(3) In the process of signal acquisition, it is inevitable to lose some frames. For the
sample entropy algorithm, the loss of a small part of data has no great impact on
the overall structure. Sample entropy can restore the operation results of real data to
the maximum.

In any algorithm involving parameter selection, the influence of parameters cannot be
ignored. When calculating the sample entropy of the signal, the value of the parameters
has the same important influence on the result of the sample entropy operation. According
to the theoretical derivation in the previous section, the main parameters of sample entropy
include embedding dimension m, similarity tolerance r and data points N., the indexes of
these parameters are as follows:

(1) The embedded dimension m represents the dimension of the window function in
the sample entropy algorithm, which is similar to the size of the window function
in the Fourier transform. In most cases, m = 1.2. When m > 2, the deviation of the
parameter value will result in the following: first, a large number of original data sets
will be needed to increase the computational complexity of the algorithm; second, a
too large m will affect the value of r, and there is a positive correlation between the
two. When m is larger, r is larger, r will remove too much useful information.

(2) Similarity capacity r is usually obtained based on (0.15 ∼ 0.25)δ(x), where δ(x)
represents the standard deviation of sampling. The r value is too large, resulting
in invalid data redundancy; the r value is too small, resulting in a reduction in the
amount of data in similar patterns.

(3) N indicates the number of sampled data points, which is usually obtained from
100 to 6000.
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2.2. Fault Identification Method Based on IBA-ISMO

The penalty factor ζ in ISMO and the parameter σ of Gaussian kernel function have a
considerable influence on the classification result and running time. In this paper, the neural
network algorithm based on the bat algorithm is selected to optimize the parameters. The
algorithm has a good local search ability. By optimizing the bat algorithm, the shortcomings
of the algorithm in the process of global optimization are improved and the global optimal
solution of the parameters is obtained.

2.2.1. The Improved Bat Algorithm

The bat algorithm is used to solve the optimal solution by simulating the feeding habits
of bats through echolocation. The main idea of the algorithm is that each bat represents
a solution in the feasible region, imitating the method of identifying the direction of bat
sound waves. Bat individuals constantly emit pulses of a fixed range of frequencies and
capture the sound waves reflected after the pulse collides with the target. The distance and
position of the target are obtained according to the difference in pulse frequency and the
time difference of senses to feel the pulse.

Let the dimension of search space be d-dimensional, and the relevant parameters
emitted by bat i in the process of finding the optimal solution are pulse frequency fi,
velocity vi, position xi, transmitted pulse frequency [ fmin, fmax] and the maximum number
of iterations maxT. Therefore, the update Formula for the position of the bat at t moment is
as follows:

fi = fmin + β( fmax − fmin) (17)

vt
i = vt−1

i + (xt
i − x∗) fi (18)

xt
i = xt−1

i + vt
i (19)

where β is a random number in [0, 1], and x∗ is the optimal position of the current population.
In the process of searching for prey, each bat will adjust the loudness and pulse

frequency of its sound wave according to the location of the target to improve the capture
probability. In the process of getting closer to the target, the search area of the bat will
gradually decrease. Therefore, when the loudness decreases below a certain fixed value,
the frequency is rapidly increased to facilitate the faster acquisition of prey, and the changes
of loudness and pulse in the process of catching prey can be obtained, as shown in the
following Formula:

At+1
i = βAt

i (20)

rt+1
i = r0

i [1− exp(−γt)] (21)

where A represents the pulse loudness, γ > 0 pulse represents the pulse frequency en-
hancement coefficient, and r0

i represents the initial pulse frequency.
As can be seen from the above Formula, when there is t→ ∞ , there is At

i → 0 . When
At

i → 0 , it means that the bat has found its prey at this time, and the iteration ends and no
longer sends out pulses.

Bat algorithm has obvious advantages over other parameter optimization algorithms
in global search ability and convergence speed, but it also has the disadvantage that
individuals of the population are easy to fall into the local optimal solution. In order
to solve this problem, this paper proposes an improved bat optimization algorithm by
introducing a new variable w; namely, the adaptive weight factor, to measure the difference
between the current position and the global optimal solution. In order to avoid the final
solution vector falling into the local optimal situation to the greatest extent.

