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Abstract: To implement Prognostics Health Management (PHM) for hydraulic pumps, it is very
important to study the faults of hydraulic pumps to ensure the stability and reliability of the whole
life cycle. The research on fault diagnosis has been very active, but there is a lack of systematic
analysis and summary of the developed methods. To make up for this gap, this paper systematically
summarizes the relevant methods from the two aspects of fault diagnosis and health management.
In addition, in order to further facilitate researchers and practitioners, statistical and comparative
analysis of the reviewed methods is carried out, and a future development direction is prospected.

Keywords: hydraulic pump; fault diagnosis; fault prediction; remaining service life prediction; health
status monitoring

1. Introduction

Hydraulic systems are applied to all crucial mechanical equipment and play an irre-
placeable role in the field of industrial production and manufacturing [1]. As the “heart” of
the hydraulic system, the hydraulic pump is responsible for converting mechanical energy
into hydraulic energy and providing pressure oil for the system [2]. With the develop-
ment of the hydraulic industry, the structure of hydraulic pumps becomes more and more
complex, and the probability of failure also increases; When it breaks down, it may cause
the equipment controlled by the system to shut down for a long time, thus reducing the
efficiency of the production process, bringing economic and safety problems, and even
causing casualties in serious cases [3]. Therefore, it is of great practical significance to make
reasonable and accurate fault diagnoses for hydraulic pumps; Under the premise of fault
diagnosis, fault prediction, remaining service life prediction and health state detection can
further master the safety of the hydraulic pump in operation, which is more conducive to
improving the flexibility of the system, so as to prevent the occurrence and development of
catastrophic faults in industrial systems, resulting in major losses.

The fault diagnosis method of hydraulic pumps mainly uses different sensors to collect
different kinds of state monitoring signals of the hydraulic pump to analyze and reflect
the change in the operating state of a hydraulic pump [4]. These state monitoring signals
mainly include vibration signals [5], temperature signals [6], flow signals [7], and pressure
signals [8], but other signals that can characterize the change of the operating state of the
hydraulic pump also belong to the state monitoring signals [9]. Hydraulic pump fault
diagnosis methods mainly include signal processing methods [10] and artificial intelligence
methods [11], as well as mechanism analysis-based diagnosis methods [12]. The structural
composition and operation mechanism of the hydraulic pump is complex, so it is difficult
to quantitatively diagnose the fault under the mechanism analysis method. In different
operating states of the hydraulic pump, the state monitoring signals present different
information, and it is feasible to diagnose faults according to the information presented by
the monitoring signals. With the development of artificial intelligence, fault diagnosis can

Sensors 2022, 22, 9714. https://doi.org/10.3390/s22249714 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22249714
https://doi.org/10.3390/s22249714
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2350-563X
https://doi.org/10.3390/s22249714
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22249714?type=check_update&version=3


Sensors 2022, 22, 9714 2 of 29

be carried out by analyzing the signal data information when the operating mechanism
of the hydraulic pump is fuzzy. In the process of fault diagnosis, there are two crucial
problems: one is which state monitoring signals are selected as characteristic signals. The
second is how to build a fault diagnosis model. On the premise of fault diagnosis, the “fault
threshold” of various faults is extracted, and early fault prediction, remaining service life
prediction, and health state detection can be carried out for the hydraulic pump. In view
of the above problems, more and more research and investigations have been conducted
in recent years, but there is a lack of a timely summary of the developed methods. The
purpose of this paper is to provide the latest research progress and application.

This paper takes the hydraulic pump as the research object and analyzes the appli-
cation and development of hydraulic pump fault diagnoses in recent years. Collate the
articles on fault diagnosis and health management of various hydraulic pumps, and ana-
lyze and summarize the articles; Summarize the main causes of hydraulic pump failure;
The methods used for fault diagnosis of hydraulic pumps are classified, and the paper
evaluation index is proposed to evaluate the selected articles; The methods used for fault
prediction, remaining service life prediction and health state detection of hydraulic pumps
are described; Finally, the selected articles are statistically analyzed, and the research
prospect of hydraulic pump fault diagnosis is given. The research flow of this paper is
shown in Figure 1.
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This paper is structured as follows. Section 1 explains the importance and challenges
of hydraulic pump fault diagnosis for application. Section 2 introduces the research on
hydraulic pump faults in published papers and summarizes the fault types. Section 3
proposes the classification scheme of hydraulic pump diagnosis methods and summarizes
the application of these methods. Section 4 briefly mentions the research and application
of health management of hydraulic pumps. Section 5 makes a statistical analysis of the
published papers and outlines future research trends. Section 6 gives a summary of
this paper.

2. Fault Analysis of Hydraulic Pump

According to the different structures, hydraulic pumps can be divided into gear-type
hydraulic pumps, vane-type hydraulic pumps, plunger-type hydraulic pumps, and screw-
type hydraulic pumps. Although the components of various hydraulic pumps are different,
their oil supply principle is the same, and they all belong to positive displacement hydraulic
pumps. Its working principle is essentially the change of the sealing volume, that is, the oil
is sucked by the local vacuum formed by the gradual increase of the sealing volume on
the side of the oil inlet of the hydraulic pump, and the oil is squeezed into the hydraulic
system by the gradual decrease of the sealing volume on the side of the oil outlet.

After a certain period of normal operation of the hydraulic pump, its parts and
components will be gradually worn and damaged, or when the hydraulic pump operates
under abnormal conditions, various fault phenomena such as increased noise, increased
vibration, and decreased flow will occur. The failure of the hydraulic pump may be caused
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by excessive wear or damage to certain parts in the structure of the hydraulic pump, so the
failure of the whole hydraulic pump can be studied from the study of certain parts.

In the hydraulic pump, the rotation of the shaft drives the operation of the whole
medium, so the shaft of the hydraulic pump is one of the research contents. Xu et al. [13]
analyzed the cause of the driving shaft fracture by calculating the radial force of the driving
shaft of the hydraulic gear pump and used the finite element analysis software Ansys
to simulate and verify the correctness of the fault cause. Xiao et al. [14] used the life
acceleration experiment to analyze the deterioration and failure of the shaft of the hydraulic
gear pump, checked the static strength of the broken part, and analyzed the main reasons
for the failure of the shaft. Shawkis et al. [15] analyzed the annular crack on the drive shaft
of the high-pressure hydraulic screw pump and concluded that one of the reasons for the
shaft fracture was fatigue caused by misalignment during the rotation bending process.
Xu et al. [16] believed that the main reason for the fracture was the increase of rotation and
bending load caused by low viscosity medium through the analysis of macro morphology
and microstructure, chemical composition, fracture metallography, and pump operation.
Through the metallographic and fracture analysis of different parts of the hydraulic pump
shaft, Yordanov B. et al. [17] can see the mixed characteristics in the morphology of the
damaged surface, and conclude that the oxidation of the shaft surface and the intergranular
corrosion at the grain boundary are one of the reasons for the crack generation and fracture
propagation.

In the hydraulic pump, there are faults caused by other parts and hydraulic oil.
Li et al. [18] analyzed the mechanics and microstructure of the broken pump housing of the
hydraulic gear and found the main reason for the failure of the pump housing. Sekercioglu
T. et al. [19] used hardness, chemical analysis, and metallographic examination to analyze
the broken gear of the hydraulic gear pump, carried out geometric analysis of the gear of the
hydraulic gear pump, and obtained the reason for the fracture of the gear of the hydraulic
gear pump. Pflum et al. [20] used the pressure sensor to detect the detection signal in the
narrow band frequency domain to analyze the spalling of the mechanical bearing of the
hydraulic pump and the failure of the hydraulic gear pump. Hemati et al. [21] used signal
processing technologies such as mechanical spectrum, envelope spectrum, and acceleration
spectrum to conduct vibration analysis and signal processing of the hydraulic gear pump,
and studied the failure of the hydraulic gear pump caused by the looseness of the bearing
bush. Lee et al. [22] analyzed the characteristics of hydraulic oil, calculated the friction
heat value, and analyzed the phenomenon that caused the failure to study the cause of the
failure of the pilot check valve of the hydraulic pump caused by hydraulic oil pollution and
leakage. Wang et al. [23] conducted the vibration fatigue test of the flameproof housing of
the hydraulic pump regulator and analyzed the factors that caused the housing failure.

