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Abstract: Liquid metal (LM) has attracted prominent attention for stretchable and elastic electronics
applications due to its exceptional fluidity and conductivity at room temperature. Despite progress in
this field, a great disparity remains between material fabrication and practical applications on account
of the high surface tension and unavoidable oxidation of LM. Here, the composition and nanolization
of liquid metal can be envisioned as effective solutions to the processibility–performance dilemma
caused by high surface tension. This review aims to summarize the strategies for the fabrication,
processing, and application of LM-based nano-composites. The intrinsic mechanism and superiority
of the composition method will further extend the capabilities of printable ink. Recent applications
of LM-based nano-composites in printing are also provided to guide the large-scale production of
stretchable electronics.

Keywords: liquid metal; gallium; composites; stretchable electronics; printable

1. Introduction

Stretchable and elastic electronics have consistently been anticipated to realize sensing,
monitoring, diagnosing, and functionalizing on human–machine interfaces [1]. Materials
are the cornerstone of stretchable electronics, and have been rapidly innovated to integrate
electronics into everyday life; this is particularly the case of stretchable conductive materi-
als [2]. Liquid metal (LM), a common choice for conductive materials, possesses excellent
deformability and durability, exhibiting promising potential in eliminating the Young’s
modulus mismatch in rigid and flexible interfaces [3]. Gallium (Ga), and its eutectic alloys
with indium (In) and tin (Sn), display a lower melting point (typically <300 ◦C), high vapor
pressure, and high surface tension, which clearly shows the combination characteristics
of metals and fluids. More importantly, LM is widely applied in stretchable electronics
due to its supreme electrical conductivity (3.4 × 106 S m−1) and thermal conductivity
(8~82 W m−1 K−1) [4]. Researchers have found that liquid metals have characteristics
relating to multiple external stimuli responses, such as temperature, mechanical force,
chemical environment, electric field, dielectric field, magnetic field, and even light [5]. As a
result of innovative design principles and processing methods, LM has successfully gener-
ated many application prospects, e.g., stretchable sensing systems [6–8], electrodes [9,10],
actuators [11,12], thermoelectric wearables [13], and energy storage systems [14,15].
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Printing technology has many advantages, especially for large-scale and rapid prepa-
ration of electronics. Compared to other pattern technologies, such as lithography or
vacuum-based processes (e.g., evaporation), which typically require cumbersome and
rigorous processes, printing technology applied to electronics usually requires one-step
manufacturing and has a low cost. The main issues relate to the high-performance conduc-
tive ink and the high-resolution and high-throughput printing. To date, gallium and its
alloys have been found to exhibit natural fluidity at room temperature and high conductiv-
ity, and are known to be desirable choices for preparing electronic inks. Nevertheless, it
still remains an on-going challenge to directly process or pattern LM materials [16]. For
example, due to its high surface tension, LM is maintained as droplets or particles in
most cases [17], which leads to the weak interface compatibility between liquid metal and
substrates. The poor substrate adaptability of LM materials causes an obvious mismatch
between the actual design pattern and a loss in the printing speed, and may damage the
printed products. Many approaches have been proposed to improve selective wettability
during printing, including the pre-treatment and pre-pattern on substrate materials [18,19].
However, due to the inconvenient process, it is difficult for selective printing technology
to be generalized in large-scale production. Recently, from a material standpoint, the
multi-scale (from micro to nano) combination [20] of other materials with LM (e.g., the
composites of metals [21], magnetic materials [22], elastomers [23], and 2D materials [22,24])
has become a popular approach to further enrich and improve its functions, as shown in
Figure 1. Enhanced by compositing, these liquid metal-based nano-composites exhibit
sufficient capabilities to meet the requirements of printable stretchable electronics. More
specifically, the most common composite that consists of LM and its intrinsic oxidation
layer enables a rheological property modification of LM, which enhances the interfacial and
intermetallic wettability [25]. Through this compounding method, the variety of flowable
metals has been fully extended. In addition, on the basis phase of LM oxide, some rigid
metals with high conductivity (Ag [26], Au [27], Cu [28]), magnetic properties (Fe [29],
Ni [30]), and thermal conductivity have been innovatively introduced to improve the
corresponding properties. The resulting materials display properties that more closely
resemble those of semifluid sticky ink, with low surface tension and high viscosity. The
semifluid LM paste [31] can be easily attached to various substrates, which may enable
versatile approaches (such as inkjet and screen-printing technology) for direct patterning of
the liquid metal.

