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Abstract: In civil engineering, the joints of structures are complex, and their damage is generally hard
to be detected. Due to the insensitivity of structural modal information to local joint damage, this
paper presents a method based on additional virtual mass for damage identification of a semi-rigid
joint in a frame structure. Firstly, the modeling of a semi-rigid is described. Secondly, the frequency
response of the virtual structure is constructed, and the natural frequency of the constructed virtual
structure is extracted by the ERA method. By adding multiple values of virtual masses at different
positions, the natural frequency information sensitive to joint damage for damage identification is
effectively increased. Based on the above theory, qualitative identification of joint damage is proposed
to detect the potential damage, and identification of both damage location and its extent is presented,
using natural frequency. Improved Orthogonal Matching Pursuit (IOMP) algorithm is employed
to improve the accuracy of the natural frequency-based method for damage identification. At last,
numerical simulation of a three-story frame is performed to discuss and to verify the effectiveness of
the proposed method.

Keywords: semi-rigid joint; damage identification; virtual mass; natural frequency

1. Introduction

During the past few years, new types of beam-column connectors have emerged
and are receiving widespread attention in the field of civil engineering [1]. In practice,
damage may occur on the structural member, such as beams and columns. Currently,
there are rich methods on the damage identification of a structural member [2]. However,
for some prefabricated concrete structures and steel structures, joints are relatively more
susceptible to damage. Since joints that connect structural members and transmit load
and deformation play a significant role on structural safety and reliability, this study
focuses on the identification of joint damage only. In general, the connection of joints is
simply assumed to be a completely rigid connection or an articulation, however, joints do
not behave in such an extreme manner. Articulated joints will generally have a certain
degree of rotational stiffness and, similarly, rigid joints will also exhibit a flexible aspect.
It can therefore often be considered as a semi-rigid joint [3]. In concrete structures, many
beam-column connections can be seen as semi-rigid joints, such as bolted connections
of precast concrete beams [4] and precast simple shear beam-column connections [5]. In
steel structures, there are also many joint systems which can be considered as semi-rigid,
such as the MERO joint systems, the bolt-ball joints, and the space-truss connectors [6].
Damage to semi-rigid joints is caused by a decrease in the strength of high-strength bolts,
or cumulative initial bending of the bar under various loads, etc. [7], which, combined
with the concentrated shear forces on the joints’ parts, tend to be more prone to damage.
Further, semi-rigid joints exhibit different properties compared to rigid joints, and thus the
damage identification is different for rigid joints and semi-rigid joints. This study aims to
investigate the damage identification of semi-rigid joints.
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For frame structures, joints have a significant impact on their performance [8]. Struc-
tural joints are usually complex and hidden, their damage is hard to directly measure
with instruments. Therefore, damage identification of semi-rigid joints using a structural
vibration response is a practical approach. Damage in the structure may cause a change
in local stiffness and then the dynamic response of the damaged structure’s change can
be compared with that of the intact structure, which can be used to locate and quantify
the damage.

Structural damage identification based on vibration data can be mainly divided into
two categories: model-based parametric methods and signal-based non-parametric meth-
ods. The model-based methods take into account the changes in structural dynamic
characteristics, such as natural frequency [9], modal shape [10], frequency response func-
tion [11], and dynamic strain response [12,13], and the dynamic characteristics obtained
from the measured structural responses are used to update the finite element model so
that the modified model can reflect the actual structural health state. Techniques of model
updating can be taken as an optimization problem to minimize the difference between the
information obtained from an actual damaged structure and the information obtained from
the finite element model of the structure. The optimization algorithms used are mainly
divided into two categories: traditional optimization methods and intelligent algorithms.
Thereof, the optimization process of the former relies on the gradient of the objective func-
tion, and it has the advantage of faster convergence, such as the quasi-Newton method [14],
the Gauss–Newton method [15], etc. For the latter, the optimization originates from the
imitation of biological behavior laws, having the advantage that the search does not require
mathematically rigorous expressions of which the representative algorithms include genetic
algorithms [16], particle swarm algorithms [17], cuckoo algorithms [18], etc. Currently
one of the most representative methods is based on machine learning [19–22], including
two steps of feature extraction and classification of damage types, which requires prede-
fined damage types for model training. For the signal-based method, such as wavelet
analysis [23] and Hilbert–Huang transform [24], it does not need to consider the relation
between the vibration signal and the model parameters, and statistical or signal processing
techniques is used to extract features directly from the original vibration signal and classify
the damage state by comparing it with the intact structure. The signal-based method could
usually determine the fact of the defect, but it is not easy to determine the location and
strength of the defect present in the tested structure.

