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Abstract: Human activity recognition (HAR) is becoming increasingly important, especially with
the growing number of elderly people living at home. However, most sensors, such as cameras,
do not perform well in low-light environments. To address this issue, we designed a HAR system
that combines a camera and a millimeter wave radar, taking advantage of each sensor and a fusion
algorithm to distinguish between confusing human activities and to improve accuracy in low-light
settings. To extract the spatial and temporal features contained in the multisensor fusion data, we
designed an improved CNN-LSTM model. In addition, three data fusion algorithms were studied
and investigated. Compared to camera data in low-light environments, the fusion data significantly
improved the HAR accuracy by at least 26.68%, 19.87%, and 21.92% under the data level fusion
algorithm, feature level fusion algorithm, and decision level fusion algorithm, respectively. Moreover,
the data level fusion algorithm also resulted in a reduction of the best misclassification rate to 2%~6%.
These findings suggest that the proposed system has the potential to enhance the accuracy of HAR in
low-light environments and to decrease human activity misclassification rates.

Keywords: human activity recognition; multi-sensor data fusion; fusion algorithm; CNN-LSTM

1. Introduction

In recent years, the progress in the areas of science and technology have resulted
in improved living and medical conditions, leading to an increase in the average life
expectancy of people. However, this increase has also made the problem of ageing more
severe, particularly with regard to elderly home security. Due to the age-related decline
in bodily function, the elderly are particularly susceptible to accidents in their daily lives,
with falls being the leading cause of injury among this population. According to the
World Health Organization [1], 42 percent of people over 70 are likely to fall at least
once a year. The problem is exacerbated when elderly individuals live alone without
supervision, as they may not receive timely treatment after a fall, which could potentially
result in death. To address this issue, various sensors and technologies have been applied
to monitor and recognize the activities of elderly individuals in their homes, with the aim
of improving home safety through technical means [2]. Currently, camera-based methods
are the mainstream approach for human activity recognition (HAR). This method has high
accuracy and simple device deployment in normal light environments, and can effectively
differentiate easily confused activities. However, in low-light environments, the recognition
accuracy of cameras will significantly decrease. Furthermore, there is a higher likelihood of
misclassification between different activities. The most critical issue with camera-based
HAR methods is that they jeopardize the privacy of the monitored individuals in certain
ways. Moreover, human activity recognition based on wearable sensors is another widely
applied approach. While it can provide convenience for the monitored individual, its
effectiveness is limited by the battery capacity of the devices and their ability to perform
long-term uninterrupted monitoring. Furthermore, some wearable devices are too sensitive
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and may mistakenly identify certain daily activities as dangerous. Recently, there has been
increasing interest in using millimeter-wave radar for HAR due to its ability to maintain
performance even in low-light environments without being affected by light. However,
the raw signal from millimeter-wave radar presents challenges in terms of processing, and
millimeter-wave radar are generally more expensive than other types of sensors.

According to the characteristics of millimeter-wave radars and cameras, we have
designed a multi-sensor HAR system by combining the stability and high accuracy of
camera-based recognition in normal light with the ability of millimeter-wave radar to
remain stable in low-light environments, regardless of light. The system can accurately
recognize human activity in both normal light and low-light environments, while also
reducing the misclassification rate of certain confusing activities. Our method also fo-
cused on the fusion of camera and millimeter wave radar data to address the limitations
inherent in single-sensor systems, enabling the HAR system to achieve the efficient and
accurate recognition of human activity across a range of light environments. Our work
involved theoretical analysis, model building, algorithm development, data collection, and
experimental verification to accomplish this goal.

2. Related Work

Numerous researchers have extensively studied HAR from various angles, including
the use of sensors and algorithms. Currently, the focus of HAR research has shifted from
direct recognition of physical information captured by sensors to artificial intelligence-based
recognition through machine or deep learning after extracting relevant human motion
features from collected data. Wearable devices, cameras, and millimeter-wave radar are
three commonly used devices in HAR. Furthermore, with advancements in sensor and
algorithm technologies, researchers have explored various fusion systems for HAR.

2.1. HAR Based on Single Sensor Data

HAR based on camera and computer vision technology is a widely used method. Some
researchers [3,4] have utilized background subtraction to extract features with deep learning
methods after separating the image background from the human. Compared with manual
feature extraction methods, deep learning methods can express features more abstractly
and possess better generalization and robustness. Nunez-Marcos et al. [5] employed optical
flow image sequences as inputs to a convolutional network to ensure that the features were
independent of the background and without interference. Feichtenhofer et al. [6] proposed
spatial fusion and temporal fusion methods to improve HAR accuracy, achieving 93.5% and
69.2% in UCF101 and HMDB51, respectively. However, since video sequences encompass
both spatial and temporal features, while a single CNN model may lose temporal features,
some researchers [7–9] have proposed model combination methods to enhance the accuracy
of HAR. For example, Zhang et al. [10] combined two CNNs to form a 2D-CNN network
to obtain the spatial and temporal features of video sequences, achieving an accuracy of
90.9% on the NTU-RGB+D dataset. Chadia Khraief et al. [11] constructed a model with
four independent CNNs corresponding to video data and utilized data combined with a
4D-CNN network to verify its effect on several datasets. Nandagopal et al. [12] designed a
novel key point extraction with a deep convolutional neural network-based pose estimation
(KPE-DCNN) model to extract the key points of the human body in the image sequences
converted from video data for HAR. The KPE-DCNN model outperforms other networks,
such as CNN, DBN, and T-CNN, achieving an accuracy of 85.44% on the UCF dataset.
Generally, HAR based on video or image sequences has relatively high recognition accuracy
and robustness. However, the performance of this method will decline rapidly in low-light
environments. The utilization of camera-based monitoring systems for HAR continues to
pose a challenge, especially in instances where activity identification is hindered by the
absence of individuals in images captured within low-light settings. To address this issue,
researchers have generally focused on two areas: algorithms and sensors. Current research
has utilized both near-infrared (NIR) and long-wavelength infrared (LWIR) cameras to
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tackle this issue. Compared to NIR, LWIR cameras can detect objects at both long and
short distances without requiring additional light, whereas NIR cameras require extra
light to display only short-distance objects in low-light environments [13]. However, there
are two main drawbacks of thermal imaging cameras: the halo effect and temperature
similarity. The halo effect occurs around high-temperature objects. In human bodies, this
type of halo effect is similar to shadows under body areas. This means that it is more
difficult to segment the human area from images with halo effects. To address this issue,
Batchuluun et al. [14] considered a method for creating skeletal images from thermal images
to analyze body movements. In order to extract more spatial and temporal features from
the resulting sequence of skeletal images, they proposed a HAR method that combines
CNN and LSTM to improve recognition accuracy. Some researchers solved the problem
by using HAR algorithms. In this paper [15], a novel procedure is produced to model,
analyze, and recognize human motion (jogging and walking in a dark environment) in
video streams. They use an image processing technique using edge detection and vector
angle calculation to improve accuracy. In many cases, the use of multi-sensor video streams
to improve accuracy is encouraged. However, recognizing activities from multiple video
streams simultaneously is a challenge due to their complementarity and noise. Ulhaq [16]
proposed the use of deep multi-view representation learning for simultaneous HAR from
multiple video streams. Additionally, they also introduce a spatio-temporal feature-based
correlation filter for detecting and recognizing multiple human activities under low-light
environments. Although these improved algorithms and technologies applied to sensors
can reduce noise in image or video stream data in low-light environments, thus improving
the accuracy of HAR, the accuracy of a camera in low-light environments is limited by
its own characteristics. Moreover, camera-based data collection is unsuitable for specific
environments such as bathrooms, bedrooms, and other private areas, violating personal
privacy and leading to moral and legal issues [17].