The calculation Formula of adaptive weight factor w is as follows:

wi =
(xi − x∗)

t + 1
(22)
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By updating Formula (22) to:

vt
i = vt−1

i wi + (xt
i − x∗) fi (23)

To sum up, the flow of the IBA algorithm is shown in Figure 2.
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According to the characteristics of IBA algorithm, it is found that the parameters
will affect the convergence speed of the algorithm itself and the accuracy of the optimal
solution. For example, the parameters of this kind of group optimization algorithm need to
be selected through strong experiment and experience, and either too large or too small
parameters will affect the results, so the selected parameters are as follows:

Pulse enhancement coefficient γ = 0.9, pulse frequency fmax = 2, fmin = 0; loudness
coefficient A0 = 1.5, initial pulse intensity r0 = 0.5, algorithm population size n = 50, di-
mension d = 5, maximum iterations M = 1000, adaptive weight factor
wmax = 0.9,wmin = 0.2.

Because the IBA algorithm avoids the disadvantage of falling into the local optimal
solution compared with the traditional BA algorithm, in order to verify whether the
parameter selection of the IBA algorithm is reasonable, this section selects the Rastrigin
function to test the global optimization performance of the IBA algorithm and selects the
Ackley function to test the global convergence ability of the IBA algorithm.

(1) Rastrigin function

f (x) =
n

∑
i=1

[
x2

i − 10 cos(2πxi) + 10
]

(24)
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Among them, x ∈ [−5.12, 5.12], i = 1, 2, and the overall shape of the function is
similar to that of the hills, which proves that the algorithm has a good ability for global
optimization. The function image is shown in Figure 3:
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(2) Ackley function

f (x) = 20 + e− 20 exp

(
−0.2

√
1
n

n

∑
i=1

x2
i

)
− exp

(
1
n

n

∑
i=1

cos(2πxi)

)
(25)

Among them, x ∈ [−32.768, 32.768], i = 1, 2. The closer f (x) is to 0, the stronger
the global convergence ability of the algorithm is. The image of the IBA algorithm after
applying this function is shown in Figure 4.
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Figure 4. Ackley function image.

In order to digitize the image and show the global optimization ability and global
convergence ability of the improved bat algorithm more intuitively, the IBA algorithm after
parameter selection is run 15 times independently, and the test results shown in Table 1
are obtained.
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Table 1. Test function results.

Function Algorithm Optimal Value Average Value Standard Deviation

Rastrigin IBA 0 7.11 × 10−16 1.50 × 10−15

Ackley IBA 4.26 × 10−14 5.97 × 10−13 8.33 × 10−13

As can be seen from the table, the standard deviation and average of the Rastrigin
function and the Ackley function are both close to 0. Therefore, it has been proven that
the IBA algorithm overcomes the disadvantages of the traditional BA algorithm and has a
significant improvement in global convergence and global optimization.

2.2.2. Improved Sequence Minimization Algorithm (ISMO)

As an algorithm in the SVM model, SMO algorithm essentially uses a very important
functional relationship-kernel function. In this study, the Gaussian kernel function is
improved to improve the efficiency of the SMO algorithm.

The accuracy of sample classification predicted by SMO should meet the
following expression:

EN [P(error)] ≤
EN [SV]

N
(26)

where N represents the total number of training set samples and EN represents the expected
value calculated through the training set samples. It can be seen from the Formula that
when the number of samples in the training set is N, we can choose to reduce the number of
support vectors to reduce the probability of operational errors and improve the application
range of support vector machines. The control of the number of support vectors depends
on the mapping relationship of the algorithm and the selection of algorithm parameters.

Based on the type of kernel function determined in the previous section, the Gaussian
kernel function and the coefficient (1 + m)(m > 0) are as follows:

K(x, xi) = (1 + m) ∗ exp
(
−γ ∗ ‖x− xi‖2

)
(27)

According to Formula (27), the Gaussian kernel coefficient is magnified by (1 + m) times,
and the number of support vectors and the number of samples on the boundary are reduced
by increasing the absolute value of the quadratic coefficient in Qv, which can effectively
reduce the classification error rate. By reducing the solution vectors in data samples that
meet the KKT boundary conditions, the time complexity of the algorithm is reduced, and
the SMO classification accuracy and application range are improved. The improved SMO
algorithm is named ISMO.

Based on the application background of the system in engineering practice, the acqui-
sition and analysis system take the vibration signal as the original signal, and the original
signal has the characteristics of small sample and non-linearity. The ISMO model is se-
lected to classify the vibration signal eigenvector obtained in the previous chapter, and the
mapping of eigenvector from linear inseparable to linear separable is completed, which
enhances the classification accuracy and application range of the algorithm.