In addition to single-component failures, there are also some combined failures. By
analyzing the structure and working principle of the external gear hydraulic pump, Zhang
et al. [24] analyzed the failure of the external gear pump and proposed corresponding
failure solutions. Das et al. [25] analyzed the microscopic cause of rapid wear of hydraulic
pumps from the influence of the microstructure of hydraulic gear pump on the corrosion
wear behavior of materials. Jiang et al. [26] carried out detailed statistics on various
failures of screw pumps to analyze the failure modes of hydraulic screw pumps. Milović
et al. [27] took the damage of the high-pressure three-screw oil pump in the regulating
oil of the hydropower station as an example to analyze the failure of screw pump wear,
thread tear, and filter blockage. Shang et al. [28] analyzed the failure and main causes
of hydraulic pump damage and proposed corresponding effective solutions. Hidayath
et al. [29] comprehensively considered the hydraulic pump failure caused by hardware
and hydraulic oil. UłAnowicz et al. [30] established a simplified three-dimensional solid
model of the cylinder piston assembly and gave the piston cylinder block, the inclination
adjustment mechanism of the axial-flow hydraulic pump, and the fracture load model
of the selected components of the pump, and discussed the actual damage of the axial
piston pump.
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When studying hydraulic pump faults, there are methods based on mechanism anal-
ysis and modeling, software simulation, signal fusion, and artificial intelligence. Fabiś-
Domagała et al. [31] proposed the method of combining FMEA matrix analysis and Error
Diagram to analyze the fault of the hydraulic gear pump and find out the factors causing
the fault. Major et al. [32] proposed the fatigue failure finite element model of screw pump
for the most serious fatigue fracture failure of a reciprocating screw of screw pump and
carried out model simulation in Ansys. Ma et al. [33] established a simulation model of the
hydraulic system by using AMESim software and analyzed the failure modes and mecha-
nisms of key components in the system and their failure effects. Lee et al. [34] proposed to
use FMECA to carry out extensive fault analysis of hydraulic gear pumps and proposed to
use MFCC combined with a random forest classifier (RFC) to extract features and identify
faults of vibration signals.

For the hydraulic pump failures studied in the above literature, it is concluded that
the main reason for the failure of the hydraulic pump is the wear of the hydraulic pump.
The wear of the hydraulic pump is divided into the situations shown in Table 1.

Table 1. Wear classification.

Wear Type Form Factor

Friction wear

The surface of the parts after manufacturing is always
uneven when carefully observed with a magnifying glass.
After the operation wear of the hydraulic pump, the metal

particles fall off from the surface of the parts, and the
uneven parts on the surface of the parts are relatively
smoothed. If friction is continued later, deep marks or
small-size wear will be produced. This kind of wear is

normal natural friction wear.

Abrasive wear

According to the analysis of oil pollutants used in hydraulic
pumps, more than 20% of the pollution particles are silica

and metal oxides. These abrasive particles are the most
serious components of pump parts wear. They are

sandwiched between the surfaces of moving pair parts.
When moving, they act as grinding sand, resulting in severe

abrasive wear.

Pit wear

This is a kind of fatigue damage to hydraulic components.
Under the action of alternating load, due to periodic

compression and deformation, residual stress and metal
fatigue will occur, resulting in tiny cracks on the parts,

which will gradually cause small pieces of parts to peel off.

Corrosive wear
The surface of the hydraulic pump components is subjected
to corrosive substances such as acids and moisture in the oil,

and the metal surface is gradually damaged.

3. Failure Diagnosis Method

The idea of hydraulic pump fault diagnosis based on condition monitoring signals is
to collect the condition monitoring signals by sensors, then use signal processing methods
to pre-process the collected status monitoring parameters, and then combine the fault
diagnosis model to diagnose faults. In this investigation, based on the correct signal
acquisition process, the hydraulic pump fault diagnosis methods are divided into the
following three categories:

(1) Fault diagnosis based on a single signal;
(2) Fault diagnosis based on multi-signal;
(3) Other diagnostic methods.
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3.1. Fault Diagnosis Based on Single Signal

At present, among the fault diagnosis methods based on a single signal, the vibration
signal is the most widely used condition monitoring signal as the feature input of the
fault diagnosis model. This is because once the internal parts of the pump fail, it usually
causes changes in the characteristics of the load state structure and other characteristics, so
the vibration response of the pump structure will change. Through the measurement of
structural vibration signals, and relying on the principle of signal analysis, specific fault
information is extracted, and the fault diagnosis is realized by artificial intelligence or signal
analysis. Additionally, a few are based on other types of state monitoring signals such
as sound signals. In the methods of hydraulic pump fault diagnosis, there are two main
categories: the method of hydraulic pump fault diagnosis based on signal processing and
the method of hydraulic pump fault diagnosis based on artificial intelligence.

3.1.1. Fault Diagnosis Based on Vibration Signal

(1) Method based on signal processing

The vibration signal has been proven to be useful for fault diagnosis of hydraulic
pumps, but it contains noise, interference, and other information without fault characteris-
tics. Therefore, it is necessary to use effective signal processing methods to extract available
fault information from vibration signals. The following article has conducted some research
on noise removal of vibration signals.

Yu et al. [35] proposed an EWT-VCR fusion method based on EWT and VCR to deal
with the nonlinear, multi-frequency, and noise data of vibration signals. Jiang et al. [36]
used the method of combining EEMD and PCC to denoise the collected hydraulic pump vi-
bration signals, converted the denoised data into snowflake images by using the symmetric
polar coordinate method, and converted the obtained images into gray level co-occurrence
matrix, and used the fuzzy c-means algorithm for fault diagnosis. In view of the problem
that the vibration signal of the hydraulic pump will be polluted by stronger Gaussian and
non-Gaussian noise, Zheng et al. [37] proposed using PSE to extract fault information,
effectively highlighting fault features and suppressing noise pollution. Wang et al. [38]
studied the DCT denoising method and the CNC denoising method in view of the serious
noise problem in the vibration signal of the hydraulic pump. Finally, CNC denoising was
adopted, and then HHT was used to extract the fault information of the signal. In order to
reduce noise and other interference, Sun et al. [39] carried out local feature scale decompo-
sition for high-frequency harmonic correction of vibration signals and proposed discrete
cosine transform high-order spectrum analysis algorithm to extract singular entropy as the
degradation feature of hydraulic pumps. Liu et al. [40]. proposed a new rough set fault
diagnosis algorithm for hydraulic pumps guided by PCA, aiming at the characteristics of
fuzzy fault features and low signal-to-noise ratio of hydraulic pumps, using WA for noise
reduction processing, extracting effective fault features, using PCA method for dimension-
ality reduction and decoupling correlation analysis of these features, using rough set theory
to establish a knowledge base of diagnosis rules. Hou et al. [41] proposed a WPD-based
denoising method for hydraulic pump fault feature extraction to solve the problem that
the feature signal is weak and covered by noise. Wang et al. [42] introduced the idea of
WNC denoising in view of the problems of the DCT denoising method, proposed a CNC
denoising method, and extracted fault features from the output signal by HHT, effectively
solving the problem of missing vibration signal components.