With the growing privacy concerns around cameras, HAR based on millimeter-wave
radar data has emerged as a promising solution. The key challenge in using millimeter-wave
radar data for HAR is to extract and identify the micro-doppler signal features generated by
human motion. In recent years, several researchers have proposed various approaches to
address this challenge. For instance, Liu et al. [18] utilized MFCC (Mel-frequency cepstrum
coefficients) to extract the time-frequency features of walking, bending, falling, and other
activities. They further employed the SVM (Support Vector Machine) and KNN (K-Nearest
Neighbor) algorithms to classify and recognize these activities. Jokanovic et al. [19] converted
the spectrogram of walking, falling, sitting, and bending into grayscale images and used
DNNs (Deep Neural Networks) and SVM to recognize them, reaching an accuracy of 87%
and 78%, respectively. In another study, Erol et al. [20] proposed a sequence forward selection
method combined with SVM reclassification according to the different number of features
used. The approach achieved an accuracy of between 92% and 95%. Sadreaza et al. [21]
and Tsuchiyama et al. [22] combined the time-distance spectrogram and time series of radar
data with CNN (Convolutional Neural Network) for HAR. Bhattacharya et al. [23] used a
low-cost, ceiling-mounted radar system at low microwave frequencies (sub-6GHz), which
was combined with a small neural network model to detect breath and distinguish falls from
non-falls with an accuracy of 95%. Furthermore, Wang et al. [24] proposed an improved
LSTM (long short-term memory) model based on an RNN (Recurrent Neural Network).
They combined this model with deep CNN to recognize Doppler radar images of six types
of human activities with an accuracy of 82.33%. Despite its effectiveness, the accuracy of
a single millimeter-wave radar system is still challenging in terms of achieving practical
applications. The performance of millimeter-wave radars is not affected by light, but it
degrades significantly in noisy environments, and the accuracy is lower than that of cameras
in normal light.
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2.2. HAR Based on Multi-Sensor Data Fusion

With advances in technology, HAR based on multi-sensor data fusion has gained
attention from researchers. Cornacchia et al. [25] utilized accelerometer, pressure sensor,
and gyroscope sensors combined with a camera to recognize human activities. The wear-
able sensors were used to extract global activity features, while the camera was used to
extract local activity features. Shoaib et al. [26] designed a wrist-worn multi-sensor motion
recognition system to distinguish repetitive activities such as walking and jogging from
less-repetitive activities, such as smoking and giving a talk. Brezmes et al. [27] used a
smartphone combined with infrared sensors in the room to identify human poses and
motion states. Most methods for combining multiple sensor data to recognize human
activity are based on three fusion algorithms: data level fusion, feature level fusion, and
decision level fusion. Capela et al. [28] used the data level fusion algorithm to combine
different sensors. However, this method requires a large bandwidth and significant power
consumption due to the need to transmit a large amount of raw data from wearable devices.
LI Kuncheva [29], Min and Cho [30] used the feature level fusion algorithm to cascade the
features of multiple different sensor data after feature extraction, and then utilized machine
learning algorithms for HAR. However, this method may not be convenient to cascade
the data generated by different sensors with different sampling frequencies, and it may
also ignore the contribution of some sensors to the results of recognition. LeCun et al. [31]
utilized the decision level fusion algorithm to fuse the data from the accelerometer and the
heart rate sensor for HAR. However, traditional machine learning algorithms only fuse
the classification results and ignore the correlation between the data features of different
sensors, which may not improve the results. Although these fusion algorithms combined
with different sensors can recognize some simple human activities, challenges still exist in
effectively distinguishing human activities in low light environments. Therefore, in this
paper, we aim to improve the accuracy of HAR in low light environments by combining
the advantages of camera and millimeter-wave radar through multi-sensor data fusion
and an improved CNN-LSTM model. Our method does not require too much additional
data processing to extract human activity features. In addition, the system can only set up
millimeter-wave radar in private spaces.

3. System Design

In this paper, we present a multi-sensor system for HAR that addresses the limitations
of camera-based systems in low-light environments. Our system leverages millimeter wave
radar and camera data, which are calibrated through spatiotemporal fusion techniques to
improve accuracy. To achieve accurate HAR, our system implements sensor calibration
through spatiotemporal fusion. We then collect different types of human activity data through
sensors and preprocess them to make them suitable for input to our model. Finally, we use a
proposed CNN-LSTM model, combined with various fusion algorithms, to classify the data
and output the final results. Figure 1 illustrates the block diagram of our multi-sensor system.

3.1. System Construction

In our multi-sensor system, the camera continuously captures images of human
activities, which serve as inputs to the model. The resolution of the camera significantly
impacts image quality, and low-resolution images can result in unsatisfactory results.
Conversely, high-resolution cameras can lead to better model training results but require
longer data processing times. To strike a balance between image quality and processing
time, we chose the Logi C270 USB camera with a resolution of 1280 × 720 and a maximum
frame speed of 30 frames/s. This camera meets our requirements for HAR recognition and
offers strong versatility. Additionally, it allows for direct data transmission to the computer
via a USB interface, enabling real-time data processing. Table 1 presents the parameters of
the Logi C270 USB camera.
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Table 1. Parameters of Logi C270.

Number Name Parameter

1 Sensor CMOS
2 Pixel 3 million
3 Capture Size 1280 × 720
4 Resolution 1280 × 720
5 Max FPS 30 frames/s
6 Interface USB 2.0

The millimeter wave radar is capable of recognizing human activities by extracting
and identifying micro-Doppler signal features generated during human motion. As the
emitted electromagnetic wave and detected target have relative movement, the frequency
of the echo differs from that of the emitted wave. This frequency difference can be detected
to measure the moving speed of the target relative to the radar, while the distance of the
target can be determined by measuring the time difference between pulse transmission
and reception. Currently, many countries and regions utilize 60GHz millimeter wave
radar for indoor personnel detection and SLAM routing. In this paper, we employed the
Texas Instruments (TI) 60GHZ IWR6843ISK millimeter wave radar in combination with
DCA1000EVM and MMWAVEICBOOST to collect human activity data. The DCA1000EVM
provides access to raw radar data via the LVDS interface, while the MMWAVEICBOOST
supports software development and tracking capabilities.

(1) Information about the IWR6843ISK

The IWR6843ISK is a millimeter wave sensor evaluation board produced by TI. The
board uses TI’s IWR6843AW chip and integrates components such as antennas, RF front-
end, and processors for measuring and detecting distance, velocity, and direction informa-
tion. Components and parameters of the IWR6843ISK are shown in Tables 2 and 3.

Table 2. Components of the IWR6843ISK.

Name Introduction

Antenna AN7105 dual-polarized patch antenna
RF front-end chip AWR1843, supports frequency ranges from 60 GHz to 64 GHz

Digital signal processor chip Uses high-performance floating-point DSP architecture
Microcontroller RM57L843, uses ARM Cortex-R5F architecture
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Table 3. Parameters of the IWR6843ISK.

Number Name Parameter

1 Types FMCW
2 Tuning Frequency 60–64 GHz
3 Number of Receivers 4
4 Number of Transmitter 3
5 Azimuth FOV (deg) ±60
6 Azimuth Angular Resolution (deg) 15
7 Elevation FOV (deg) ±15
8 Elevation Angular Resolution (deg) 58
9 Arm CPU ARM R4F @ 200 MHz
10 Memory (kb) 1792

(2) Information about DCA1000EVM

DCA1000EVM is a digital signal processor used in RF receivers for radar applica-
tions. TI provides GUI software for configuring and controlling DCA1000EVM, as well as
MATLAB scripts for data processing and visualization.