Although the oxides can change the material composition to improve interfacial
wetting, the intrinsically fragile oxide shell (usually 0.7–3 nm) [32] stabilized LM particles
are susceptible to rupture or leakage under strain or pressure stimuli [33,34]. To address
this concern, surface ligand modification is potential solution to enable mechanical property
and chemical function enhancement of the oxide layer. The LM–ligand molecule composite
systems present a stable physical status in dispersion, storage, and solution processing [35].
Printable inks composed of liquid metal nanoparticles retain unique and desirable material
properties suitable for high-resolution printed electronics. Furthermore, they can also
be exploited as surface intermediates to initiate free radical polymerization [36,37], atom
transfer radical polymerization [38], and rapidly gelling [39]. In summary, the LM-based
nano-composites have exceptional electrical properties, infinite deformation, and good
dispersibility in elastomer matrix, thus promising widespread applications in stretchable
conductors and multi-mode sensing systems [40].

The current review mainly focuses on the fabrication, combination mechanism, and
subsequent application of Ga-based liquid metal composites in printable stretchable elec-
tronics. To provide an in-depth and comprehensive understanding of recent works, this
review elaborates the characteristics and advantages of each composite in detail. Due to the
properties provided by multiple additives, the LM nano-composites can be fully utilized in
the application of printable stretchable electronics, benefiting from their stable dispersion
and sufficient interactions with substrates. Correspondingly, different printing technologies
are generalized into the two categories of contacting (mask-based) and non-contacting
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(nozzle-based) modes. After providing insights into the application of printable stretchable
electronics, the key challenges and future direction are discussed from the perspectives of
material improvement and device performance optimization.
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Figure 1. Schematic illustration of liquid metal-based nano-composites and the application of
printable stretchable electronics.

2. Liquid Metal-Based Nano-Composites

The original bulk LM trends to maintain a high surface tension, which is not compatible
with various advanced additive processing technologies (such as inkjet, aerosol printing,
and direct writing). Basically, the interaction at the substrate–ink interface dominates
the entire process of printing, storage, and application. To reduce the surface tension of
LM, a well-acknowledged strategy of size nanolization has been proposed to realize a
large surface area of the oxide layer, which serves as a stabilizer for LM nanoparticles or
LM–additive interfaces. The principle of surface tension reduction can be attributed to
the reduction in particle size, and the introduction of oxides or other components. Based
on this size effect of micro/nano materials and the new function introduced by additives,
applications of the LM nano-composites have been tremendously expanded. The size of the
liquid metal particles is related to the stability of the printing process and the line width of
electronics. Overall, the LM-based nano-composites can be described as material systems in
which LM alloys such as EGaIn or Galinstan are suspended as nanoscale droplets in other
continuous phases. The earliest printed materials are all conductors, and LMs having high
conductivity are often employed in the form of the LM and other metal materials in actual
processing. The metal nanoparticles are expected to further improve the conductivity of
LM ink, whereas the advantage of elastomers as composites is that encapsulation steps for
subsequent printed devices can be eliminated. The key to obtaining LM nano-composites
is to use a series of approaches to combine LM and other materials through the interface, or
full recombination to obtain high-performance printable nano-inks.

At present, there are many methods for the preparation of LM-based macro- to nano-
composites. Ultrasonic treatment [41] (Figure 2a), the most common method for particle
nanolization, can shrink bulk LM to nano-sized particles by generating high mechanical
energy waves, which can simultaneously in situ functionalize the surface with ligands,
polymer, or organic or inorganic materials [42]. Ultrasound can not only disperse droplets,
but also reaggregate nanoparticles. The LM-based nanoparticles have a low freezing point
under certain conditions and can maintain a liquid phase in a wider temperature range,
although there are unknown effects or physical properties. Furthermore, for facile mechan-
ical treatment and scalable production, a shear mixing method [43] (Figure 2b) was also
developed to fabricate the nano/micro-sized LM particles. In this process, the secondary
oxide shell is formed continuously and prevents the coalescing of LM, and is particularly
utilized to introduce intrinsically insoluble additives (magnetic powder, silicone oil and
nano-clay) [44]. Structural and functional composites can be generally described according