Under the actual conditions, the fault information of hydraulic pumps is still relatively
poor, so it is necessary to solve the problem of fault diagnosis under the condition of
poor information. Jia et al. [43] proposed a fault diagnosis method based on SPIP and
HMM in order to realize fault diagnosis in the case of poor information. This method
converts vibration signals into symbol sequences as feature sequences of hidden Markov
models, uses genetic algorithms to optimize the symbol space division scheme, and then
uses hidden Markov models for fault diagnosis. In view of the shortage of single-scale
arrangement entropy when measuring the complexity of vibration signals on a single scale,
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Wang et al. [44] proposed an MPE entropy value and MMPE. The analysis results of the
measured vibration signals of hydraulic pumps verified the effectiveness and superiority of
this index as a fault feature of hydraulic pumps. Aiming at the problem of poor detection
of fault signals of the hydraulic pump in the early stage, Yu et al. [45] proposed a method
of using EWT to decompose the vibration signals of three channels, then defining VCR
to divide the weights of components to form a single signal, and using HT to demodu-
late the characteristic frequency to achieve fault detection of the hydraulic pump. Deng
et al. [46] proposed a fault diagnosis method based on EMMD and Teager energy operator
demodulation to solve the problem of weak early fault vibration signals of the hydraulic
piston pump.

In the process of feature extraction of vibration signal, the original primary method
has some limitations, so it needs to be improved. Zheng et al. [47] proposed an IEWT-based
signal processing method for hydraulic pump fault diagnosis in view of the serious over-
decomposition problem of EWT. Jiang et al. [48] proposed a method of hydraulic pump
fault signal demodulation based on LMD and IAMMA. Li et al. [49] proposed a hydraulic
pump fault feature extraction method based on MCS and RE. According to the maximum
relational entropy criterion and the progressive fusion strategy, a relative entropy algorithm
was established to fuse the initial features into new degraded features.

Some comparison methods and processing of vibration signals from different angles
can still play a role in fault diagnosis of hydraulic pumps. Gao et al. [50] compared and
analyzed the two fault diagnosis methods of WT and spectrum analysis, and concluded
that when analyzing the same vibration signal dataset, the diagnosis ability of the method
based on WT was more accurate. Sun et al. [51] proposed a fault diagnosis method for
hydraulic pumps based on a fusion algorithm that processes vibration signals successively
through LCD and DCS to improve the characteristic performance of signals. Siyuan
et al. [52] proposed a hydraulic pump fault diagnosis method based on PCA of Q statistics,
which uses normal vibration signals to establish a principal component model and then
compares it with the test samples obtained by Q statistics to diagnose faults. Wang et al. [53]
proposed a fault diagnosis method based on WP and MTS. This method performs WPT
on the collected vibration signals, removes redundant features by the Taguchi method,
extracts principal components, and then uses an MD-based calculation method to diagnose
hydraulic pump faults. Chen et al. [54] proposed a hydraulic pump fault diagnosis method
based on compression sensing theory, which uses the original vibration signal of the
hydraulic pump to construct a compression dictionary matrix, uses the Gaussian random
matrix to compress the vibration monitoring data of the hydraulic pump and uses a SOMP
algorithm to reconstruct the test data. Tang et al. [55] proposed a fault diagnosis method
for hydraulic pump fault under variable load in order to solve the problem of dynamic
characteristic analysis of hydraulic pumps, which collects vibration signals and uses the
axial RMS trend gradient for fault diagnosis.

The fault diagnosis methods of hydraulic pumps based on signal processing have
their own limitations, such as time domain analysis, which is easy to cause misjudgment
when the fault is serious, has large randomness, and is not suitable for non-stationary
signals; Frequency domain analysis cannot reflect time characteristics and is not sensitive to
early faults; The multi-sensor information fusion method has some limitations, such as the
difficulty of sensor configuration and management, and the complexity of fault information
fusion algorithm design.

(2) Methods based on artificial intelligence

Although the signal processing method of vibration signal can effectively extract and
express the fault information of hydraulic pumps, the speed and accuracy of its method to
diagnose the fault of hydraulic pumps are not ideal. However, with the rapid development
of artificial intelligence, more and more intelligent algorithms and models can quickly
diagnose faults, and the self-learning ability of artificial intelligence makes the accuracy of
diagnosis algorithms and models a high level. Therefore, the artificial intelligence method
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combining the signal processing method based on vibration signal feature extraction with
the artificial intelligence diagnosis algorithm and model is more effective.

1© Artificial intelligence method based on neural network

With the generalization ability of a neural network, more and more neural network
models are applied to fault diagnosis of hydraulic pumps. The fully connected neural
network has the ability of self-learning and searching for optimal solutions at high speed.
It has the advantages of high accuracy and rapidity in the fault diagnosis of hydraulic
pumps. Gao et al. [56] proposed a fault diagnosis method based on EMD and NN. Sun
et al. [57] proposed a hydraulic pump fault diagnosis method based on ITD and softmax
regression, which uses ITD to process the vibration signal of the hydraulic pump and
trains the softmax regression model to diagnose possible fault modes. Ding et al. [58] used
LMD to process the collected vibration signal data of the hydraulic pump to form a feature
vector, trained the Softmax regression model with the reduced features, and obtained the
fault diagnosis model of the hydraulic pump. Jikun et al. [59] proposed a fault diagnosis
method for hydraulic pumps based on WPT and SOM-NN. This method uses WPT to
extract features from vibration signals, and SOM-NN trains through normal samples and
fault samples to diagnose faults when they occur.

Although a fully connected neural network has high accuracy, it needs a lot of train-
able variables, which is prone to model overfitting, and model convergence speed needs
to be improved. The convolutional neural network can further extract the features of
the input through the convolution kernel, and the trainable parameters of the model are
greatly reduced by sharing the convolution kernel. Tang et al. [60] proposed an intelligent
fault diagnosis method for hydraulic pumps based on CNN and CWT, which uses CWT
to convert the original vibration signal into image features, and establishes a new deep
convolutional neural network framework that combines feature extraction and classifi-
cation, and can further improve the convergence speed of the model by optimizing the
CNN’s hyperparameters. Zhu et al. [61] proposed an improved AlexNet intelligent fault
diagnosis method based on WPA combined with changing the network structure, reducing
the number of parameters and computational complexity. Tang et al. [62] proposed a nor-
malized convolutional neural network (NCNN) framework based on a batch normalization
strategy for feature extraction, and then used a Bayesian algorithm to automatically adjust
the model hyperparameters. BP neural network was used for fault diagnosis based on
synchronous noise wavelet transform of vibration signals. Yan et al. [63] proposed a simple
7-layer CNN network setting method based on a base-period to realize fault diagnosis
of hydraulic pumps. Zhu et al. [64] improved the core size and number based on the
standard LENet-5 model, added a batch normalization layer to the network architecture,
and built a PSO-Improve-CNN fault diagnosis model based on vibration signals by auto-
matically optimizing the model’s hyperparameters through PSO. Tang et al. [65] established
an adaptive CNN hydraulic pump fault diagnosis model using Bayesian Optimization
hyperparameters based on the Gaussian process by taking the time-frequency image of the
vibration signal after CWT as input data. Tang et al. [66] converted the vibration signal
into an image through CWT, preliminarily extracted effective features from the converted
time-frequency image, built a CNN model to achieve fault diagnosis, and realized the
visualization of simplified features by using T-DSNE.

In addition, there is also a new neural network model based on the improved functions
in the neural network. Luc et al. [67] proposed a CPRBF-NN composed of multiple
parallel-connected RBF subnets in combination with chaos theory and applied the proposed
method in combination with vibration signals to fault diagnosis of hydraulic pumps. Huijie
et al. [68] proposed to integrate the RELU activation function and Dropout strategy into SAE
to directly train and identify vibration signals, forming a SAE-based fault diagnosis method
for hydraulic pumps. Du et al. [69] proposed a method to extract 17 time-domain features
of vibration signals, analyzed the sensitivity of features to the failure to select sensitive
feature parameters, built a neural network diagnosis model, and formed a hydraulic pump
fault diagnosis method based on sensitivity analysis and PNN. Dongmei et al. [70] took
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the vibration data as the input and the failure mode matrix as the target output to obtain a
PARD-BP-based fault diagnosis method.