So far, many studies have been done on damage identification of semi-rigid joints.
Hou et al. [25] considered the damage identification of frame structures with semi-rigid
joints and proposed a two-step damage detection identification method using frequency
and modal array as the objective function. Bharadwaj et al. [26] varied the frequency and
modal shape by a moderate amount and estimated the model damage using a unified
particle swarm algorithm. Zhou et al. [27] identified the damage of the structures, which
was connected by semi-rigid joints and the nonlinear vibration characteristics of structures
was considered. Sharma et al. [28] used a modified one-dimensional convolutional neural
network to predict the damage occurrence and its location from the semi-rigid joints. Peral
et al. [29] processed the time-domain acceleration signal with continuous wavelet transform
(CWT) to obtain a scale map and used a two-dimensional convolutional neural network
(CNN) architecture for semi-steel joint damage identification. However, most of the data-
based methods require building large training datasets and the trained neural networks are
only valid for one model. Then, for a completely new structural model, additional training
is again required, which is time-consuming. In addition, the labels of the training data are
difficult to cover all combinations of working conditions aimed at the potential damage.

Among the structural vibration characteristics, natural frequency belongs to the most
fundamental and available modal parameter, but it is hard to use it purely. For example,
low-order frequencies, which can be measured accurately in real time, are very insensitive
to local damage. Higher-order frequencies are sensitive to changes in local stiffness but
are difficult to be excited and estimated accurately. Cha et al. [30] added a specific mass
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to the structure to update the model parameters using the orthogonality condition of
the system eigenvalues. However, it is usually difficult to add real masses to structures
on the required positions. Additional virtual parameters including additional virtual
mass, stiffness, damping, etc., can improve the sensitivity of the structure to local damage,
and thus the construction of virtual structures by adding virtual parameters is more
widely used for structure damage identification. Li et al. [31] used the additional virtual
mass method to identify structural damage and the method was verified by experiments
of a simply supported beam and a 3D truss structure. Zhang et al. [32] identified the
damage of a bridge by adding a much larger virtual mass to the bridge than an ordinary
vehicle, which provided enough modal information for damage identification. Thus, this
study investigates damage identification via additional mass for semi-rigid joints of frame
structures.

This paper is structured as follows. In Section 2, modeling of semi-rigid joints is
introduced. In Section 3, the construction of virtual structures with additional virtual
mass is briefly described, and damage identification methods are presented for the semi-
rigid joints of a frame structure based on additional virtual mass. Section 4 verifies the
effectiveness of the proposed methods using numerical simulations.

2. Modelling of Semi-Rigid Joint

Here, a semi-rigid joint refers to the joint that is between ideal articulation (Figure 1)
and fixed connection (Figure 2), and this joint has kind of a rotational stiffness and can
withstand part of the bending moment. This article focuses on the study of the semi-rigid
beam-column joint of frame structures, and it can be modelled by an elastic rotating spring
element, as shown in Figure 3. Denote θ* as the angle of the column end, θ is the angle
of the beam, and ϕ is the angle caused by the rotation of the joint spring, which is called
the relative rotation of the joint. The relation between angle θ* and angle ϕ is shown in
Equation (1).