Sensors 2022, 22, 2516 4 of 18

to the specific application. For example, the LM droplets encapsulated in polymer can
systemically realize structural separation and performance transition (conductivity and
dielectric). In addition, the nebulization [45] (Figure 2c) and physical vapor deposition [46]
(Figure 2d) of LM enables nanoparticles with a uniform size and better sphericity than
those using ultrasonic treatment. It is also noteworthy to mention that micro-LM particles
can be easily fabricated by injecting the LM through a syringe and rolling it on the target
materials [47] (Figure 2e). LM has the characteristic of isolating from the surrounding
environment, and attaches to sticky materials during the extrusion process.
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Figure 2. Basic synthesis methods of liquid metal-based nano-composites. (a) Ultrasound. Reprinted
with permission from Ref. [41]. Copyright 2020 MDPI. (b) Shear mixing. Reprinted with permission
from Ref. [43] Copyright 2018 John Wiley and Sons. (c) Nebulization. Reprinted with permission
from Ref. [45] Copyright 2018 John Wiley and Sons. (d) Physical vapor deposition. Reprinted
with permission from Ref. [46] Copyright 2018 Elsevier. (e) Surface rolling coating. Reprinted with
permission from Ref. [47] Copyright 2017 Royal Society of Chemistry.

2.1. Liquid Metal-Oxide/Metal Composites

LM is known to have an easily functionalized and designable interface, and the spon-
taneously formed LM oxide layer helps prevent coalescence of LM, which also prevents
effective electrical connections between the dispersed particles. The outer shell of these
metal oxides severely limits the electrical performance of LM-based printed electronics.
In order to obtain conductive LM particles, researchers have made tremendous efforts re-
garding the composition of the shell, including oxide layer modification and metal coating.
Veerapandian et al. revealed that hydrogen doping (increasing defect concentration) intro-
duced by the ultrasonication in aliphatic polymers [48] (Figure 3a) enables the passivate
oxide skin with high conductivity and deformability. The printed circuit line with ink made
by the H-doped MPs possesses a conductivity (25,000 S cm−1) similar even to that of the
bulk LM. In addition, another easy-to-understand method exists to eliminate the electrical
limitation by coating highly conductive metal (e.g., Pt [49]) on LM particles, which is also
known as the galvanic replacement reaction [50]. The metal coating is available through the
ultrasonication of LM in the solution with the metal ion precursor (e.g., KAuBr4 [27]). It is
worth mentioning that the pH plays significant role in the etching effect of the oxide shell.
For instance, the composition and morphology of LM particles with a CuxO layer would
change massively upon a slight variation in pH [51] (Figure 3b). In addition, Zheng et al.
obtained core–shell structural particles (Ag@LMPs) that exhibit excellent initial conductiv-
ity (8.0 Ω sq−1) by wet-chemical deposition [26]. Specifically, a silver mirror reaction occurs
in the solution consisting of precipitants, metal salts, and LMP dispersion (glucose and
Ag(NH3)2OH). Shown in Figure 3c, the porous lamination and heterogeneous structures
(thickness from 55 to 259 nm) show its high conductivity. Furthermore, the physical vapor
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deposition (e.g., sputtering) exhibits another means of realizing metal coating, such as
conductive LM-oxide/Pt composites [49]. These surface engineering methods can increase
the conductivity of liquid metal particles when they are actually used as printing ink.

On the contrary, obvious interface feature transitions exist as oxidation increases with
regard to the surface tension, mechanical strength, and wettability [52]. These transitions
help LM to internalize additive materials, and thus possess excellent performance [53]. The
typical approach is the mechanical stirring of LM in air to increase its oxidation, which may
facilitate the uniform mixture of metal/metal or metal/nonmetal. Cao et al. mixed NdFeB
microparticles with the LM matrix and then fully magnetized the composites through a
strong impulse of the magnetic field [54] (Figure 3d). As the stirring time increased, the
liquid-like suspension gradually changed into a solid-like composite, which presented
unique electrical and magnetic responses (Figure 3e). Compositing other phase metal
materials through the bulk internalization of liquid metal improves the conductivity and
functionality of the bulk material. Recently, Hajalilou et al. systematically studied a series of
biphasic LM composites [55], which combine the fluidity and self-healing properties of LMs,
and the printability and elastic integrity of elastomers. In the selection and preparation of
composite materials, more consideration should be given to the influence of the type, shape,
and size of filler materials on the properties, microstructure, and even the bonding form
between the filler and LM. The electromechanical coupling properties of these composites,
in addition to their adhesion to the substrate and mechanical stability under external
loading, have a large impact on the morphology and stability of printed electronics.
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Copyright 2018 American Chemical Society (c) Ag-coated LM. Reprinted with permission from
Ref. [26] Copyright 2020 John Wiley and Sons (d) Illustration of the FM-LM preparation process.
(e) Magnetization hysteresis loops of FM-LM under different NdFeB weight fractions. Reprinted with
permission from Ref. [54] Copyright 2020 John Wiley and Sons. (f) The constitutional materials and
synthesis of binary and trinary LM composites. Reprinted with permission from Ref. [55] Copyright
2022 John Wiley and Sons.