2© Artificial intelligence method based on a support vector machine

Support vector machine (SVM), which originates from statistical learning theory, can
be used for supervised learning, unsupervised learning, and semi-supervised learning, and
it has an outstanding ability for both linear and nonlinear signals. Casoli et al. [71] collected
vibration signals and used them to extract features for fault diagnosis, reduced the obtained
features to reduce the amount of calculation, and used them to train different types of
support vector mechanisms to build hydraulic pump fault diagnosis models. Tian et al. [72]
proposed a fault diagnosis method based on WPT, SVD, and SVM. Lu et al. [73] proposed a
new method for hydraulic pump fault diagnosis that combines EEMD and SVR models.
This method uses a combination of GA and grid search to optimize the parameters of SVM.
Fei et al. [74] proposed a fault extraction method combining WPA, FE, and LLTSA, and
then proposed a hydraulic pump fault diagnosis method combining SVM. Niu et al. [75]
proposed a hybrid fault diagnosis method for hydraulic pumps that combines the RNS
algorithm and SVM. Zhao et al. [76] proposed that CEEMD is used to decompose the signal,
then STFT and TFE are used to extract the fault features, and multi-class SVM is used
to diagnose the fault of the hydraulic pump. Hu et al. [77] proposed the SS-SVM fault
diagnosis algorithm, which constitutes a multi-fault classifier for hydraulic pump fault
diagnosis. This method requires only a few fault data samples for training the classifier
and has strong fault diagnosis ability in the case of small samples. Tian et al. [78] proposed
a degradation feature extraction method for hydraulic pumps based on ILCD and MF, and
input the degradation feature into BT-SVM for fault diagnosis of hydraulic pumps.

3© Artificial intelligence method based on a limit learning machine

In essence, the limit learning machine maps the input feature data to the random space
and then uses the least square linear regression. Its advantages are that the hidden layer
does not need iteration, the learning speed is fast, and the generalization performance
is good. Li et al. [79] proposed a comprehensive fault diagnosis method for hydraulic
pumps based on MEEMD, AR spectral energy, and WKELM method. Ding et al. [80]
proposed a fault diagnosis method combining EWT, PCA signal processing method, and
ELM. Liu et al. [81] proposed a time series dynamic feature extraction method based on
CEEMDAN and CMBSE, based on a hydraulic pump fault diagnosis method combining t-
SNE and WOA-KELM was proposed. Lan et al. [82] proposed an intelligent fault diagnosis
method for hydraulic pumps based on WPT, LTSA, EMD, LMD multiple signal processing
technology, and ELM identification technology.

4© Artificial intelligence method based on fuzzy theory

The structure of the hydraulic pump is complex, and the causes of the failure of the
hydraulic pump cannot be completely divided, which has certain fuzziness. Therefore, the
fuzzy set and membership function of the hydraulic pump can be constructed, and the
fault of the hydraulic pump can be diagnosed using the method of fuzzy theory. Wang
et al. [83] proposed a method to capture the degraded characteristic signal of SIE and then
used the vibration signal combined with the FCM algorithm to build a hydraulic pump
fault diagnosis method. Wang et al. [84] proposed a rough set method for mechanical
fault diagnosis, which extracts the spectral features of vibration signals as the attributes
of learning samples, and uses a set of decision rules obtained from the upper and lower
approximation of decision classes as a rough classifier. Wang et al. [85] extracted diagnostic
features from the spectrum of vibration signals, processed the spectrum representing a
variety of different fault states using fuzzy membership function, and made fuzzy com-
prehensive discrimination according to anti-fuzzy diagnostic rules, thus realizing correct
diagnosis of different fault spectra. Mollazade et al. [86] studied a new method of hydraulic
pump fault diagnosis based on vibration signal PSD combined with DT and FIS.
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The method based on a neural network is to extract fault features by signal processing,
then use a neural network as the fault diagnosis model, that is, the fault mode analysis
after fault signal processing, so as to realize the nonlinear mapping from fault symptoms to
fault causes. The diagnosis reasoning process of this method is not clear and the diagnosis
explanation is not intuitive. The fuzzy reasoning method is suitable for dealing with
uncertain and incomplete information in pump fault diagnosis. Its disadvantage is that it
is difficult to establish complete rules and membership functions, and its learning ability
is poor.

3.1.2. Fault Diagnosis Based on Other Signals

In addition to the frequent vibration signals, some other condition monitoring signals
also contain fault information about the hydraulic pump, and the new monitoring signals
are accompanied by new analysis methods, which makes the fault diagnosis methods
of the hydraulic pump more diversified. Shengqiang et al. [87] proposed a KPCA fault
diagnosis method based on the sound signal, described the feature extraction of the acoustic
signal, and used the KPCA method to diagnose the hydraulic pump fault in view of the
unsuitable use of the hydraulic pump vibration sensor and the limitations of the fault
diagnosis method based on vibration signal processing. Jiang et al. [88] proposed a fault
diagnosis method for an axial piston hydraulic pump based on the combination of the
MFCC feature extraction method and ELM. The MFCC voiceprint feature of the processed
sound signal is extracted from the acoustic signal, and the ELM model is established for
fault diagnosis. Based on the standard LeNet, Zhu et al. [89] used PSO to automatically
select the hyperparameters of the diagnosis model and built a PSO-CNN hydraulic pump
fault diagnosis model with acoustic signals as input.

Tang et al. [90] used CWT to obtain the time-frequency characteristics of the pressure
signal, set the initial hyperparameters to establish a deep CNN, and then used the Bayesian
optimization method to realize automatic learning of the main important hyperparameters
to build an adaptive CNN-based hydraulic pump fault diagnosis method. Wang et al. [91]
used FEMD to decompose the pressure signal and then extracted useful fault informa-
tion from the signal through RE. This method also has a good ability to suppress noise.
Liu et al. [92] proposed to use the instantaneous angular speed (IAS) signal obtained by the
equal angle method to diagnose the hydraulic pump fault under non-stationary conditions.

The four major wear faults of hydraulic pumps summarized in the literature research
are classified as Fault I: friction wear faults; Fault II: abrasive wear fault; Fault III: pit wear
fault; Fault IV: corrosive wear fault. In addition, it further evaluates the paper from the
following points:

Index I: enhance fault characteristics;
Index II: optimization of fault diagnosis algorithm;
Index III: adapt to strong noise environment;
Index IV: high diagnostic accuracy.

The above four types of faults and four types of evaluation indicators are applicable to
this chapter. The application of fault diagnosis based on a single signal is shown in Table 2.

3.2. Fault Diagnosis Based on Multiple Signals

The fault information contained in the current single signal processing is limited. In
order to increase the collection of fault information, the characteristic signals of multiple
signals can contain more and higher dimensional fault information, which is conducive
to improving the accuracy of fault diagnosis of hydraulic pumps and introducing more
innovative ways for fault diagnosis of hydraulic pumps.
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Table 2. Fault diagnosis method based on a single signal.

Year
Faults Studied

Signal Used Method Used
Index Evaluation

Reference
Fault I Fault II Fault III Fault IV Index I Index II Index III Index IV

2005
√

Vibration WT+MRA (multi-resolution analysis)
√ √

[50]

2006
√ √

Vibration fuzzy logic principle+Spectrum
analysis

√
[84]

2008
√

Vibration RNS+SVM
√

[75]

2008
√ √

Vibration WA+PCA
√ √

[69]

2008
√ √

Vibration PSD+DT+FIS
√ √

[86]

2009
√ √

Vibration WPD
√

[41]

2011
√ √

Vibration PCA
√

[52]

2011
√ √

Vibration CPRBF
√ √

[67]

2011
√ √

Sound KPCA
√

[87]

2012
√ √

Vibration WP+MTS
√

[53]

2012
√ √

Vibration SSSVN
√ √

[77]

2013
√ √

Vibration EMD+NN
√ √

[56]

2013
√ √

Vibration Spectrum analysis + rough set theory
√

[85]

2014
√ √

Vibration PARD-BP
√

[70]

2014
√ √

Vibration WPT+SOM
√ √

[59]

2015
√ √

Vibration WPT+SVD+SVM
√ √

[72]

2015
√ √

Vibration RELU-Dropout+SAE
√

[68]

2015
√ √

Vibration LMD+Softmax
√ √

[58]

2015
√

Vibration SIE+FCM
√

[83]

2015
√ √

Vibration SOMP+compressive sensing theory
√

[54]

2015
√

Vibration LMD+IAMMA
√ √

[48]

2015
√ √

Vibration EMD+CEEMD+STFT+TFE+SVM
√ √

[76]

2015
√ √

Vibration DCT+CNC+HHT
√ √

[38]

2016
√ √

Vibration ITD+Softmax
√

[57]

2016
√ √ √

Vibration 7-layer CNN
√

[63]

2016
√ √

Vibration HFHLCSD+BSS+DCTS+DCTHSE
√ √

[39]

2016
√ √

Vibration WNC+CNN+HHT
√ √

[42]

2016
√

Vibration ILCD+MF+BT-SVM
√ √

[78]
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Table 2. Cont.