ϕ = θ∗ − θ (1)

Sensors 2022, 22, x FOR PEER REVIEW 3 of 27 
 

 

low-order frequencies, which can be measured accurately in real time, are very insensitive 

to local damage. Higher-order frequencies are sensitive to changes in local stiffness but 

are difficult to be excited and estimated accurately. Cha et al. [30] added a specific mass 

to the structure to update the model parameters using the orthogonality condition of the 

system eigenvalues. However, it is usually difficult to add real masses to structures on the 

required positions. Additional virtual parameters including additional virtual mass, stiff-

ness, damping, etc., can improve the sensitivity of the structure to local damage, and thus 

the construction of virtual structures by adding virtual parameters is more widely used 

for structure damage identification. Li et al. [31] used the additional virtual mass method 

to identify structural damage and the method was verified by experiments of a simply 

supported beam and a 3D truss structure. Zhang et al. [32] identified the damage of a 

bridge by adding a much larger virtual mass to the bridge than an ordinary vehicle, which 

provided enough modal information for damage identification. Thus, this study investi-

gates damage identification via additional mass for semi-rigid joints of frame structures. 

This paper is structured as follows. In Section 2, modeling of semi-rigid joints is in-

troduced. In Section 3, the construction of virtual structures with additional virtual mass 

is briefly described, and damage identification methods are presented for the semi-rigid 

joints of a frame structure based on additional virtual mass. Section 4 verifies the effec-

tiveness of the proposed methods using numerical simulations. 

2. Modelling of Semi-Rigid Joint 

Here, a semi-rigid joint refers to the joint that is between ideal articulation (Figure 1) 

and fixed connection (Figure 2), and this joint has kind of a rotational stiffness and can 

withstand part of the bending moment. This article focuses on the study of the semi-rigid 

beam-column joint of frame structures, and it can be modelled by an elastic rotating spring 

element, as shown in Figure 3. Denote 𝜃∗ as the angle of the column end, 𝜃 is the angle 

of the beam, and 𝜑 is the angle caused by the rotation of the joint spring, which is called 

the relative rotation of the joint. The relation between angle 𝜃∗ and angle 𝜑 is shown in 

Equation (1). 

𝜑 = 𝜃∗ − 𝜃 (1) 

Denote 𝑅 as the rotational stiffness of the joint, then 𝜑 can also be expressed in 

terms of the relative rotational stiffness 𝑅 and the bending moment M, which is applied 

on the joint, as shown in Equation (2): 

𝜑 = 𝑀/𝑅 (2) 

Assume that the beam line stiffness 𝑖𝑏 is evenly distributed along its length. Define 

𝛽 as the ratio of the joint stiffness 𝑅 to the beam line stiffness 𝑖𝑏, i.e., 𝛽 = 𝑅/𝑖𝑏. In the 

finite element model of the semi-rigid joint beam element, the semi-rigid joint can be con-

sidered based on a reasonable value range of 𝛽 [33], as shown in Table 1. 

 

Figure 1. Ideal articulation. Figure 1. Ideal articulation.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 27 
 

 

 

Figure 2. Fixed connection. 

 

Figure 3. Semi-rigid joint model. 

Table 1. Relationship between 𝛽 and joint type. 

The Value Range of 𝜷 Joint Type 

𝛽 < 0.5 articulated joint 

0.5 ≤ 𝛽 ≤ 25 semi-rigid joint 

𝛽 > 25 rigid joint 

Generally, in the analysis of structural dynamics the semi-rigid joint is regarded as 

an independent basic element, which participates in the assembly of the stiffness matrix 

of the finite element model. Its element stiffness matrix is expressed as shown in Equation 

(3). To implement semi-rigid joints in the finite element model, the FEM model with ideal 

articulation (Figure 1) is created and then the stiffness of semi-rigid elements (Equation 

(3)) are added to the articulated beam ends. 

𝑲𝒆𝒔 = 𝑅 [
1 −1
−1 1

] (3) 

3. Damage Identification Based on Additional Virtual Mass 

Here based on Ref. [34], firstly, the construction of virtual structures by adding vir-

tual masses is described, and the sensitivity analysis to the damage factor is also intro-

duced, which is required for determining the value of the additional mass. Then, two 

methods for damage identification of semi-rigid joints are derived via the virtual struc-

tures. Joint damage is simulated by the change of the rotational stiffness. 