2.2. Liquid Metal-Ligand Molecule Composites

The earliest metal inks were usually metal nanoparticles or metal nanowires dispersed
in an appropriate solvent containing some specific additives to obtain a certain rheological
behavior. This is conducive to the formation of uniform and continuous patterns during
the printing process, and the attachment to the substrate. In order to fabricate functional
devices by various printing techniques, the key step is to synthesize conductive LM-based
nanomaterials. Because the ink should provide high conductivity of the printed pattern,
it is essential that the conductive nanomaterials should have a high concentration and be
non-aggregated and stable in the ink. The physical properties of the ink, such as viscosity
and surface tension, are also critical to achieving high printing accuracy and resolution.
From this point of view, formulations for printable liquid metals must prevent precipitation
and aggregation. Although the presence of an oxide layer can maintain the colloidal
structure and mechanical properties of LM [56], the shell is still too mechanically fragile and
chemically sensitive to stabilize LM (especially particles). The homogeneous and colloidal
LM nanoparticle suspensions are solution-processable and inkjet printable. The notable
strategy for stabilizing and functionalizing LM particles is the assistance and decoration
through ligand molecules. Under the excitation of ultrasonic energy, ligand molecules and
LM particles undergo complex physicochemical transformation. Of course, the size and
morphology of LM nanoparticles can be effectively regulated by selecting the appropriate
ligand molecules and controlling ultrasonic parameters (time, power, temperature, ligand
concentration, and pH) [57] (Figure 4a). Moreover, the LM–ligand molecules composites can
still inherit the dispersibility, surface charge, surface functional groups, and even the surface
activity of the ligand molecule. For instance, inspired by the adsorption of alkane thiols
on gold’s surface, the sulfhydryl molecule-induced self-assembled monolayers (SAMs) on
LM can compete with the new-birth oxide layer to suppress further oxidation [58]. The
high-resolution transmission electron microscope (HRTEM) image (Figure 4b) indicates
that the bilayer (gallium oxide layer and organic matter layer) structure can efficiently
stabilize the LM particles. Nanoparticles with narrow distribution and stable dispersion
in solvents can be obtained by subsequent centrifugation or filtration. The LM–thiol
composites exhibit good dispersibility in alcohol (methanol, ethanol, and 2-propanol),
which is the common solvent for sulfhydryl ligands. The processibility of LM–ligand
molecule composites in aqueous solution will be greatly improved and broaden because
water is a versatile and non-toxic solvent. Unfortunately, the existence of water and oxygen
molecules can inhibit oxidation from pristine LM to GaOOH [59]. Simultaneously, the
excessive temperature (>70 ◦C) in water will induce LM to generate a morphological
transformation accompanied with a dealloying process [60] (Figure 4c). The suitable
aqueous ligand must possess strong affinity to bonding with the LM surface and anti-
oxidation ability. For example, the aqueous polymers and their derivatives, equipped with
abundant hydroxyl, ether, carbonyl, and amine groups, can strongly combine with the
metal/metal oxide (Ga/Ga3+) surface. Liu et al. utilized poly(vinyl pyrrolidone) (PVP) as
a protective layer (up to 20 nm) to encapsulate LM nanoparticles [61] (Figure 4d). These
LM–PVP composites are stable against long-term preservation in water up to 30 days
and in ethanol up to 60 days. In addition, the PVP coating shows solvent responsive
swelling/shrinking behaviors (Figure 4e). Similarly, polyvinyl alcohol (PVA) [62] was
also used for uniformly dispersed LM particles, which came from the stable interaction
between the hydroxyl group and the surface oxide layer. Recent work demonstrated that
the phenolic compounds rich in catechol and pyrogallol groups can chelate the liquid metal
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surface and alleviate its oxidation. Ligand molecules such as dopamine [63], gallic acid [64],
and tannic acid [65] may contribute to a strong coordination interaction between Ga3+

with catechol groups, which was established in iron-catechol chemistry [66]. It has to be
mentioned that the siliconized LM can be obtained by the siliconization reagent reaction
using the hydrogen bonds on the surface of gallium oxide [67] (Figure 4f). These LM–ligand
molecule composites with high dispersion stability, sustainability, and functionality will
provide sufficient convenience for large-scale processing and patterning.
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3. The Printable Stretchable Electronics of LM-Based Nano-Composites

In the previous section, we introduced the synthesis of LM-based nano-composites;
we continue to outline the targeted printing technologies compatible with inks and their
characteristics below. Typically, printing techniques can be divided into two broad cate-
gories: non-contact patterning (or nozzle-based patterning) and contact-based patterning.
The main difference between different printing technologies depends on the principle
of printing the ink to the substrate. Non-contact technologies include inkjet printing,
electrohydrodynamic (EHD) printing, and aerosol jet printing, whereas screen printing,
gravure printing, and flexographic printing are examples of contact technologies. It is
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worth mentioning that due to the fluidity of liquid metal, it can be patterned and processed
in ways that cannot be achieved with solid metal, such as 3D printing [68]. Here, we mainly
highlight the recent progress made in planar patterning of LM-based printable electronics.