Year
Faults Studied

Signal Used Method Used
Index Evaluation

Reference
Fault I Fault II Fault III Fault IV Index I Index II Index III Index IV

2017
√ √

Vibration sensitivity analysis+PNN
√ √

[69]

2017
√

Vibration EEMD+GA+SVR
√ √

[73]

2018
√

Vibration LCD+DCS
√

[51]

2018
√

Vibration SPIP+HMM
√

[43]

2018
√ √

Vibration WPA+FE+LLTSA+SVM
√ √

[74]

2018
√ √

Vibration WPT+LTSA+EMD+LMD+ELM
√

[82]

2019
√

Vibration EWT+VCR
√ √

[35]

2019
√

Vibration EMMD+Teager
√

[46]

2019
√

Vibration FFT
√

[71]

2019
√ √

Sound MFCC+ELM
√ √

[88]

2019
√ √

Vibration IEWT
√

[47]

2019
√ √

Vibration MCS+RE
√

[49]

2020
√ √

Vibration EWT+PCA+ELM
√ √

[80]

2020
√ √

Vibration CWT+CNN
√ √

[60]

2020
√

Vibration EWT+VCR+HT
√

[45]

2020
√

Vibration PSE
√

[37]

2020
√ √

Pressure FEMD+RE
√ √

[91]

2020
√ √

Vibration CWT+CNN+T-DSNE
√ √

[66]

2021
√

Vibration MEEMD+AR+WKELM
√ √

[79]

2021
√ √

Vibration CEEMDAN+CMBSE+t-SNE+WOA-
KELM

√ √ √
[81]

2021
√ √

Vibration WPA+AlexNet-CNN
√

[61]

2021
√ √

Vibration PSO-Improve-CNN
√ √

[64]

2021
√

Angular velocity IAS+NST
√

[92]

2021
√ √

Vibration EEMD+Pearson
√ √

[36]

2021
√ √

Vibration RMS
√

[55]

2022
√ √

Vibration NCNN+Bayes+BP
√

[62]

2022
√ √

Vibration WT+Bayes+CNN
√

[65]

2022
√ √

Pressure CWT+Bayes+CNN
√

[90]

2022
√ √

Sound CNN+PSO
√

[89]
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(1) Method based on signal processing

The essence of the multi-signal hydraulic pump fault diagnosis method is to process
each input signal separately, and then use a certain fusion method to fuse the feature
information contained in the multi signals, so that the extracted fault information is enough
to diagnose the fault state. Liu et al. [93] proposed a fault diagnosis method for hydraulic
gear pumps based on EEMD and the Bayesian network. This scheme is a method based on
multi-source information fusion. Compared with the traditional fault diagnosis method
using only EEMD, this method can comprehensively utilize all useful information other
than sensor signals. Lu et al. [94] proposed a multi-source information fusion fault diagnosis
method based on D-S evidence theory, which uses a fuzzy membership function to construct
the basic probability assignment of three evidence bodies. Based on the acceleration,
power consumption, flow, and pressure signals under different states, Buiges et al. [95]
used the collected signals to compare with the normal state signals for fault diagnosis.
Przystupa et al. [96] considered displaying the changes of pressure and flow on FFT and
STFT spectrum to realize the application of short-time Fourier transform to fault diagnosis
of hydraulic pumps under different operating conditions. Ma Z. et al. [97] established
a variable rate inverse gaussian process model to describe the deterioration behavior
of the pump, and proposed a Bayesian statistical fault diagnosis method for pressure
and flow degradation data analysis. Ruixiang et al. [98] used pressure spectrum signal,
temperature signal, and motion signal as diagnostic features, and then used information
fusion technology to diagnose hydraulic pump faults. Du et al. [99] proposed a hierarchical
clustering fault diagnosis scheme that distinguishes obvious faults through single signal
processing of vibration and flow and uses data fusion technology to find fuzzy information.
Zengshou et al. [100] proposed an information fusion diagnosis method based on improved
D-S evidence theory and space-time domain. Du et al. [101] proposed a clustering diagnosis
algorithm based on statistical ARPD in the diagnosis method based on vibration, flow, and
pressure signals. Fu et al. [102] studied the relationship between the Bayesian network
algorithm and the fault components of the hydraulic pump and then used the Bayesian
network algorithm to diagnose the fault when the simulation data of vibration, pressure,
temperature, and flow are incomplete.

(2) Methods based on artificial intelligence

Similar to intelligent methods in Section 3.1, the multi-signal hydraulic pump fault
diagnosis method is divided into neural network-based method, classifier-based method,
and migration learning-based method.

1© Artificial intelligence method based on neural network

In the structure of neural networks, the number of neurons in the input layer often
exceeds one, so the multi-signal input is compatible with the multi-input characteristics of
the input layer of the neural network structure.

The convolutional neural network has exceeded the discrimination ability of human
eyes in the accuracy of image recognition, so the digital signal of the hydraulic pump can be
converted into an image signal for the convolutional neural network to diagnose the fault
of the hydraulic pump. Tang et al. [103] proposed an intelligent fault diagnosis method
based on the adaptive learning rate of a neural network to diagnose different fault types by
using CWT to convert the three original signals of vibration signal, pressure signal, and
sound signal into two-dimensional time-frequency images, and using adaptive learning
rate strategy to establish an improved deep CNN model. Taking the vibration signals and
pressure signals of hydraulic pumps as the analysis objects. Jiang et al. [104] proposed a
fault diagnosis algorithm for hydraulic pumps based on EWT and one-dimensional CNN
and deployed the one-dimensional CNN model to the cloud platform to achieve real-
time fault diagnosis based on the cloud platform. When based on one-dimensional input
signals, there is also a high-precision neural network structure to improve the accuracy
of hydraulic pump fault diagnosis. An RBF neural network adopts a linear optimization
strategy and has fast learning speed and can approach any nonlinear function with arbitrary
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accuracy. Zuo et al. [105] built a hydraulic pump fault diagnosis method based on RBF
neural network, which takes the pump shell vibration signal and pumps outlet pressure
pulse signal as input characteristics.

There is also PNN with RBF neural network function, which is a neural network
based on Bayesian decision rules. Zuo et al. [106] built a hydraulic pump fault diagnosis
method based on PNN, which takes the pump casing vibration signal and pump outlet
pressure pulse signal as input characteristics. Dong et al. [107] used WPT to extract the
main fault information contained in the power signal in the historical data, combined
with the parameters such as force, oil pressure, casing pressure, and dynamic liquid
level to build the fault feature vector, established the PNN model, obtained the mapping
relationship between the fault feature vector and the fault form through training the model,
and diagnosed the fault form to be entered according to the fault feature vector to be
entered. Jiao et al. [108] collected vibration signals and pressure signals to establish a fault
diagnosis model based on EMD and PNN. Li et al. [109] proposed a hydraulic pump fault
diagnosis method based on the combination of kernel principal components and PNN.
This method uses KPCA to reduce the dimension of multi-source data and then diagnoses
the fault mode through the PNN network.