(3) Information about MMWAVEICBOOST

TI’s MMWAVEICBOOST is a millimeter-wave radar sensor module that is used for
high-precision environmental sensing and ranging functions. The specifications and perfor-
mance parameters of MMWAVEICBOOST are shown in Table 4.

Table 4. Specification and Performance Parameters of the MMWAVEICBOOST.

Specification Performance Parameters

Operating frequency 76 GHz to 81 GHz
Receiver sensitivity −80 dBm

Ranging range maximum 8 m
Field of view (FOV) 60 degrees (horizontal) × 20 degrees (vertical)

Data output Distance, speed, angle, target information, etc.

In order to establish a multi-sensor system and minimize data discrepancies resulting
from sensor location differences, we positioned the camera and millimeter radar on the
same vertical line. Specifically, the millimeter-wave radar was fixed 150 cm above the
ground, while the camera was placed 10 cm above it. Both sensors were connected to a
computer via USB, and data collection and processing were carried out using Python code
running on the computer. Figure 2 depicts the setup of the multi-sensor system.
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3.2. System Calibration

System calibration is an essential step in fusing different sensor data. Due to the
varying locations of sensors, the data coordinates obtained by different sensors are different.
Hence, it is critical to remap the spatial relationship between different sensors into the
world coordinate system using spatial calibration. Furthermore, when different sensors
collect data at differing frequencies, it is also necessary to match and calibrate the time of
each sensor to enable the time fusion of multiple sensors.

3.2.1. Spatial Calibration

To achieve spatial calibration, the coordinate systems of different sensors need to
be transformed, since their positions cannot completely coincide. The resulting spatial
coordinate information is then mapped onto the world coordinate system. Figure 3
illustrates the spatial relationship between the coordinate systems of the millimeter wave
radar and camera.
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(1) Transformation of the camera coordinate system

Assuming that the world coordinate system is represented as (XW , YW , ZW) and the
camera coordinate system as (XC, YC, ZC), where ZC denotes the axis of the light emanating
from the camera. In addition, the image coordinate system is (x, y), and the pixel coordinate
system is (u, v). Figure 4 illustrates the relationship among these four coordinate systems.
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Assuming that the human object is represented by a point, P, the method of calculating
its transformation from world coordinates to camera coordinates is as follows.

XC
YC
ZC
1

 =

[
R T
0 1

]
XW
YW
ZW
1

 (1)
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R represents a 3 × 3 rotation matrix, while T is a three-dimensional translation vector.
Based on the principle of pinhole imaging, the point P (xc, yc, zc) in camera coordinates

can be transformed into image coordinates using Equation (2):

x =
f XC
ZC

, y =
f YC
ZC

(2)

in Equation (2), f represents the focal length.
By transforming Equation (2) into homogeneous coordinates, we obtain the follow-

ing equation:

ZC

x
y
1

 =

 f 0 0 0
0 f 0 0
0 0 1 0




XC
YC
ZC
1

 (3)

If the point of (uo, vo) represents the pixel coordinate, the relationship between the
image and pixel coordinate is shown in Figure 5.
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The relationship between the two coordinate systems can be expressed as a matrix:u
v
1

 =

 1
dx 0 −u0
0 1

dy v0

0 0 1

[y] (4)

Equation (5) can be obtained by inverse transformation:x
y
1

 =

dx 0 −u0dx
0 dx v0dy
0 0 1

u
v
1

 (5)

The mapping of the world coordinate to the pixel coordinate is as follows:

ZC

x
y
1

 =

 1
dx 0 −u0
0 1

dy v0

0 0 1


 f 0 0 0

0 f 0 0
0 0 1 0

[R T
0 1

]
XW
YW
ZW
1

 (6)

Finally, we derive Equation (6) to get Equation (7).

ZC

x
y
1

 =

ax 0 u0 0
0 ay v0 0
0 0 1 0

[R T
0 1

]
XW
YW
ZW
1

 (7)
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ax 0 u0 0
0 ay v0 0
0 0 1 0

 is the intrinsic matrix of the camera and
[

R T
0 1

]
represents the extrinsic

matrix of the camera.
The process of mapping spatial information from the camera to the world coordinate

system is illustrated in Figure 6.
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Figure 6. Mapping process of camera coordinate system.

For our work, we captured 24 calibration maps at different angles to calibrate the
camera coordinate system [32]. These calibration maps were calibrated using MATLAB
functions, with each cell in the map measuring 25 mm × 25 mm. Figure 7a through
Figure 7d display the calibration maps, whereas Figure 7e shows the 3D calibration
space centered around the camera.

After the analysis, we can directly obtain the parameters of the camera. The parameters
are given in the following Equations (8)–(10):

Intrinsic matrix:

K =

802.151 0 307.383
0 802.318 205.909
0 0 1

 (8)

Rotation matrix:

R =

0.2216 −0.05552 0.0252
0.9931 0.00089 −0.7672
0.1146 0.21703 −0.7721

 (9)

Translation vector:
T =

[
−0.3827 0.2561 13.5561

]
(10)

(2) Transformation of the Millimeter Wave radar coordinate system

Millimeter-wave radar data and camera data are collected in different coordinate systems,
so we must transform the millimeter-wave radar coordinates into world coordinates. This
is assuming that the millimeter-wave radar has a coordinate system of (XR, OR, YR), while
the world coordinate system is (X, O, Y) and the camera is located h units above the radar.
The distance between the target P and the system is R, with an angle α between them. We
positioned the millimeter-wave radar and the camera along the same straight line, such that
the system is perpendicular to the plane where the target is located, resulting in YR = Y.
Figure 8 illustrates the transformation of millimeter wave radar coordinate system.

The formula for mapping the target P from the millimeter-wave radar coordinates to
the world coordinates is given in Equation (11).{

X = R× sin α
Y = h + R× cos α

(11)
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3.2.2. Time Calibration

Time calibration is an essential step for multi-sensor data fusion due to the inconsistent
data collection frequency among different sensors. Specifically, the millimeter-wave radar
collects data at a rate of 50 ms/frame, while the camera has a collection speed of 30 frames/s.
As the collection rate of the camera is much higher than that of the millimeter-wave radar,
it becomes necessary to downsample the camera data to match the time series of the
millimeter-wave radar data collection. The process of time calibration is shown in Figure 9.

The following are the steps involved in time calibration:
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1. Reading the CSV data.
2. Obtaining the timestamp of each sensor.
3. Reducing the frame rate of the camera from 30 frames/s to 20 frames/s.
4. Aligning the timestamp of the camera data with that of the radar data.
5. Data fusion.
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3.3. Data Preprocessing
3.3.1. Millimeter-Wave Radar Data

We collect radar data using the IWR6843, which has a bandwidth of 4 GHz, a chirp
duration of 100 µs, and an output power of 12 dBm. The radar can record the micro-Doppler
signals of moving people in the region of interest, and the format of each collected original
radar data is a long 1D complex array. However, the 1D array signal is not suitable to be
directly input into the model for training, so it needs to be preprocessed. As shown in
Figure 10, the radar system transmits a chirp signal and receives a reflected chirp signal
to produce an intermediate frequency (IF) signal. ADC sampling is carried out on the IF
signal, and then Fast Fourier transform (FFT) is used to extract the frequency information
of the signal. Fourier transform processing results in a frequency spectrogram that has
separate peaks denoting the presence of an object at a specific distance. After FFT, we get
the range, so this process is called Range-FFT. In order to better reflect the features of human
activities through Range-FFT results, we visualize the Range-FFT results as time-frequency
spectrograms and Range spectrograms.
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(1) Time-frequency spectrogram

In this work, we convert the 1D millimeter wave radar signal into a two-dimensional
(2D) time-frequency spectrogram with STFT (Short-time Fourier Transform) and provide it
in Equation (12).