3.1. The Printing of LM-Based Nano-Composites

For the purpose of soft and stretchable properties in electronics, there exist many
challenges in developing LM-based printed devices that differ from conventional rigid
electronics. To date, two dominant strategies of LM-based nano-composites patterning
have been developed: (1) direct extrusion of stabilized LM composites (nozzle dispensing,
ballpoint writing, and inkjet printing) and (2) deposition of the LM composites on substrate
with a specific pattern (screen printing or transfer printing). Thus, the basic parameters
for printable stretchable electronics are printing resolution, adhesion, conductivity, and
deformability. Equipped with enhanced compositions, structures, and functional groups,
the proposed LM nano-composites represent a great improvement in terms of conductivity,
interfacial compatibility/wettability, and stability. In addition, coupled with its fluidity and
self-healing ability, liquid metal-based nano-composites can be promising candidates for
stretchable and elastic electronics. For example, the fluid properties allow direct injection
and printing of liquid metal to form patterns using a variety of off-the-shelf equipment
such as syringes and printers. These high-throughput and scalable processes enable direct
inkjet printing of LM-based nano-inks onto elastomeric glove surfaces, forming strain
gage arrays with complex wiring and contact pads [69] (Figure 5a). LM doped with
various metallic or non-metallic materials can be designed to prepare ideal functional
materials with tunable electrical, mechanical, and chemical properties, further expanding
the processable range of LM-based nano-composites. The composite stirring of LM and
Ni particles with different mass fractions can change its previous surface properties to
obtain suitable adhesion and conductivity, and finally it can be directly brushed on the
flexible substrate [70] (Figure 5b). The ability of liquid metal to flow freely through channels
allows the design of reconfigurable devices. Utilizing the self-wetting property of LM in
air, the printed route maintains the initially deposited feature shape during formation
and encapsulation [71]. Tabatabai et al. incorporated microcontact printing and stamp
lithography to produce LM circuits. In contrast to existing fabrication techniques, this
extensible method can be used to produce circuits with any planar geometric feature,
including electrodes with a large planar area (involving multiple intersections), intersecting
and closed-loop wires, and combs with multiple terminal electrodes [72] (Figure 5c). There
are still many challenges in printing methods to further reduce the feature size of liquid
metal-printed traces to the micron level.

Due to the innovation in material systems and improvement in the printing technology,
the printing characteristic parameters (line width, resolution) based on LM materials are
constantly revealing new indicators [73]. Gozen et al. proposed an innovative strategy to
fabricate high-density stretchable microelectronic devices with line widths and spacings
as small as 2 and 1 µm, respectively [74]. As shown in the fabrication method illustrated
in Figure 5d, the first step entails creating an elastomer mold with micron-scale concave
features (microchannels), then using the roller to spread the LM on the pre-prepared
mold. Finally, the LM-filled microchannels are sealed with an additional layer. Sun et al.
introduced a facile but reliable process combing stencil lithography and centrifugal force
assistance to realize micro-scale patterning of LM on an elastomer surface [75] (Figure 5e).
Kim et al. presented a nano-fabrication strategy that combined electron-beam lithography
for microstructures with soft lithography for pattern transfer. The approach enabled
a high-resolution and high-density all-soft LM thin-film pattern with feature sizes as
small as 180 nm and 1 µm line spacing [76] (Figure 5f). The printing methodologies of
LM-based nano-composites also depend on the morphology and rheology of the ink, in
addition to the dimensional requirements of the printed product (feature parameters,
processing area, scalability, etc.). The semi-LM paste, gained from the mixture of LM and
other metal, oxide, and magnetic additive elements, is a sticky viscous ink that can be
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easily printed for novel and complicated stretchable circuits [77–79]. For example, nano-
clay was also used to improve the adhesion of LM [80]. The LM–clay mixture, having
great conductivity, low electric hysteresis, and excellent damage mitigation ability, was
accessible for in situ rapid printing (Figure 5g). Additionally, Ma et al. developed a versatile
approach for direct patterning of LM using a magnetic field [81] (Figure 5h). These liquid
metal-oxide/metal composites can further expand the composition system to fulfil the
rheological requirements for universal printing methods without other post-processing. In
addition, the ligand molecule-stabilized liquid metal nanoparticles can also be patterned
through various techniques, including inkjet printing, direct writing, and dyeing. For
example, Hao et al. utilized dialdehyde xylan (DAX) to fabricate sustainable, stable, and
catalytic nano-inks for universal inkjet printing [82] (Figure 5i,j). The smaller the size
of the ink, the higher the stability, and the line width of the printed electronic devices
is reduced accordingly. Simultaneously, the stabilizing LM nano-ink having a low cost,
long-term stability, biocompatibility, and reaction activity would enhance the stability and
functionality of printed electronics. Nevertheless, the ligand-mediated nanoparticles are
isolated from each other instead of being in contact to form a conductive pathway. These
residual reagents on the surface of LM particles limit the conductivity of printed electronics
to a certain extent. Additional post-processing procedures, usually defined as sintering, are
essential to promote the coalescence of these particles [83]. For example, Li et al. applied
tension or pressure to rupture the encapsulated oxide shell trace on the depositing paper,
and the overflowing area of the LM spontaneously formed a highly conductive path [84].
In contrast with the mechanical sintering methods, the laser sintering methods can focus
a laser beam to efficiently and precisely rupture and ablate LM particle oxide shells [85].
The initial non-conductive high-concentration LM–silicone (LMS) ink can be activated with
freezing to form continuous conductive networks [86].