2© Classifier based approach

The function of a classifier is to classify chaotic targets into different categories ac-
cording to different input signals. In the fault diagnosis of hydraulic pumps, the input
signal mapped faults can be classified by the classifier to diagnose the faults. Lakshmanan
et al. [110] proposed a hydraulic pump fault diagnosis method that takes the pressure
signal, flow signal, and torque signal of the pump as original real-time data for feature
extraction, and inputs them into SVM after CWT. Jiang et al. [111] used the decision tree to
build a random forest model, trained six continuous variables of the hydraulic screw pump
system as input characteristics, and built a hydraulic pump fault diagnosis method based
on the random forest model. Hu et al. [112] built a multi-fault diagnosis system based on
data fusion according to the D-S evidence theory and used DMM to build a fault diagnosis
feature with a basic probability assignment function, ensuring the objectivity of reliability
distribution evaluation.

3© Methods based on Transfer Learning

In order to generalize the ability of the model, the trained model parameters can be
migrated to the new model to help train, which can make the initialization performance of
the model higher, the promotion rate faster, and the convergence better. Miao et al. [113]
used CEEMD and SVD to decompose pressure signal, vibration signal, and flow signal to
construct feature vectors and built a hydraulic pump fault diagnosis method through a
TrAdaBoost migration learning algorithm. He et al. [114] proposed a migration learning
algorithm based on deep MFAM and designed a multi-signal fusion module that assigns
weights to vibration signals and acoustic signals, improving the dynamic adjustment ability
of the method.

The application of multi-signal-based fault diagnosis is shown in Table 3.

3.3. Other Fault Diagnosis Methods

Whether it is based on signal processing or artificial intelligence, it is based on the data-
driven fault diagnosis method of hydraulic pumps. This method realizes fault diagnosis
of a hydraulic pump by using the mapping relationship between digital signal and fault
and does not describe the mechanism function of fault in detail. Some studies have
proposed new knowledge or concepts based on the relationship between non digital signal
information and hydraulic pump fault mapping [115–119].
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Table 3. Fault diagnosis method based on multiple signals.

Year
Faults Studied

Signal Used
Index Evaluation

Reference
Fault I Fault II Fault III Fault IV Index I Index II Index III Index IV

2002
√

Information fusion technology
√

[98]

2010
√ √

Hierarchical clustering analysis
√ √

[99]

2011
√ √ Improved DS evidence theory and

spatiotemporal information fusion
√ √

[100]

2012
√ √

D-S+DMM
√ √

[111]

2013
√ √ Clustering diagnosis algorithm based

on ARPD
√ √

[101]

2013
√ √

MFAM+Transfer learning
√

[113]

2014
√ √

PNN
√

[105]

2014
√

RBF-NN
√ √

[104]

2015
√ √

EEMD+Bayes+NN
√ √

[93]

2017
√ √

DS evidence theory
√

[94]

2017
√ √

EMD+PNN
√ √

[107]

2019
√ √ Inverse gaussian model + Bayes

optimization
√ √

[97]

2020
√ √

PCA
√

[95]

2020
√ √

STFT+FFT
√

[96]

2020
√ √

SVM+Multilayer Perceptron(MLP)
√

[109]

2020
√

Stochastic forest neural network
√

[110]

2020
√ √ Singular value decomposition +

transfer learning
√ √

[112]

2020
√ Reliability analysis + Bayesian

network
√

[102]

2021
√ CNN based on improved adaptive

learning rate
√ √

[103]

2021
√ √

KPCA+PNN
√

[108]

2021
√ √

CNN+EWT+WISE-PaaS
√ √

[114]

2022
√ √

Wavelet packet analysis+PNN
√ √

[106]
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On the basis of an accelerated life test, Guo et al. [120] proposed a dynamic grid
technology to simulate the internal flow field of hydraulic pumps in detail. On the basis of
film thickness analysis, Ma et al. [121] put forward a hydraulic pump diagnosis method
based on elastohydrodynamic lubrication model analysis by comprehensively considering
structural parameters, working condition parameters, and material performance param-
eters. In view of the multi-crack fault of the hydraulic gear pump gear, Zhao et al. [122]
established the vibration wavelet finite element calculation formula of complete gear and
cracked gear, studied the fault diagnosis of blind source separation and particle swarm
optimization algorithm, and correctly diagnosed the location of multiple cracks of the gear.

3.4. Centrifugal Pump Fault Diagnosis Method

The above content is mainly a detailed analysis of the fault diagnosis method of
the hydraulic pump, and as a centrifugal pump that also transports liquid, it is also of
comparative significance to analyze it. In centrifugal pumps, it is necessary not only to
identify the fault but also to discover the severity of the failure and classify it.

Muralidharan et al. [123] used the DWT to calculate the wavelet characteristics of
the vibration signal, used rough sets to generate rules, and used fuzzy logic to classify.
Sakthivel et al. [124] used the C4.5 decision tree algorithm to extract statistical features
from vibration signals in good and fault states for fault diagnosis. Muralidharan et al. [125]
studied the vibration-based fault diagnosis method of a monoblock centrifugal pump
and found the best wavelet suitable for single-block centrifugal pump fault diagnosis by
calculating and comparing. Nagendra et al. [126] used two different machine learning
techniques, SVM and ANN, for centrifugal pump fault diagnosis. It was found that the
machine learning method based on ANN combined with chi-square and XGBoost feature
ranking techniques is superior to the SVM. Wang et al. [127] proposed a centrifugal pump
fault diagnosis method based on CEEMD-sample entropy (SampEn) combined with RF.
Based on the characteristic evaluation of the information ratio combined with principal
component analysis, Ahmad et al. [128] proposed a new Ir-PCA method. The comparison
results found the method was superior to existing advanced methods in terms of fault
classification accuracy. ALTobi et al. [129] used MLP and SVM to classify the six fault
states and normal states of the centrifugal pump. Therefore, an MLP hybrid training
method based on the combination of Back Propagation (BP) and Genetic Algorithm (GA)
was proposed.

3.5. Fault Diagnosis Block Diagram

Based on the fault diagnosis methods proposed in the above literature, I have summa-
rized the following fault diagnosis block diagram, as shown in Figure 2. Since there are
many types of diagnosis methods and many expand on the basic methods, I just list the
basic methods for reference.
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4. Fault Prediction and Health Management

On the basis of fault diagnosis, appropriate prediction and analysis methods can be
used to achieve fault prediction. Furthermore, for the health management of the whole
life cycle of the hydraulic pump, the remaining service life of the hydraulic pump can be
predicted and the whole process of health status monitoring of the hydraulic pump can
be studied.

4.1. Fault Prediction

To maintain the stable operation of the hydraulic pump in its whole life cycle, the
failure prediction of the hydraulic pump can predict the failure that will occur in the early
stage of the failure, so as to timely repair the failure in the early stage of low cost and reduce
the expansion of loss. The methods of hydraulic pump fault prediction can be roughly
divided into two parts, intelligent prediction, and non-intelligent prediction.

The non-intelligent prediction method refers to that the prediction method has no
self-learning ability. In short, the non-intelligent prediction method does not use me-
chanical learning or neural network, which makes the usability of this method relatively
weak. Gomes et al. [130] used the empirical model of degradation evolution combined
with Kalman filter technology to predict the failure of hydraulic pumps, and successfully
predicted two-time series from actual operation to failure data. Amin et al. [131] developed
an online health monitoring system for hydraulic pumps by using feature extraction, a
fuzzy reasoning system, and knowledge fusion technology. Bykov et al. [132] described
the analysis of the state data set of the hydraulic system and tried to diagnose the failure
in the valve switching mode, so as to further study the possibility of predicting the fail-
ure. Ma et al. [133] analyzed the key failure modes of aircraft hydraulic pumps based on
operation and maintenance statistics and proposed a failure prediction method based on
multi-source information fusion. Lisowski et al. [134] constructed a function-component
matrix (EC) and a component-failure matrix (CF) by using the quality method and then
multiplied the two matrices to obtain a function-failure EF matrix containing potential
failure information, thus realizing the failure prediction of hydraulic pumps.