3. Experiment and Analysis
3.1. Extracted Features of Rolling Bearing Signals

A variational mode decomposition algorithm is an adaptive signal decomposition
algorithm. By using this method, not only can part of the noise signal be removed, but
also the information of the signal will not be lost, and the characteristic components of the
original signal can be preserved as much as possible, so the VMD algorithm is chosen to
preprocess the original signal. Sample entropy is a kind of eigenvalue used to measure the
complexity of time series, which is improved on the basis of other entropy values, so it also
has the characteristics of anti-noise, so sample entropy is chosen as the eigenvalue of the
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IMF signal. Therefore, this paper proposes a method of feature extraction by combining the
VMD algorithm with sample entropy. The detailed flow chart is shown in Figure 5.
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In order to verify the effectiveness of the feature extraction algorithm based on VMD
and sample entropy proposed in this study, this section uses the bearing data in the
CRWU database for related experiments [20]. The data set is mainly composed of the
following data: drive acceleration data, fan segment acceleration data, basic acceleration
data and speed data. The experimental system consists of test bearings, torque sensors,
control motors with different functions and programmable controllers. The test bench is
shown in Figure 6.
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In the experiments, the sampling frequency is 12 kHz, the motor speed is 1797 r/min,
and the fault state bearing damage diameter is 0.1778 mm. The bearing states selected in
this experiment include normal state, inner ring fault, outer ring fault and roller fault, and
the number of sampling points of each sample is 6000. The original sampling signals of the
four states of the bearing are shown in Figure 7:

From the original vibration signal shown in Figure 7, it can be seen that there are great
differences in the vibration period and amplitude of the bearing in different states. The
vibration signals of the three fault states all confirm the above analysis of the vibration
signal that there is a periodic abnormal signal, and there is little difference in amplitude in
different periods in the same state.

The vibration signals of four states in Figure 7 are decomposed by variational mode
decomposition. Because the variational mode algorithm has the advantage of removing
some redundant component information, as shown in Figure 8, four IMF component
informations are obtained according to different time–frequency domain characteristics.
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The sample entropy of the decomposed components is calculated, and four groups
of data are randomly selected from each state, as shown in Table 2. As can be seen from
Table 2, there are obvious differences in the sample entropy of each modal component
after the VMD decomposition of vibration signals in different states. Therefore, the sample
entropy index based on VMD decomposition can be used as the eigenvalue of the bearing.
The total number of samples obtained according to the above process is 350 × 4 = 1400.

Table 2. Sample entropy of some samples.

Status
Sample Entropy Features

IMF1 IMF2 IMF3 IMF4

Normal

0.270606 0.538289 0.266344 0.756758
0.278523 0.547741 0.261999 0.741383
0.27207 0.556223 0.234584 0.815750
0.271301 0.543783 0.229493 0.520792

Inner ring fault

0.583038 0.507441 0.245161 0.276670
0.592259 0.510691 0.239027 0.287463
0.585477 0.483586 0.304042 0.234883
0.586028 0.487997 0.317364 0.219320

Rolling element fault

0.427306 0.609396 0.267466 0.155322
0.398368 0.512955 0.240769 0.177347
0.589774 0.482116 0.304627 0.163799
0.582455 0.473968 0.281762 0.206347

Outer ring fault

0.427306 0.609396 0.267466 0.155322
0.398368 0.595303 0.228638 0.157244
0.578411 0.495655 0.192259 0.119652
0.579525 0.506227 0.204141 0.142848
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From the characteristic components of sample entropy in Table 2, we can also see that
the sample entropy eigenvalues of the four intrinsic mode functions in different states are
quite different. For example, in the normal state, the eigenvalue of IMF1 is the lowest and
IMF4 is the highest among the four states; the IMF1 component has the highest eigenvalue
in the inner ring fault state; the IMF1 and IMF2 have relatively high eigenvalues in the
rolling body fault state; in the outer ring fault state, the eigenvalue is the lowest among the
four states and the highest in the four states of IMF2. From the above analysis, it can be
concluded that the vibration signal is decomposed into the IMF component by the VMD
algorithm, and the sample entropy characteristic value of the IMF component has a high
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degree of identification and discrimination. Therefore, the sample entropy characteristic
index based on VMD decomposition can be used as the eigenvalue of the bearing.

3.2. Result of Fault Identification Based on IBA-SMO Algorithm

In the experiment, the feature extracted sample set is divided into a training set and
verification set, and the training set is input to the ISMO model for training. According to
the improved bat algorithm (IBA), the optimal penalty factor and “Gaussian kernel function
parameter” of the ISMO model are obtained while training the ISMO model parameters of
the training set samples. The verification set validates the trained model and verifies its
ability to classify fault types. The set parameters of IBA algorithm are shown in Table 3.