LM-based printed electronics exhibit an excellent combination of electrical conductiv-
ity and stretchability, and lower electrical hysteresis and infiltration network degradation,
than rigid materials under strain. However, the high surface tension and oxidation of
gallium in air results in great challenges to high-resolution LM patterning. In order to
further improve the printing quality and simplify pattern process, researchers have de-
signed many ingenious printing strategies and structures that can effectively enhance
the accuracy of the printing trajectory and the bonding force of the printing interface. It
is noteworthy that the selective wettability is directly related to pattern uniformity and
resolution. Poor wetting will make the LM difficult to extrude, or produce features with
poor accuracy and repeatability, resulting in inconsistent print and placement positions.
Silva et al. realized selective wetting of printing circuits on PVA-coated substrates [18].
In addition, the interactions between numerous hydroxyl groups (-OH) in hydrogel and
the native gallium oxide (Ga2O3) can also spread LM droplets [87]. The micropatterned
LM droplets can autonomously reconciliate their surface to a hydrogel for a continuously
conductive interface having 1500% elongation (Figure 6a). Well-defined pattern features
for liquid metal can be directly placed on the substrate in one step by selective wetting.
As shown in the process in Figure 6b, Zhu et al. adopted screen printing to define the
locations and morphologies as desired pattern features on the elastomer substrate [35].
Then, they deposited a layer of polydopamine (PDA) as the self-polymerization initiating
layer to realize surface functionalization, which can also subsequently facilitate deposition
of Cu film as a LM-reactive wetting layer. The patterned LM-based circuits exhibit high
resolution (100 µm), excellent electrical conductivity (4.15 × 104 S m−1), and ultrahigh
stretchability (1000% tensile strain). However, in conventional LM-based stretchable elec-
tronics, the obvious obstacle of liquid leakage exists, which may result in performance
deterioration and, ultimately, electrical failure. Leakage usually occurs at junctions between
adjacent materials having different mechanical properties, i.e., heterogeneous interfaces
between soft polymer substrates and rigid electrodes, because the weak bonding is unable
to withstand stresses resulting from external deformations. Kim et al. proposed a printing
scheme to realize reliability enhancement by local strain control and a leak-free design [88]
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(Figure 6c). In order to reduce the interface heterogeneity of the printing layer, a glass fiber
reinforcement (GFR)-based modulus-gradient structure was employed in the stretchable
substrate to satisfy intra-structural and external device mounting stability (Figure 6d). The
embedded AgNW-elastomer composite structures can hermetically seal the LM, resulting
in a leakage-free characteristic (Figure 6e). Due to the transition interface from rigid to
flexible, the device does not experience signal attenuation under external stress stimulation.
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nanoparticle-based inks. Reprinted with permission from Ref. [69] Copyright 2015 John Wiley
and Sons. (b) The printing of Ni-LM on Eco-flex substrate via rolling brush. Reprinted with per-
mission from Ref. [70] Copyright 2018 American Chemical Society. (c) The microcontact printing
(µCP) of an LM-based circuit. Reprinted with permission from Ref. [72] Copyright 2018 American
Chemical Society. (d) The deposition process of LM-based electronics with micro-scale line width.
Reprinted with permission from Ref. [74] Copyright 2014 John Wiley and Sons. (e) The Stencil
Lithography and Centrifugal Force-Assisted Patterning of Liquid Metal. Reprinted with permission
from Ref. [75] Copyright 2021 American Chemical Society. (f) Nanofabrication process based on
hybrid lithography for submicron-scale LM patterning. Reprinted with permission from Ref. [76]
Copyright 2020 Springer Nature. (g) Schematic image of the procedure for printing based on con-
ductive LM nano-clay. Reprinted with permission from Ref. [80] Copyright 2021 Royal Society of
Chemistry. (h) Direct patterning of LM using a magnetic field. Reprinted with permission from
Ref. [81] Copyright 2019 John Wiley and Sons. (i) Image showing the printing of DAX/LM nano-inks
on paper using a commercial inkjet printer. (j) SEM images showing that the printing path can be
activated by the erasing method. Reprinted with permission from Ref. [82] Copyright 2021 Royal
Society of Chemistry.
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LM droplets’ surface reconciliation on hydrogel during stretching and releasing. Reprinted with
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(c) Unit structure of the LM-based circuit including two design strategies for reliability enhancement.
(d) The homogeneous interfaces between the matrices with different elastic moduli. (e) The leak-free
structure of embedded AgNW networks. Reprinted with permission from Ref. [88] Copyright 2022
American Chemical Society.