Intelligent prediction methods mainly include prediction methods with self-learning
ability using neural networks or machine learning. To improve the accuracy of fault
prediction, Li et al. [135] proposed a hydraulic pump fault prediction method based on
BE and DBN, which is based on the DBN model of constraint limit RBM as a prediction
model and introduces QPSO to search the optimal value of the initial parameters of the
network. Xu et al. [136] analyzed the cause and mechanism of hydraulic pump degrada-
tion due to wear, established a degradation model through joint simulation of Simulink
and AMESim, and predicted the failure of the hydraulic pump using a multi-step SVM
algorithm. Ding et al. [137] proposed a fault prediction method based on logistic regression
that obtains a hydraulic pump fault prediction model by LMD processing of the pump
vibration signal, feature reduction using PCA, and training the LR model with the reduced
features. Tian [138] used the method of combining EEMD and SEOS to envelope demod-
ulate the vibration signal of the hydraulic pump, and then used WPA to extract the fault
features, to establish a hydraulic pump fault prediction model combining WPA and SVM.
Sun et al. [139] proposed a multi-channel vibration signal fusion method based on DCS.
This method takes the synthetic spectral entropy as the feature and uses the extracted
feature to establish an ESN model for prediction, which can be used for fault prediction of
hydraulic pumps.

4.2. Prediction of Remaining Useful Life

During the normal use of the hydraulic pump, the remaining useful life of the current
hydraulic pump can be predicted in time, and the working condition of the hydraulic pump
can be adjusted in time through the working time, which is conducive to extending the
normal useful life of the hydraulic pump. The remaining useful life prediction methods of
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hydraulic pumps can be roughly divided into two categories, data-driven methods and
model-driven methods.

1© Data-driven approach

The data-driven methods can be divided into neural network methods and non-neural
network methods. Lee et al. [140] constructed HI through vibration signal and pressure
signal, and trained a Bi-LSTM neural network using different performance indicators for
RUL prediction of hydraulic pumps. Wang et al. [141] used DCAE to characterize the
vibration data of hydraulic pumps, constructed HI to determine the degradation state,
and input the health index as a tag into the RUL prediction model based on the Bi-LSTM
network. Guo et al. [142] used VMD, Hilbert, and FA to process the vibration data of the
hydraulic pump, established the degradation evaluation index, trained the Trainbr-RBFNN
model with the degradation evaluation index, and obtained the RUL prediction model for
the hydraulic pump.

The non-neural network method can still achieve the RUL prediction of hydraulic
pumps. Yu et al. [143] proposed a MAAKR method for information fusion, using 3B-Spline
with monotonic constraints to build Hi, and using the MCPF method to monotonically
update the random coefficients of the model to achieve RUL prediction of hydraulic pumps.
Tongyang et al. [144] proposed an AOPF prediction method to improve the long-term
prediction accuracy of RUL and used the MCS method to estimate the posterior probability
density function of the future state of the hydraulic pump. Li et al. [145] proposed a new
method for RUL prediction of hydraulic pumps based on KPCA and JITL. This method
uses WT to extract features, KPCA to fuse features, and constructs an RUL prediction
method based on k-VNN and JITL methods.

2© Model-driven methods

The data-driven method is to use the data information to map the tag of the target
fault of the hydraulic pump through the processing and analysis of the data. This method
completely bypasses the professional knowledge of the hydraulic pump and only has
the mapping relationship from input to output. Based on the model-driven approach,
starting from the expertise of hydraulic pumps, mathematical explicit relationships are
constructed. Geng et al. [146] proposed a life assessment method that combines SMOTE
algorithm, KS test, and cumulative damage theory. The SMOTE algorithm is used to solve
the imbalance problem between sample groups, and KS is the classic method for evaluating
the goodness of fit. Zhonghaim et al. [147] obtained the fatigue life of the piston by using
DLDR through the analysis of the actual load spectrum of the hydraulic piston pump
and simulated the fatigue life of the piston by using the finite element analysis software.
Wang et al. [148] described the performance degradation model with the Wiener process,
predicted the remaining useful life (RUL) of the pump, estimated the initial parameters
of the wiener process by MLE using the EM algorithm, estimated the drift coefficient of
the wiener process by recursive estimation using Kalman filter method and calculated
the RUL of the pump according to the performance degradation model based on wiener
process. Wang et al. [149] used the contaminant sensitivity theory of the hydraulic system
to derive the mathematical explicit relationship between oil pollution and the useful life of
the piston pump and predicted the useful life of the piston pump under certain pollution
conditions using a group of experimental data. Sun et al. [150] proposed an improved IG
process model to describe the wear degradation of hydraulic pumps and used Monte Carlo
integration and EM algorithm to estimate the model parameters.

4.3. Health Status Detection

The real-time health monitoring of the hydraulic pump can diagnose whether the
operating state of the hydraulic pump is healthy at each time, which is conducive to the
timely adjustment of the hydraulic pump in response to emergencies and the management
and use of the hydraulic pump.
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The detection of the health state of the hydraulic pump is not limited to the detection
of the fault state, so the amount of data required is very large. A neural network can achieve
considerable effect in processing large sample data. According to different health states of
hydraulic pumps, Shaowu et al. [151] proposed that after collecting vibration signal data of
hydraulic pumps, STFT, WT, and Wigner-Will distributions are used to form time-frequency
maps, and then CNN is used to classify and identify time-frequency images of different
volumetric efficiencies of hydraulic pumps, so as to monitor the health status of hydraulic
pumps. Lin et al. [152] proposed that according to the distribution of the information
entropy of the characteristic parameters of the hydraulic pump, various state characteristic
parameters can be obtained to characterize the contribution of the hydraulic pump in
health, so as to realize the fusion of various characteristic parameters, and then use the grey
theory to detect the health state of the hydraulic pump. Hancock et al. [153] researched
and developed a method to decompose the vibration signal of vertical hydraulic pumps
using WPA, and input the characteristic signal into the adaptive neuro-fuzzy inference fault
detection system for pump health state detection. Succi et al. [154] take the fundamental
pumping frequency and its harmonics as the input features of the neural network model
and use the multilayer neural network model of back propagation and Kohonen feature
map to detect the health state of the hydraulic pump.

There are also some studies that use non-neural network methods, which can also
achieve the purpose of detecting the health state of hydraulic pumps. Zhouf et al. [155]
proposed a WOA-based RSDD method to extract feature parameters, which combined with
the modified hierarchical amplitude aware displacement entropy MHAPE to form a health
state detection method for hydraulic pumps. Gao et al. [156] proposed a health diagnosis
method for hydraulic pumps based on WPD and WCRA and developed a health detection
system based on WPD residual analysis. Shapping et al. [157] used the method of combining
WPD and Hilbert envelope demodulation to eliminate the interference effect of radial and
axial acceleration signals, replaced Shannon entropy with NE for state identification, and
proposed a WPNE-based method for identifying the health state of hydraulic pumps.

5. Analysis of the Summary Paper
5.1. Statistical Analysis

Figure 3 shows the statistics of different research directions of hydraulic pump faults
in recent years in the literature listed in this paper, and it can be seen that the mainstream
research direction is still a fault diagnosis. Equipment fault diagnosis technology has
developed to today and has become an independent interdisciplinary comprehensive
information processing technology, it is based on reliability theory, cybernetics, information
theory, and system theory as the theoretical basis, modern test instruments and computers
as a means, combined with the special laws of various diagnostic objects and gradually
formed a new discipline, so it is loved by many scholars for research.
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Figure 4 shows that among the fault diagnosis methods of hydraulic pumps based on
single signals, the fault diagnosis method uses vibration signals to diagnose the faults of
hydraulic pumps, which is the first choice for most studies at present. More than 90% of
scholars in the selected articles use vibration signals.
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Figure 4. Single signal scale.