STFTf (t, f ) =
∫ ∞

−∞
f (t)η∗

(
t′ − t

)
e−2π f tdt (12)

f (t) is the target signal which we want to transform, and η(t) is the window function
applied to the target signal.

The typical radar time-frequency spectrogram of five activities is shown in Figure 11.
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(2) Range spectrogram

Since human activities will also cause changes in distance, we can extract the motion
features of different human activities through the range spectrogram, which reflects the
changes in distance, as shown in Figure 12.
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(3) Noise reduction

Due to interference in the collection environment, the spectrogram of radar data
often contains noise. The commonly used image denoising methods are spatial filtering,
temporal accumulation, and machine learning and deep learning reconstruction. In this
paper, we use 2D median filtering to reduce noise in the spectrogram. The principle of
median filtering is to replace the value of a point in a digital image or digital sequence with
the median value of each point in the neighborhood of that point. The equation for the
median filter is shown in (13).

yi = Med{ fi−v, . . . . . . , fi, . . . . . . , fi+v}, i ∈ N, v =
m− 1

2
(13)

This method can change the pixel with large differences in the surrounding gray
value to a value close to the surrounding pixel value, thus reducing the noise points. The
spectrogram before and after noise reduction is shown in Figure 13a,b.
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(b) Spectrogram after noise reduction.

3.3.2. Video Data

In this work, we utilized OpenCV for video recording. The collection frame rate was
30 frames/s, and the video collection window size was 640 pixels. The duration of each
video recording was 3 s. We recorded five types of human activities: sitting, walking,
bending, squatting, and falling under two lighting environments: normal light and low
light. Since a video is essentially a sequence of images (referred to as frames) captured
and eventually displayed at a given frequency, we employed FFMPEG software to convert
the video data into individual image sequences. The process of video data conversion is
visualized in Figure 14.
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Figure 14. The process of video data conversion.

Once the video data was converted to image sequences, we resized the image se-
quences and normalized it to match the requirements of the deep learning model input.
The original size of each image was 640 × 480 pixels. After scaling the image size, it was
changed to 224 × 224 pixels. The result of the picture size reshaping is shown in Figure 15.
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Figure 15. The result of the picture size reshape. The diagram is divided into two parts, which show
the process of cropping the original size image to the size required by the model input. (a) The
original size image. (b) The reshaped size picture.

In order to ensure that the frame number of the two types of data matched during
model training, we reduced the frame number of the equispaced image sequence, while
keeping the timing features of the image sequences as much as possible. Ultimately, we
chose 20 frames for both the millimeter-wave radar data and the image sequences, which
were used as inputs for the model. Figure 16a–e show a part of the image sequences
captured under normal and low-light environments.

3.4. Model Design

We designed a combined CNN-LSTM network based on a convolutional neural net-
work (CNN) and long short-term memory (LSTM). The CNN was used to extract the spatial
features of the data, while the LSTM was used to model the temporal feature vector and
extract the temporal features.

3.4.1. Combined CNN-LSTM Network

As depicted in Figure 17c, the proposed model is based on a combination of CNN and
LSTM. The structure of the CNN, shown in Figure 17a, was incorporated in the proposed
model due to its ability to extract low-level spatial features from the data. This CNN
comprises five layers, each of which includes a Convolutional layer, Batch Normalization
(BN), a Rectified Linear Unit (ReLU), and a Pooling layer. The first four layers utilized
Max pooling, while only the last layer employed Average Pooling. The utilization of
Average Pooling in the last layer better retained the background features in the image and
transmitted them into the LSTM as compared to Max pooling. We added BN and ReLU to
the model to prevent overfitting, as these methods can normalize and nonlinearly map the
data. The architecture of this CNN not only enhances the generalization and representation
ability, but also accelerates the model’s convergence. We combined LSTM with CNN due
to its remarkable capacity for extracting high-level temporal features from the data. Unlike
RNN, which struggles to handle long-time image sequences, LSTM learns information
features about the relationship between each image sequence through the forget gate, input
gate, and output gate. In Figure 17b, the information on the cell state Ct−1 propagates across
the main channel. The hidden state ht and input Xt at state t modify Ct as appropriate,
after which it is passed to the next state. Finally, the information of the hidden state ht−1
utilizes the structure of gates in LSTM to modify the cell state and calculate the output, thus
solving the problem of the RNN gradient vanishing and exploding through three gates.
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3.4.2. Multi-Sensor Data Fusion Algorithms

Multi-Sensor data fusion refers to combining data from multiple sensors to enhance the
accuracy, reliability and generalization of an HAR system. By doing so, the issues caused
by single-sensor data, including environmental limitations, can be reduced. In our research,
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we explored three distinct data fusion algorithms: data level fusion, feature level fusion,
and decision level fusion, and conducted experiments to compare their performance.

(1) Data level fusion

Data level fusion is a method that handles raw data at the bottom of the system with
minimal data loss and maximum reliability. However, the performance of the data level
fusion algorithm relies heavily on the type of sensor being used. If the sensors collect
information that does not match, it becomes difficult to work with. Data level fusion
combines different sensor data by using timestamp validation and channel stack. Once
fused, the resulting data is input into the model for training and classification. Figure 18
shows the block diagram of the data level fusion process.
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(2) Feature level fusion

Feature level fusion does not directly fuse the original data. Instead, this method
extracts features from the data processed by each sensor and fuses the extracted features
for recognition at the end of fusion. To accomplish this, we utilized two independent CNN
networks: one CNN was used to extract radar spectrogram features, while the other CNN
extracted image sequence features. The extracted feature maps were then combined by
addition. After adjusting the size of these feature maps to ensure consistency, they were
successfully fused in an LSTM network model.

The size of the fused feature map is represented by Equations (14) and (15):

W ′ =
(W − F + 2P)

S
+ 1 (14)

H′ =
(H − F + 2P)

S
+ 1 (15)

in the equations presented, W and H represent the width and height of the feature
map before convolution, while W ′ and H′ are the width and height after convolution.
The size of the convolution kernel is represented by F × F. P refers to padding and S
represents stride.

(a) Feature addition

Before feature maps can be added to one another, they must first be converted to
the same size and data type. Feature values are then added together one-by-one. Upon
completion, the size and dimension of the feature map remain unchanged. If the extracted
feature map A has a size of (W, H, D), then the size of feature map B must also be (W, H, D).
The resulting fused feature map is represented by Equation (16).

ySum
i,j,d = xA

i,j,d+xB
i,j,d (16)
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In Equation (16), where 1 ≤ i ≤ W, 1 ≤ j ≤ H and 1 ≤ d ≤ D, ySum represents the
feature value in the fused feature map, while xA and xB represent the feature values of
feature maps A and B at point (i, j, d), respectively.

(b) Feature concatenation

Feature concatenation does not require feature maps to have matching dimensions.
This method concatenates feature maps along a specific data dimension, making it more
suitable for fusing data from different modes or with different dimensions. Suppose the
size of feature maps A and B are both (W, H, D), then the resulting fused feature map
values are represented by Equation (17).

yconcat
i,j,2d = xA

i,j,d concat xB
i,j,d (17)

In Equation (17), where 1 ≤ i ≤W, 1 ≤ j ≤ H, and 1 ≤ d ≤ D, yconcatenation represents
the feature value in the fused feature map. xA and xB represent the feature values of feature
maps A and B at point (i, j, d), respectively. The new dimension after concatenation is
represented by 2d.