3.2. The Application of Printable LM-Based Stretchable Electronics

LM-based stretchable electronics are widespread in human–machine interfaces (HMIs),
wearable health monitors, and soft robotics. Printing methodologies allow for efficient
production of customizable and scalable function electronics (sensors, conductors, actuators,
etc.). More importantly, the electrical response of LM-based stretchable electronics is critical
to practical application.

High-performance stretchable conductors (electrodes) are critical to offering stretch-
ability and conductivity [89]. Due to the natural skin affinity of LM, printed LM-based
stretchable conductors are highly desirable for precise electric signal transmission in smart
epidermal electronics. Ma et al. reported a stretchable conductor fabricated by printing
liquid metal onto an electro-spun elastomeric fibrous mat [9]. Benefiting from the in situ
binding of the LM droplets with the lateral and vertical mesh-like fiber structures, the
stretchable conductor simultaneously offered high permeability in air, stretchability (over
1800%), conductivity (1.8 × 106 S m−1), and electrical stability (washable). The repeated
electrospinning and printing processes were performed to fabricate vertically stacked
multilayer electrical circuits for monitoring electrocardiography (ECG) signals in daily
life (Figure 6a,b). The stretchability and mechanical durability of the liquid metal nano-
composite-based conductors were significantly improved compared to earlier reported
elastic conductors. During stretching, the encapsulated EGaIn is released from the broken
Ga2O3 shells, which preserve the continuous electrical interconnections. In addition, the
biphasic pattern of liquid metal composites can spatially regulate electrical transforma-
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tion behavior caused by the unique interface between liquid metal and substrates [90].
The hard segment between the soft liquid metal and substrates can assume the role of
stress concentration.

Simultaneously, the LM-based printed stretchable sensors can be exploited to monitor
human electrophysiological signals [91]. The spherical structure of LM shows an obvious
mechanically induced electrical response, which display a series of novel phenomena
under strain. According to Ohm’s law, the resistance (R) of a conductor is related to its
length (L) and resistivity (ρ), and is directly proportional to its cross-sectional area (S)
and inversely proportional to it. Thus, most elastic composites exhibit a negative piezo-
conductive effect, which means the conductivity decreases under tensile strain. However,
the leakage of EGaIn will maintain the conductive pathway under large deformation.
The LM-based composites usually exhibit a positive piezo-conductive effect and show a
unique transformation in the mechanical and electrical change curve, and can thus be fully
developed and designed as stretchable sensors [92]. Gao et al. reported a microfluidic
tactile sensor based on a diaphragm pressure sensor design [93]. The LM droplets in the
microchannels rupture and flow along the channel paths under the deformation of the
elastomer. The dynamic resistance change can be utilized to monitor human health and
reflect activity postures (Figure 6c–e). Simultaneously, every LM droplet can be regarded
as a “cistern of electricity”, which can easily affect the resistance transition of the whole
device. By introducing “liquid metal cells” and “liquid metal nerve endings” as the basic
sensing unit, the printed LM films can feasibly be used to fabricate several sensing arrays
(Figure 6f). Li et al. utilized the patterned conductive films as artificial sensory systems to
simulate the mechanism of pain sensitization before and after a nerve ending injury [94].
Concurrently, the LM-based printed stretchable sensors have been used to realize pressure,
breath, and temperature-stress bimodal sensing [95–97].