With the development of fault diagnosis algorithms in recent years, more and more
research on hydraulic pump fault diagnosis has been carried out, which is almost a straight-
line trend. As shown in Figures 5 and 6, it can be concluded from the analysis of the two
figures that the research on fault diagnosis of hydraulic pumps will continue to increase in
the future. With the development of detection signals from simplicity to complexity, it can
be seen that the research of single signal fault diagnosis is more than that of multi-signal
methods. However, with the development of signal fusion technology, the research of
multi-signal fault diagnosis is also increasing year by year.
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Figure 7 shows the proportion of signal processing and artificial intelligence, which
shows that diagnosis methods based on artificial intelligence are more and more popu-
lar. Although the signal processing methods are developing year by year, most of the
research focuses on the composite method of signal processing methods to deal with fault
characteristics and human intelligent algorithms to build diagnosis models.
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5.2. Discussion on Future Development

This paper summarizes the application of hydraulic pump fault research, but there
are some inevitable omissions. To sum up, through the statistical analysis of the selected
documents, it can be concluded that in the actual environment, it is difficult to obtain
high-quality fault data from a single signal and extract the fault information contained.
On the contrary, the multi-signal method is useful because it contains more information.
The artificial intelligence method is useful because it has high feasibility in dealing with
complex situations (such as compound faults). In order to better promote the development
of hydraulic pump fault diagnosis, the following aspects can be carried out in the future:

(1) Because of the weak signal features in the early stage of fault, it is difficult to extract
fault features, so fault feature extraction is still a direction that needs further explo-
ration. Because of the powerful function of the deep learning method, fault feature
extraction based on the deep learning method will be an important research direction.

(2) Although multi-data signals contain more information, the efficient information fusion
methods for multi-data signals are still insufficient, so more efficient information
fusion methods are also the direction to be further explored.

(3) From the statistical analysis of the review papers, it can be concluded that the di-
agnosis method of artificial intelligence will become mainstream. However, each
intelligent method also has defects, and the combination of multiple intelligent meth-
ods can be used to fill the defects, such as reverse neural networks combined with
multilayer perceptrons.

6. Conclusions

Fault diagnosis is the key to the health management of hydraulic pumps. It can
improve the reliability of the hydraulic pump from the aspect of the data signal, and



Sensors 2022, 22, 9714 21 of 29

significantly reduce the risk of operation collapse and catastrophic failure. In recent years,
the research on hydraulic pump fault diagnosis has been very active, but there is a lack
of systematic analysis and summary of the developed methods. In order to make up
for this gap, this paper systematically summarizes the relevant methods from the two
aspects of fault diagnosis and health management. Finally, through the statistical analysis
of the literature, some development prospects in this field are pointed out, which provides
reference and guidance for researchers and practitioners to further carry out and apply
relevant research. Nowadays, with the rapid development of machine learning algorithms
and deep learning, data and signal-based methods are becoming the main direction in the
future. The same trend applies to feature extraction methods. Therefore, the powerful
ability of machine learning algorithms, especially deep learning algorithms, obviously has
great potential in the future.
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Nomenclature

AOPF Adaptive-Order Particle Filter
AR Autoregressive
BE Bispectrum Entropy
BI-LSTM Bi-Directional Long-Short Term Memory
BT-SVM Binary Tree Support Vector Machine
CEEMD Complementary Ensemble Empirical Mode Decomposition
CEEMDAN Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
CMBSE Composite Multi-Scale Basic Scale Entropy
CNC Cosine Neighboring Coefficients
CNN Convolutional Neural Network
CPRBF-NN Radial Basis Function Network In Conjunction With Chaos Theory
CWT Continuous Wavelet Transform
DBN Deep Belief Network
DCAE Deep Convolutional Autoencoder
DCS Discrete Cosine Transform–Composite Spectrum
DCT Discrete Cosine Transform
DLDR Double Linear Damage Rule
DT Decision Trees
EEMD Ensemble Empirical Mode Decomposition
ELM Extreme Learning Machine
EM Expectation Maximization
EMD Empirical Mode Decomposition
EMMD Extremum Field Mean Mode Decomposition
ESN Modified Echo State Networks
EWT Empirical Wavelet Transform
FA Factor Analysis
FCM Fuzzy C-Means
FE Fuzzy Entropy
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FEMD Fast Empirical Mode Decomposition
FFT Fast Fourier Transform
FIS Fuzzy Inference System
FMEA Failure Mode And Effects Analysis
FMECA Modes, Effects, And Criticality Analysis
GA Genetic Algorithm
HHT Hilbert–Huang Transform
HMM Hidden Markov Model
HT Hilbert Transform
IAMMA Improved Adaptive Multiscale Morphology Analysis
Ir-PCA Informative ratio-Principal component analysis
IEWT Improved Empirical Wavelet Transform
IG Inverse Gaussian
ILCD Improved Local Characteristic-Scale Decomposition
ITD Intrinsic Time-Scale Decomposition
JITL Just In Time Learning
KPCA Kernel Principal Component Analysis
KS Kolmogorov-Smirnov
K-VNN K-Vector Nearest Neighbor
LCD Local Characteristic-Scale Decomposition
LLTSA Liner Local Tangent Space Alignment
LMD Local Mean Decomposition
LR Logistic Regression
LTSA Local Tangent Space Alignment
MAAKR Modified Auto-Associative Kernel Regression
MCPF Monotonicity-Constrained Particle Filtering
MCS Monte Carlo Simulation
MD Mahalanobis Distance
MEEMD Modified Ensemble Empirical Mode Decomposition
MF Multi-Fractal Spectrum
MFAM Multi-Signal Fusion Adversarial Model
MFCC Mel-Frequency Cepstral Coefficient
MHAPE Modified Hierarchical Amplitude-Aware Permutation Entropy
MLE Maximum Likelihood Estimation
MLP Multilayer Perceptron
MMPE Mean Of Multi-Scale Permutation Entropy
MPE Multi-Scale Permutation Entropy
MTS Mahalanobis–Taguchi System
NCNN Normalized Convolutional Neural Network
NE Norm Entropy
NN Neural Network
PARD Pruning Algorithm Based Random Degree
PCA Principal Component Analysis
PCC Pearson Correlation Coefficient
PHM Prognostics And Health Management
PNN Probabilistic Neural Network
PSD Power Spectral Density
PSE Power Spectral Entropy
PSO Particle Swarm Optimization
QPSO Quantum Particle Swarm Optimization
RBF Radial Basis Function
RBM Boltzmann Machine
RE Relative Entropy
RFC The Random Forest Classifier
RMS Root Mean Square
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RNS Real-Valued Negative Selection
RSDD Resonance-Based Sparse Signal Decomposition
RUL Remaining Useful Life
SAE Stacked Autoencoders
SEOS Smoothed Energy Operation Separation
SIE Spatial Information Entropy
SMOTE Synthetic Minority Over-Sampling Technique
SOM-NN Self-Organizing Mapping Neural Network
SOMP Stagewise Orthogonal Matching Pursuit
SPIP Symbolic Perceptually Important Point
SS-SVM Sphere-Structured Support Vector Machines
STFT Short Time Fourier Transform
SVD Singular Value Decomposition
SVM Support Vector Machine
SVR Support Vector Regression
T-DSNE T-Distributed Stochastic Neighbor Embedding
TFE Time-Frequency Entropy
T-SNE T-Distributed Stochastic Neighbor Embedding
VCR Variance Contribution Rate
VMD Variation Mode Decomposition
WA Wavelet Analysis
WCRA Wavelet Coefficient Residual Analysis
WKELM Wavelet Kernel Extreme Learning Machine
WNC Wavelet Neighboring Coefficients
WOA Whale Optimization Algorithm
WOA-KELM Whale Optimization Algorithm Kernel Extreme Learning Machine
WP Wavelet Packet
WPA Wavelet Packet Analysis
WPD Wavelet Packet Decomposition
WPNE Wavelet Packet Norm Entropy
WPT Wavelet Packet Transform
WT Wavelet Transform
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