  

Figure 2. Fixed connection.



Sensors 2022, 22, 6495 4 of 27

Sensors 2022, 22, x FOR PEER REVIEW 4 of 27 
 

 

 

Figure 2. Fixed connection. 

 

Figure 3. Semi-rigid joint model. 

Table 1. Relationship between 𝛽 and joint type. 

The Value Range of 𝜷 Joint Type 

𝛽 < 0.5 articulated joint 

0.5 ≤ 𝛽 ≤ 25 semi-rigid joint 

𝛽 > 25 rigid joint 

Generally, in the analysis of structural dynamics the semi-rigid joint is regarded as 

an independent basic element, which participates in the assembly of the stiffness matrix 

of the finite element model. Its element stiffness matrix is expressed as shown in Equation 

(3). To implement semi-rigid joints in the finite element model, the FEM model with ideal 

articulation (Figure 1) is created and then the stiffness of semi-rigid elements (Equation 

(3)) are added to the articulated beam ends. 

𝑲𝒆𝒔 = 𝑅 [
1 −1
−1 1

] (3) 

3. Damage Identification Based on Additional Virtual Mass 

Here based on Ref. [34], firstly, the construction of virtual structures by adding vir-

tual masses is described, and the sensitivity analysis to the damage factor is also intro-

duced, which is required for determining the value of the additional mass. Then, two 

methods for damage identification of semi-rigid joints are derived via the virtual struc-

tures. Joint damage is simulated by the change of the rotational stiffness. 

  

Figure 3. Semi-rigid joint model.

Denote R as the rotational stiffness of the joint, then ϕ can also be expressed in terms
of the relative rotational stiffness R and the bending moment M, which is applied on the
joint, as shown in Equation (2):

ϕ = M/R (2)

Assume that the beam line stiffness ib is evenly distributed along its length. Define β
as the ratio of the joint stiffness R to the beam line stiffness ib, i.e., β = R/ib. In the finite
element model of the semi-rigid joint beam element, the semi-rigid joint can be considered
based on a reasonable value range of β [33], as shown in Table 1.

Table 1. Relationship between β and joint type.

The Value Range of β Joint Type

β < 0.5 articulated joint
0.5 ≤ β ≤ 25 semi-rigid joint

β > 25 rigid joint

Generally, in the analysis of structural dynamics the semi-rigid joint is regarded as an
independent basic element, which participates in the assembly of the stiffness matrix of the
finite element model. Its element stiffness matrix is expressed as shown in Equation (3).
To implement semi-rigid joints in the finite element model, the FEM model with ideal
articulation (Figure 1) is created and then the stiffness of semi-rigid elements (Equation (3))
are added to the articulated beam ends.

Kes = R
[

1 −1
−1 1

]
(3)

3. Damage Identification Based on Additional Virtual Mass

Here based on Ref. [34], firstly, the construction of virtual structures by adding virtual
masses is described, and the sensitivity analysis to the damage factor is also introduced,
which is required for determining the value of the additional mass. Then, two methods
for damage identification of semi-rigid joints are derived via the virtual structures. Joint
damage is simulated by the change of the rotational stiffness.

3.1. Construction of Virtual Structure
3.1.1. The Concept of Additional Virtual Mass Methods

The frequency response construction of the virtual structure is shown in Figure 4. In
the left figure, m denotes the additional virtual mass added to the virtual structure at point
A, δ(t) denotes the unit impulse excitation applied to the virtual structure at point A, and
hv(ω, m) denotes the frequency response of the vertical acceleration response at point A
to δ(t), where the superscript v represents the virtual structure. Assuming that m is to be
added at point A and the frequency response hv(ω, m) of the virtual structure is desired, it
is only necessary to apply a vertical excitation f (t) at point A of the original structure (the
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right figure), as required by the virtual mass method. Although f (t) can excite oscillations
in different directions and possibly even torsional vibrations, the method requires the
measurement of only one acceleration response, i.e., the acceleration response a(t) at the
additional virtual mass position (point A) in the same direction as f (t). Substituting f (t)
and a(t) into Equation (4), the frequency response hv(ω, m) of the virtual structure with the
added mass m can be calculated. With Equation (4), the modal information of the virtual
structure can be estimated mathematically by the measured data of the actual damaged
structure and the virtual mass values [34].