As shown in Figure 19, the block diagram for feature level fusion is presented.
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(3) Decision level Fusion algorithm

The decision level fusion algorithm differs from the other two algorithms in that it
processes results output by each sensor at the end of the model. This allows for decision
fusion to be more widely applicable to different types of sensors. After independently
processing collected data, each sensor inputs its result into the decision module. The
decision section then assesses these values by calculating the mean value, maximum value,
distinguishing the contribution of each sensor through weighting, and other methods. The
final output value is the result of classification. Figure 20 illustrates the block diagram for
the decision level fusion process.
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Figure 20. The block diagram of decision level fusion.

(a) Decision level average fusion (DLAF)

The average value provides an intuitive reflection of the comprehensive information
contained within a set of data. While DLAF can take into account each sensor’s contribution
to the output prediction results, any change to a single value will cause the average value
to fluctuate. Additionally, the average value is more likely to be affected by extreme data
groups that contain the maximum and minimum values. Equation (18) shows the output
prediction results after applying DLAF.

y(x)=
1
n ∑n

i=1 g(xi) (18)

n represents the number of sensors, g(xi) represents the input value transmitted from each
sensor to the average fusion module, and y(x) represents the final classification result.

(b) Decision-level weights fusion (DLWF)

It is well-known that the importance of each sensor may not be equal. In DLWF, different
weights are assigned to the results of different sensor outputs in order to distinguish their
individual contributions to the system. The formula for DLWF is shown in Equation (19).

y(x) = ∑n
i=1 wig(xi) (19)

In Equation (19), g(xi) represents the input value of each sensor to the decision module,
wi represents the weight assigned to the output of each sensor, and y(x) represents the
final classification result. In addition, in order to ensure the validity of the weights, all
sensors are considered as a whole. As such, the range of the weight assigned to each sensor
is 0 < wi < 1 (with at least two sensors required for this method to work), and the sum of
all weights must equal one (∑n

i=1 wi = 1).

(c) Decision level maximum fusion (DLMF)

Each sensor’s output value already represents the classification result for its correspond-
ing module. DLMF assigns a weight of 1 to the sensor with the highest predicted probability.
For example, if Sensor A has an output prediction result of {p1, p2, p3, p4, . . . , pn−1, pn} and
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Sensor B has an output prediction result of
{

p′1, p′2, p′3, p′4, . . . , p′n−1, p′n
}

, then the output of
DLMF is shown in Equation (20).

P = max
(
{p1, p2, p3, p4, . . . , pn−1, pn},

{
p′1, p′2, p′3, p′4, . . . , p′n−1, p′n

})
, 1 < i ≤ n (20)

4. System Test
4.1. Experimental Data Collection

Experimental data was collected with permission from the volunteers. The group
consisted of six males and four females, ranging in height from 159 cm to 189 cm, weights
from 47 kg to 105 kg, and ages between 24 and 26. The volunteers performed five activities:
sitting, squatting, walking, bending, and falling, with each repeated 30 times in normal and
low-light environments. We ultimately collected a dataset comprised of 3000 combinations
of radar and camera data sequences. This dataset was divided into a training set and a test
set in an 8:2 ratio. More information about the dataset is shown in Table 5.

Table 5. Division of datasets.

Environment Proportion Activity (Quantity,
Proportion)

Normal light

Train set
(1200, 40%)

Test set
(300, 10%)

Sitting (300, 10%)
Squatting (300, 10%)
Walking (300, 10%)
Bending (300, 10%)
Falling (300, 10%)

Low-light

Train set
(1200, 40%)

Test set
(300, 10%)

Sitting (300, 10%)
Squatting (300, 10%)
Walking (300, 10%)
Bending (300, 10%)
Falling (300, 10%)

4.2. Evaluation Metrics

To assess the performance of our algorithm and network structure, we utilized several
evaluation metrics, including accuracy and confusion matrices.

(1) Accuracy

Accuracy =
TP + TN

TP + FN + FP + TN
(21)

True positive (TP), true negative (TN), false negative (FN), and false positive (FP) are
important metrics in evaluating the performance of a model. While TP represents the
number of true positives, TN indicates the number of true negatives, FN is indicative of the
number of false negatives, and FP represents the number of false positives. Accuracy is one
of the key indicators used to evaluate the performance of a model, with a higher accuracy
value indicating better performance.

(2) Confusion Matrix

The Confusion Matrix is often utilized to evaluate the quality of a classification model.
The abscissa represents the true label, while the ordinate represents the predicted label.
A greater number of predicted values distributed diagonally across the confusion matrix
indicates better model performance.

4.3. Experimental Results

In this section, the proposed CNN-LSTM model was employed to compare its classi-
fication performance with traditional CNN and RNN models under different input data
conditions. We also conducted an algorithm comparison experiment focused on the ap-



Sensors 2023, 23, 4750 22 of 28

plication of different fusion algorithms on the CNN-LSTM model. Different data fusion
methods were evaluated using criteria such as accuracy, confusion matrix, and ROC curve.

4.3.1. Model Comparison

To evaluate the performance of the proposed CNN-LSTM model, we conducted a
comparative analysis with traditional CNN and RNN models. Additionally, we compared
the recognition performance of these models in HAR using different types of input data.
Given that radar data is unaffected by lighting conditions, we exclusively used radar
data collected in low-light environments for comparative experiments. Conversely, we
compared camera data recorded in normal and low-light environments.

Table 6 shows that when millimeter-wave radar data is used as the model input, CNN,
RNN, and CNN-LSTM models generally exhibited lower accuracy in HAR than camera
data recorded under normal lighting conditions. However, in low-light environments,
millimeter-wave data outperformed camera data, confirming that millimeter-wave radar
is more appropriate for identifying human activities in such settings. The results of the
radar data analysis indicated that the CNN-LSTM model performed best among the three
models, with the RNN model exhibiting the lowest performance. This is mainly due to
the suitability of the RNN model for extracting time series features from data, whereas it
struggles to process spectrogram information. Furthermore, all three models demonstrated
excellent HAR accuracy for camera data captured in normal lighting environments, with
the recognition accuracy for all five activities exceeding 80%. Notably, the CNN-LSTM
model exhibited the best performance, achieving recognition accuracy higher than 96% for
all five activities, indicating the superior performance of this model for HAR.

Table 6. Accuracy of different models on human activity recognition.

Sensor Input Data Environment Model Activities

Sitting Bending Walking Squatting Falling

Radar Spectrogram Low-light
CNN 78.94% 89.74% 97.37% 77.50% 78.94%
RNN 33.92% 73.62% 17.21% 12.58% 31.56%

CNN-LSTM 95.83% 89.29% 100.00% 78.12% 80.00%

Camera

Image
sequence Normal light

CNN 94.48% 91.36% 98.87% 85.62% 98.23%
RNN 92.58% 94.27% 98.91% 80.23% 93.41%

CNN-LSTM 98.26% 97.87% 100.00% 96.12% 98.24%

Image
sequence Low-light

CNN 58.64% 39.59% 58.62% 36.87% 40.12%
RNN 70.53% 43.51% 52.09% 77.50% 62.91%

CNN-LSTM 63.17% 57.36% 53.37% 12.58% 69.23%

To better demonstrate the classification effects of camera and millimeter-wave radar on
HAR in low-light environments, we present the confusion matrix for camera and millimeter-
wave radar data in Tables 7 and 8, respectively. The values in the rows of the table represent
predicted labels, while the vertical axis represents true labels. The main diagonal of the
table represents accurately predicted values, and they are in bold and are highlighted with
a gray background.

Table 7. The confusion matrix of the CNN-LSTM model with camera data in low-light (unit: %).

True
Predict Bending Falling Sitting Squatting Walking

Bending 57 21 11 4 6
Falling 10 57 12 6 2
Sitting 9 13 63 2 4

Squatting 9 13 21 49 5
Walking 11 9 14 13 54
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Table 8. The confusion matrix of the CNN-LSTM model with radar data in low-light (unit: %).