Table 3. Parameter setting for IBA.

Population
Size

Population
Dimension

Number of
Iterations

Loudness
Factor Search Range of σ Search Range of γ

50 5 100 1.5 1~100 1~100

Three hundred sets of samples are selected from each group as the training, and the
rest as the prediction set. Then, all the training sets are input into the IBA-ISMO algorithm,
and the values of the penalty factor ζ and kernel function parameter σ of the best fitness
are obtained by IBA algorithm. The iterative process and the changing process of the
evaluation function are shown in Figure 9. As can be seen from Figure 9, the evaluation
function in IBA algorithm constantly calculates the fitness value produced by the matching
of different penalty factor γ and kernel function parameter σ, and the fitness increases with
the increase of the number of iterations until the optimal fitness value is obtained when the
maximum number of iterations is close to the maximum number of iterations. At this time,
the output fitness σ = 87.63, γ = 5.78.
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In order to better prove that the improved sequence minimum optimization algorithm
has a significant improvement in classification accuracy, firstly, the penalty factor and kernel
function parameter obtained by IBA algorithm are input into the ISMO model as input
parameters, and the optimal classification surface of the sample set is obtained. As shown
in Figure 10, the optimal classification plane has completely separated different faults.
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Figure 11 shows that IBA optimizes the fault identification accuracy of the traditional
SMO model. It can be seen that there are misjudgments in some test sets, although the
overall fault identification rate is 95.5%. Using the IBA-ISMO algorithm introduced in this
study to re-train the training set samples and re-input the test set samples into the model
derived by the IBA-ISMO algorithm, and the verification results are shown in Figure 12.
Among them, class labels from 1 to 4 represent the normal state, inner ring fault, rolling
fault and outer ring fault, respectively.
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The results of the validation set input into the different models are shown in Table 4.
It can be seen from Table 4 that the accuracy of the IBA-ISMO model is significantly higher
than that of other models except PSO-ISMO, so it shows that the IBA-ISMO model can better
identify the faults and can be effectively applied to the fault diagnosis of rolling bearings.
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Table 4. Model recognition results.

Model Types Inner Ring
Fault

Rolling
Fault

Outer Ring
Fault

Normal
State

Overall
Accuracy

Rate

Training
Time (s)

BA-SMO 90% 92% 90% 96% 92% 5.94
GA-SMO 90% 96% 90% 90% 91.5% 6.65
PSO-SMO 96% 98% 96% 94% 96% 8.99
BA-ISMO 94% 100% 96% 98% 96% 3.35
GA-ISMO 92% 98% 94% 98% 95.5% 4.52
PSO-ISMO 100% 98% 96% 100% 98.5% 7.85
IBA-SMO 92% 100% 92% 98% 95.5% 6.36
IBA-ISMO 100% 98% 98% 98% 98.5% 5.58

4. Conclusions

Aiming at the fault characteristics of rolling bearings, a feature extraction algorithm
based on variational modal decomposition and sample entropy has been proposed, and
most importantly, an improved fault identification method, IBA-ISMO, was proposed in
this study. Using the CWRU data set as a sample set to verify the IBA-ISMO, it is confirmed
that the method has a higher fault recognition rate than the comparison method, while
the effectiveness of feature extraction for instability vibration signals has been indirectly
proven. The main work of this research is as follows:

(1) The VMD algorithm is employed to adaptively decompose the characteristic frequency
of the original signal to obtain its specific frequency bandwidth, and the sample
entropy is used to extract the characteristics of the IMF component, highlighting the
fault information.

(2) An improved bat optimization is designed to optimize the classifier’s parameters,
which avoids the disadvantages of falling into local optimal solutions compared with
the traditional BA algorithm.

(3) The research improves the Gaussian kernel function coefficient of the traditional
SMO method, which effectively reduces the classification error rate and optimizes the
algorithm’s time complexity by reducing the solution vectors that meet the boundary
conditions in the data samples.

It should be noted that effective features are very beneficial for fault diagnosis. In this
study, only the variational mode decomposition is performed on the signal, and the sample
entropy of the component is used as the fault feature. The follow-up research will focus on
the fault characteristics and fault phenomena. On this basis, an in-depth analysis of the
interpretability of deep learning methods will be carried out.
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