Concurrently, printed electronics are entering the consumer electronics market at
a rapid rate, including in personal thermal management and wearable health-care de-
vices [98]. For example, Wang et al. used the conductive composite of LM and poly-
dimethylsiloxane (PDMS) as ink to directly print a flexible heater having a sinusoidal
structure (Figure 7a) [99]. The printed LM@PDMS heater displays instant heating tem-
perature response and relatively low temperature variation (8%) at the large strain levels
(100%), which indicates a great potential in wearable thermotherapy (Figure 7b). Recently,
the development trend is for wearable electronics to be wireless and self-powered, and to
be operated conveniently for a long period, and thus to be easily compatible with electric
vehicles, drones, smart home systems, and implantable medical devices [100]. Teng et al.
utilized the printed LM conductor as transmitting and receiving coils for wireless power
charging (WPC) (Figure 8c,d) [101]. Zheng et al. used the highly conductive Ag@LMPs
as the conductive ink to fabricate NFC antennas by screen-printing for reading a web
address [26]. The smart wearable device can be regarded as technology for virtual reality
(VR), which can easily realize an immersive contact-free enhancement. The LM can be
directly printed in the sensor sheet of database gloves to measure finger movement and
provide vibro-haptic feedback under stretched conditions (Figure 8e) [40]. The printable
stretchable electronics of LM-based nano-composites will provide new opportunities, from
concept to business.
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Figure 7. The printable LM-based stretchable electronics for signal detection. (a) The fabrication of
the vertically stacked monolithic stretchable mat by alternating electrospinning of SBS fibers and
stencil printing of LM electrodes. (b) The ECG detection of the three-layer monolithic stretchable
device at different strains in response to different sweat volumes (phosphate-buffered saline (PBS)
was used to represent sweat and the washable reliability). Reprinted with permission from Ref. [9]
Copyright 2021 Springer Nature. (c) Optical image of a subject wearing the PDMS sensor wristband
on a cycling ergometer. (d) Schematic of how the sensor is worn for measurements. (e) The tactile
sensing glove worn while grasping a grape and the real-time response. Reprinted with permission
from Ref. [93] Copyright 2017 John Wiley and Sons. (f) The bio-inspired multi-mode pain-perceptual
system. Reprinted with permission from Ref. [94] Copyright 2021 John Wiley and Sons.
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Figure 8. The wearable devices of LM-based printed stretchable electronics. (a) Optical photo of
specially designed LM@PDMS stretchable heater and schematic illustration of its working condition.
(b) Optical photos of exercise at different states and corresponding IR thermal images. Reprinted with
permission from Ref. [99] Copyright 2019 John Wiley and Sons. (c) Implementation of the flexible
transmit coil into the palm location to power the wireless receiver. (d) Principle of wireless charging
via inductive coupling. Reprinted with permission from Ref. [101] Copyright 2019 Royal Society of
Chemistry. (e) An exploded view of the multimodal sensing and feedback glove. Reprinted with
permission from Ref. [40] Copyright 2021 John Wiley and Sons.

4. Summary and Outlook

Liquid metals (particularly gallium and its alloys) have the characteristics of fluidity,
conductivity, stimuli responsivity, and chemical reactivity. The intrinsically generated oxide
layer on LM endows the unique morphological characteristics and transformation principle.
In this review, the basic synthesis methods of liquid metal-based nano-composites were
summarized as solutions for printable materials. The LM-based composites constructed
with other materials (metal, oxide metal, ligand molecules) will significantly enhance the
processibility and functionality of printable stretchable electronics. First, the resulting
semi-paste LM composites can efficiently meet the requirements of printing. Second,
nano-composites will present multiple functions due to the introduction of additives
and the sufficient adhesion to substrates resulting from ligand stabilization. For the next
generation of LM-based composites, the dilemma between stability and conductivity should
be expertly addressed; that is, the strategies to achieve anti-oxidation and initial conductive
properties should be further studied and developed. A new “library” of ligand molecules
should be established to prevent the inevitable oxidation of Ga in air. In addition, more
fabricating or printing methods are highly desirable to gain initial conductivity without
external sintering. It is necessary to develop new material systems and develop new
dispersion technologies to improve the uniformity of LM-based composite materials. The
optimized solutions will clearly contribute to the expansion of LM-based applications in
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delicate controllable LM pastes, precise zero-loss circuits, artificial perceptual interfaces,
and novel systems for the Internet of Things.
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