True
Predict Bending Falling Sitting Squatting Walking

Bending 89 0 4 7 0
Falling 0 80 4 8 8
Sitting 0 0 96 4 0

Squatting 3 3 16 78 0
Walking 0 0 0 0 100

In order to demonstrate the misclassification of the combination of different low-light
data with the CNN-LSTM model, Tables 7 and 8 show the HAR results of low-light camera
data and radar data, respectively.

Table 7 shows that the CNN-LSTM model struggles to accurately classify activities
when using low-light camera data as the input. The classification accuracy for the five
activities ranges from 49% to 63%. Sitting has the highest accuracy, because changes in body
posture are most prominent compared to other activities. Additionally, sitting relies on
external objects, such as the chair, which provides more features for recognition. Squatting
has the lowest accuracy of HAR due to its similarity with sitting, which both involve
a change in leg position. However, squatting lacks reference points that could provide
additional features for HAR. Falling and bending are also commonly misclassified, as
there is a significant amplitude change in the body’s trunk during falling, while bending
exhibits a similar phenomenon, resulting in frequent misclassification between them. The
result shows that the method based on low-light camera data combined with a model is
difficult in HAR, and this method also leads to a large number of misclassifications between
confused activities.

Radar signals are not affected by lighting conditions. Table 8 shows that combining
radar data with a model has significantly improved the overall accuracy of HAR for five
activities compared to using low-light camera data. The method achieved a recognition
accuracy of 100% for walking, which is the highest among all activities. This is because
the distinct signal features of limb swinging during walking can be accurately classified,
distinguishing it from other activities. The result shows that the squatting activity had
the lowest accuracy of 78%, with a misclassification rate of 16% which was interpreted
as sitting due to similar signal features in leg and arm movement. The HAR accuracy
improved when millimeter-wave radar data was used instead of camera data in low-light
environments, resulting in lower overall activity misclassification rates. In Table 8, the
highest misclassification rate is 16% for misclassifying squatting as sitting, followed by
8% for misclassifying falling as squatting or walking. Given the stable performance of
millimeter-wave radar in low-light environments, we aim to improve HAR accuracy and
reduce activity misclassification rates by combining fusion algorithms with fusion data.

4.3.2. Algorithm Comparison

Our study aimed to enhance the performance of AI models in HAR under low-light
environments, and we therefore utilized a data set recorded in such conditions for our
experiments. Given that the proposed CNN-LSTM model outperformed both CNN and
RNN models in HAR, we solely conducted comparative experiments on data fusion
algorithms with the CNN-LSTM model, as shown in Table 9.

Table 9 demonstrates that the performance of the CNN-LSTM model significantly
improves when fusion data is utilized as the model input in comparison to using camera
or millimeter-wave radar data alone. In comparison to the HAR accuracy achieved by
the CNN-LSTM model with camera data in low-light environments, the data level fusion
algorithm, feature level fusion algorithm, and decision level fusion algorithm improve the
accuracy by at least 26.68%, 19.87%, and 21.92%, respectively. Similarly, when compared
to the CNN-LSTM model with millimeter-wave radar data in low-light environments,
the performance of the CNN-LSTM model combined with fused data also shows great
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improvement. For instance, the accuracy of squatting and falling improves by 6.64% and
10.27%, respectively. Among the fusion algorithms, data level fusion achieves balanced
accuracy for each activity, with an average recognition accuracy of approximately 95%,
except for sitting, with a recognition accuracy of 94.55%. Although the recognition accuracy
of feature addition and feature concatenation is higher than most single-input data in low-
light environments, their overall recognition accuracy falls short of other fusion algorithms.
The performance of all three decision level fusion algorithms surpasses that of the feature
level fusion algorithms. Each decision level algorithm excels at recognizing specific activi-
ties; for example, DLAF has a bending accuracy of 99.12%, while DLMF achieves a falling
accuracy of 98.98%. Overall, the data level fusion algorithm exhibits the best balanced
performance, with an average recognition accuracy of each activity reaching approximately
95%. The experimental results demonstrate that the fusion algorithms combined with the
CNN-LSTM model are effective in mitigating the problem of low HAR accuracy observed
with single data inputs under low-light environments.

Table 9. Accuracy of CNN-LSTM models under different fusion algorithms (low-light environments).

Algorithm
Activities

Sitting Bending Walking Squatting Falling

Data level fusion 94.55% 94.12% 98.04% 95.92% 95.91%

Feature level fusion Addition 86.96% 89.11% 90.53% 84.76% 93.52%
Concatenation 83.04% 92.38% 86.96% 85.29% 90.27%

Decision level fusion
DLAF 91.26% 99.12% 98.96% 92.11% 96.94%
DLWF 89.29% 95.24% 91.30% 86.27% 91.15%
DLMF 93.20% 97.35% 97.92% 93.86% 98.98%

In order to demonstrate the misclassification of the combination of different low-light
data with the CNN-LSTM model and different fusion algorithms, Tables 10–12 show the
HAR results of data level fusion, feature level fusion, and decision level fusion, respectively.
The values in the rows of the table represent predicted labels, while the vertical axis
represents true labels. The main diagonal of the table represents accurately predicted
values, and they are in bold and highlighted with a gray background.

Table 10. Confusion matrix of data level algorithm (unit: %).

True
Predict Bending Falling Sitting Squatting Walking

Bending 94 2 4 0 0
Falling 0 96 4 0 0
Sitting 0 4 95 2 0

Squatting 0 2 2 96 0
Walking 0 0 0 2 98

Table 11. Confusion matrix of feature addition and the feature concatenation algorithm (unit:%).

True
Predict Bending Falling Sitting Squatting Walking

Bending 89/92 5/4 4/4 4/0 0/0
Falling 1/5 94/90 1/2 5/2 0/1
Sitting 1/2 2/1 87/83 10/12 0/13

Squatting 0/0 1/2 1/12 85/85 3/1
Walking 1/2 2/2 3/5 3/3 91/87
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Table 12. Confusion matrix of the DALF, DLWF and DLMF algorithms (unit:%).

True
Predict Bending Falling Sitting Squatting Walking

Bending 99/97/95 0/0/3 1/2/1 0/1/1 0/0/0
Falling 2/0/5 97/99/91 0/0/3 1/0/0 0/1/1
Sitting 1/1/1 0/0/0 91/93/89 6/5/7 2/1/3

Squatting 0/0/0 1/0/0 1/6/11 92/94/86 0/0/3
Walking 0/0/2 0/1/1 0/1/5 1/0/0 99/98/86

According to Table 10, it can be seen that the HAR accuracy of the method based on
the data-level fusion algorithm combined with fusion data is above 90%, with a maximum
of 98% for walking and a minimum of 94% for bending. At the same time, the maximum
misclassification rate is only 4%. From the results, it can be concluded that compared with
the single low-light camera data and the single millimeter-wave radar data, this method
has greatly improved both the HAR accuracy and the misclassification rate. The data-level
fusion algorithm processes and fuses data collected by different types of sensors before
the model training, which can better extract data features and improve HAR accuracy.
Additionally, it is worth mentioning that this approach does not require any modifications
of data features in the model and doesn’t involve any post-processing of output results. As
a result, it is a method that can be easily implemented without requiring extensive work.

The values in the rows of the table represent predicted labels, while the vertical axis
represents true labels. The main diagonal of the table represents accurately predicted
values, and they are in bold and highlighted with a gray background. Table 10 contains two
confusion matrices, where the value on the left side of each cell represents feature addition
and the value on the right side represents feature concatenation. The values with the high
in bold represents better HAR accuracy, and the values with the low in bold represents a
better misclassification rate.

The results presented in Table 11 indicate that the HAR accuracy of falling, sitting,
and walking is higher, but the accuracy of bending is lower when feature addition is
used as opposed to feature concatenation. From the misclassification, we can see that the
feature addition method performs worse than the feature concatenation method. While
concatenating features can increase dimensionality and improve training, it also amplifies
the impact of noise in low-light camera data. On the other hand, feature addition maintains
dimensionality but enhances motion features by adding feature values from different types
of data. The findings suggest that both feature level fusion algorithms are superior to the
single low-light camera data, and both perform slightly better than the single millimeter
wave radar data. However, these methods fall short of the performance achieved by data
level fusion.

The values in the rows of the table represent predicted labels, while the vertical axis
represents true labels. The main diagonal of the table represents accurately predicted
values, and they are in bold and highlighted with a gray background. Table 12 contains
three confusion matrices, and from they are DALF, DLWF and DLMF from left to right. The
values with the high in bold represents better HAR accuracy, and the values with the low
in bold represents better misclassification rate.

In terms of HAR accuracy, DLWF has the three highest accuracies of 99%, 93% and 94%
for falling, sitting and squatting, respectively, while DALF has the two highest accuracies
of 99% for bending and walking. Referring to the misclassification rates, it appears that
both DLWF and DALF have lower rates than DLMF, with both rates being below 10%.
The highest misclassification rate of 11% is attributed to DLMF misclassifying squatting as
sitting. DLWF intervenes in the importance of different types of sensors in the system by
weighting final output of the classification values. The DALF averages the classification
values obtained from different types of sensor data to achieve more balanced results and
improves HAR accuracy. DLMF performs poorly among the three decision level algorithms.
It chooses the classification value with the largest output, which may select the classification
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that best represents the activity, but there is also a high risk of selecting a classification with
interference, resulting in low and unstable accuracy. This is why the misclassification rate
of this method is the highest among the three algorithms. Decision-level fusion algorithms
outperform single low-light camera data, single millimeter-wave radar data, and feature
level fusion algorithms. The combination of three decision level algorithms with fusion data
improves recognition accuracy and reduces the misclassification rates of some activities,
particularly the DLWF and DALF. It is difficult to extract features from both low-light
camera data and millimeter-wave radar data, making it challenging to effectively train
the model. However, decision level fusion algorithms operate on classification values
at the model end instead of the feature extraction module, making it easier to improve
performance. However, the performance of decision level fusion algorithms is worse than
that of data level fusion algorithms. Data level fusion algorithms process and fuse data at
the top of the model, which better meets the input and feature extraction requirements of
the model, and has lower complexity than decision level fusion algorithms.

5. Summary

We proposed an HAR system based on multisensor data fusion and the CNN-LSTM
model to improve the accuracy of human activity recognition in low-light environments.
Our multi-sensor acquisition system, consisting of a Logi C270 USB camera and TI 60GHZ
IWR6843 millimeter wave radar, was calibrated from both spatial and temporal aspects to
ensure effective data fusion. We preprocessed radar data to a time-frequency spectrogram
and a range spectrogram, and camera data to image sequence. We trained and tested our
proposed CNN-LSTM model on a dataset of 3000 samples collected from our multi-sensor
acquisition system. The experimental results show that the CNN-LSTM model performs
significantly better than traditional CNN and RNN models when using camera data under
normal light and millimeter-wave radar as the model input. We compared three fusion
algorithms and verified the effect on the CNN-LSTM model. The comparative experimental
results show that the data level fusion algorithm is the most balanced and suitable for
the system. Compared with camera data in low-light environments, the proposed system
improves the HAR accuracy by at least 26.68%, and reduces the misclassification rate to
2~6%. However, there are still certain limitations in our work. Although the system is a
multisensor one, and we can use millimeter-wave radar in HAR, thus avoiding the use of
cameras in places with high privacy, the presence of cameras still reduces people’s comfort
levels. Our model is trained with normal light camera data combined with radar data, but
was tested with low-light data. We tried to train the model by using low-light data, but the
results were not ideal. In the next work, we will assess the model’s ability to generalize and
adapt to different lighting conditions, which is crucial for the practical applications of HAR.
Furthermore, it is important to note that the volunteers participating in data collection were
all young people, whose activities may not be entirely representative of those of the elderly.
Therefore, collecting and analyzing data on the actual activities of the elderly in real-life
settings is a challenging and worthwhile objective for future research. In future work, we
will plan to further improve the accuracy of the model through feature extraction, data
processing, and fusion algorithms, and to collect more human activity data to build larger
datasets and improve the robustness of the model.

Author Contributions: Conceptualization, H.Z.; methodology, H.Z. and X.A.; software, H.Z.; vali-
dation, Y.L.; formal analysis, H.Z.; investigation, S.L. and Y.L.; resources, S.L.; data curation, X.A.;
writing—original draft preparation, H.Z.; writing—review and editing, X.A.; supervision, Q.L.;
project administration, Y.Z.; funding acquisition, Q.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Climbing Program Foundation of the Beijing Institute of
Petrochemical Technology (Project No. BIPTAAI-2021-002) and the fund of the Beijing Municipal
Education Commission, China, under grant number 22019821001.



Sensors 2023, 23, 4750 27 of 28

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Ethics Committee of the Beijing Institute of Petrochemical Technology
(protocol code: BIPTAAI002111009 and date of approval: 30 November 2021).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study. Written informed consent to publish this paper has been obtained from all volunteers.

Data Availability Statement: The data is not publicly available in order to maintain the privacy of
the volunteers.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References
1. De Miguel, K.; Brunete, A.; Hernando, M.; Gambao, E. Home Camera-Based Fall Detection System for the Elderly. Sensors 2017,

17, 2864. [CrossRef]
2. Zhao, Y.; Zhou, H.; Lu, S.; Liu, Y.; An, X.; Liu, Q. Human Activity Recognition Based on Non-Contact Radar Data and Improved

PCA Method. Appl. Sci. 2022, 12, 7124. [CrossRef]
3. Alonso, M.; Brunete, A.; Hernando, M.; Gambao, E. Background-Subtraction Algorithm Optimization for Home Camera-Based

Night-Vision Fall Detectors. IEEE Access 2019, 7, 152399–152411. [CrossRef]
4. Fan, K.; Wang, P.; Zhuang, S. Human fall detection using slow feature analysis. Multimed. Tools Appl. 2018, 78, 9101–9128.

[CrossRef]
5. Núñez-Marcos, A.; Azkune, G.; Arganda-Carreras, I. Vision-Based Fall Detection with Convolutional Neural Networks. Wirel.

Commun. Mob. Comput. 2017, 2017, 9474806. [CrossRef]
6. Feichtenhofer, C.; Pinz, A.; Zisserman, A. Convolutional Two-Stream Network Fusion for Video Action Recognition. In Proceedings

of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.
7. Kondo, K.; Hasegawa, T. Sensor-Based Human Activity Recognition Using Adaptive Class Hierarchy. Sensors 2021, 21, 7743.

[CrossRef] [PubMed]
8. Kang, J.; Shin, J.; Shin, J.; Lee, D.; Choi, A. Robust Human Activity Recognition by Integrating Image and Accelerometer Sensor

Data Using Deep Fusion Network. Sensors 2021, 22, 174. [CrossRef] [PubMed]
9. Xu, T.; Zhou, Y. Elders’ fall detection based on biomechanical features using depth camera. Int. J. Wavelets Multiresolution Inf.

Process. 2018, 16, 1840005. [CrossRef]
10. Zhang, D.; Gao, H.; Dai, H.; Shi, X. Two-stream Graph Attention Convolutional for Video Action Recognition. In Proceedings of the

2021 IEEE 15th International Conference on Big Data Science and Engineering (BigDataSE), Shenyang, China, 20–22 October 2021.
11. Khraief, C.; Benzarti, F.; Amiri, H. Elderly fall detection based on multi-stream deep convolutional networks. Multimed. Tools

Appl. 2020, 79, 19537–19560. [CrossRef]
12. Nandagopal, S.; Karthy, G.; Oliver, A.S.; Subha, M. Optimal Deep Convolutional Neural Network with Pose Estimation for

Human Activity Recognition. Comput. Syst. Sci. Eng. 2022, 44, 1719–1733. [CrossRef]
13. Wong, W.K.; Lim, H.L.; Loo, C.K.; Lim, W.S. Home Alone Faint Detection Surveillance System Using Thermal Camera. In

Proceedings of the 2010 Second International Conference on Computer Research and Development, Kuala Lumpur, Malaysia,
7–10 May 2010.

14. Batchuluun, G.; Nguyen, D.T.; Pham, T.D.; Park, C.; Park, K.R. Action recognition from thermal videos. IEEE Access. 2019, 7,
103893–103917. [CrossRef]

15. Yong, C.Y.; Sudirman, R.; Chew, K.M. Dark Environment Motion Analysis Using Scalable Model and Vector Angle Technique.
Appl. Mech. Mater. 2014, 654, 310–314. [CrossRef]

16. Ulhaq, A. Action Recognition in the Dark via Deep Representation Learning. In Proceedings of the 2018 IEEE International
Conference on Image Processing, Applications and Systems (IPAS), Sophia Antipolis, France, 12–14 December 2018; pp. 131–136.
[CrossRef]

17. Igual, R.; Medrano, C.; Plaza, I. Challenges, issues and trends in fall detection systems. Biomed. Eng. Online 2013, 12, 66. [CrossRef]
[PubMed]

18. Liu, L.; Popescu, M.; Skubic, M.; Rantz, M. An Automatic Fall Detection Framework Using Data Fusion of Doppler Radar and
Motion Sensor Network. In Proceedings of the 36th Annual International Conference of the IEEE-Engineering-in-Medicine-and-
Biology-Society (EMBC), Chicago, IL, USA, 26–30 August 2014.

19. Jokanovic, B.; Amin, M.; Ahmad, F. Radar fall motion detection using deep learning. In Proceedings of the 2016 IEEE Radar
Conference (RadarConf), Philadelphia, PA, USA, 2–6 May 2016. [CrossRef]

20. Erol, B.; Amin, M.G.; Boashash, B. Range-Doppler radar sensor fusion for fall detection. In Proceedings of the 2017 IEEE Radar
Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017. [CrossRef]

21. Sadreazami, H.; Bolic, M.; Rajan, S. Fall Detection Using Standoff Radar-Based Sensing and Deep Convolutional Neural Network.
IEEE Trans. Circuits Syst. II Express Briefs 2019, 67, 197–201. [CrossRef]

22. Tsuchiyama, K.; Kajiwara, A. Accident detection and health-monitoring UWB sensor in toilet. In Proceedings of the IEEE Topical
Conference on Wireless Sensors and Sensor Networks (WiSNet), Orlando, FL, USA, 20–23 January 2019.

https://doi.org/10.3390/s17122864
https://doi.org/10.3390/app12147124
https://doi.org/10.1109/ACCESS.2019.2948321
https://doi.org/10.1007/s11042-018-5638-9
https://doi.org/10.1155/2017/9474806
https://doi.org/10.3390/s21227743
https://www.ncbi.nlm.nih.gov/pubmed/34833819
https://doi.org/10.3390/s22010174
https://www.ncbi.nlm.nih.gov/pubmed/35009717
https://doi.org/10.1142/S0219691318400052
https://doi.org/10.1007/s11042-020-08812-x
https://doi.org/10.32604/csse.2023.028003
https://doi.org/10.1109/ACCESS.2019.2931804
https://doi.org/10.4028/www.scientific.net/AMM.654.310
https://doi.org/10.1109/ipas.2018.8708903
https://doi.org/10.1186/1475-925X-12-66
https://www.ncbi.nlm.nih.gov/pubmed/23829390
https://doi.org/10.1109/radar.2016.7485147
https://doi.org/10.1109/radar.2017.7944316
https://doi.org/10.1109/TCSII.2019.2904498


Sensors 2023, 23, 4750 28 of 28

23. Bhattacharya, A.; Vaughan, R. Deep Learning Radar Design for Breathing and Fall Detection. IEEE Sensors J. 2020, 20, 5072–5085.
[CrossRef]

24. Wang, C.; Lu, W.; Redmond, S.J.; Stevens, M.C.; Lord, S.R.; Lovell, N.H. A Low-Power Fall Detector Balancing Sensitivity and
False Alarm Rate. IEEE J. Biomed. Health Inform. 2017, 22, 1929–1937. [CrossRef] [PubMed]

25. Cornacchia, M.; Ozcan, K.; Zheng, Y.; Velipasalar, S. A Survey on Activity Detection and Classification Using Wearable Sensors.
IEEE Sensors J. 2016, 17, 386–403. [CrossRef]

26. Shoaib, M.; Bosch, S.; Incel, O.D.; Scholten, H.; Havinga, P.J.M. Complex Human Activity Recognition Using Smartphone and
Wrist-Worn Motion Sensors. Sensors 2016, 16, 426. [CrossRef] [PubMed]

27. Brezmes, T.; Gorricho, J.-L.; Cotrina, J. Activity Recognition from Accelerometer Data on a Mobile Phone. In Proceedings of the
10th International Work-Conference on Artificial Neural Networks (IWANN 2009), Salamanca, Spain, 10–12 June 2009.

28. Capela, N.A.; Lemaire, E.D.; Baddour, N. Feature Selection for Wearable Smartphone-Based Human Activity Recognition with
Able bodied, Elderly, and Stroke Patients. PLoS ONE 2015, 10, e0124414. [CrossRef] [PubMed]

29. Kuncheva, L.I. Combining Pattern Classifiers: Methods and Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2004.
30. Min, J.-K.; Cho, S.-B. Activity recognition based on wearable sensors using selection/fusion hybrid ensemble. In Proceedings

of the 2011 IEEE International Conference on Systems, Man, and Cybernetics, Anchorage, AK, USA, 9–12 October 2011;
pp. 1319–1324. [CrossRef]

31. Lecun, Y.; Fu, J.H.; Bottou, L. Learning methods for generic object recognition with invariance to pose and lighting. In Proceedings of the
2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 27 June–2 July 2004.

32. Zhang, Z. A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JSEN.2020.2967100
https://doi.org/10.1109/JBHI.2017.2778271
https://www.ncbi.nlm.nih.gov/pubmed/29990072
https://doi.org/10.1109/JSEN.2016.2628346
https://doi.org/10.3390/s16040426
https://www.ncbi.nlm.nih.gov/pubmed/27023543
https://doi.org/10.1371/journal.pone.0124414
https://www.ncbi.nlm.nih.gov/pubmed/25885272
https://doi.org/10.1109/icsmc.2011.6083808
https://doi.org/10.1109/34.888718

	Introduction 
	Related Work 
	HAR Based on Single Sensor Data 
	HAR Based on Multi-Sensor Data Fusion 

	System Design 
	System Construction 
	System Calibration 
	Spatial Calibration 
	Time Calibration 

	Data Preprocessing 
	Millimeter-Wave Radar Data 
	Video Data 

	Model Design 
	Combined CNN-LSTM Network 
	Multi-Sensor Data Fusion Algorithms 


	System Test 
	Experimental Data Collection 
	Evaluation Metrics 
	Experimental Results 
	Model Comparison 
	Algorithm Comparison 


	Summary 
	References