hv(ω, m) =
a(ω)

f (ω) + ma(ω)
(4)
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3.1.2. Constructing Multiple Virtual Structures

In order to obtain enough information for structural damage identification, multiple
virtual structures are required to be constructed with regard to the virtual mass added at
different positions. As shown in Figure 5, assume that a virtual mass can be added in turn
on n positions of the structure and take the case of viral mass added on the ith position
to describe the construction of the virtual structure, i.e., the ith virtual structure. Denote
fi(ω) as the excitation applied at the ith position of the actual frame, and let ai(ω) be the
acceleration along the same DOF of the excitation fi(ω). For a virtual mass m added on
the ith position along the same DOF, the acceleration frequency response of the ith virtual
structure hv

i (ω, m) can be constructed using Equation (4) via the measured fi(ω) and ai(ω).
Using the above method, n virtual structures can be constructed by sequentially performing
dynamic tests at n positions on the actual structure. In addition, since the additional
virtual mass values are changeable, the values can be changed to construct different virtual
structures. For the same position, multiple values of virtual mass can be added to construct
different virtual structures. Assuming that Q virtual masses are sequentially attached
to n locations, it is possible to construct Q × n virtual structures, which is beneficial to
increase the data used for damage identification. The natural frequencies of the constructed
virtual structures are different due to their different mass matrices, and in this way the
modal information of multiple virtual structures can be constructed arbitrarily for damage
identification of actual structure.
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3.1.3. Sensitivity-Based Method for Determining the Value of Virtual Mass and
Frequency Order

Denote µ as the damage factor of a semi-rigid damaged joint, which is the scale
factor of the stiffness reduction. For µ = 1, it means the structure is intact. Assume that
there are n joints to be identified in the structure, and µ = [µ1, µ2, . . . , µn]

T is a column
vector consisting of n damage factors. According to the equation of force equilibrium, the
generalized eigenvalue equation is established and then the first-order partial derivative
is found for it. The formula for the frequency sensitivity of the kth joint at the jth order
frequency to damage factor µ can be obtained as follows:

Rji,k(µ, m) =
∂ωji(µ, m)

∂µ
=

ΨT
ji(µ, m)KkΨji(µ, m)

2ωji(µ, m)
(5)

where i is the position of the additional mass, KK is the stiffness matrix of the kth joint,
ωji(µ, m) is the jth order natural frequency when the virtual mass is added on the ith
position, and Ψji is the corresponding modal shape to the jth order natural frequency when
adding mass on the ith position. For different joints, the value of the additional mass
affects its sensitivity to local damage, so a sensitivity analysis is needed to determine the
additional mass value. For joint k, when the position i of the additional virtual mass is
decided, the sensitivity Rji,k(µ, m) is compared for each order of frequency (j = 1, 2 . . ..)
by adjusting the value of m as a way to determine the natural frequency order with the
greatest sensitivity and the required value of m. The selected natural frequency order is
most sensitive to damage of joint k.

3.2. Qualitative Identification of Damaged Joints

Structural joint damage is hard to accurately identify because the whole structure
generally is not sensitive enough to local damage. Here a qualitative identification of joint
damage is proposed by adding virtual masses at appropriate positions, which affords a fast
approach to approximately evaluate the joint condition.

3.2.1. Influence of the Additional Virtual Mass Position

Take a simple frame structure as an example shown in Figure 6, where joint A and
joint B are both semi-rigid joints. Assume four cases which are as follows: no damage, joint
A is damaged, joint B is damaged, joint A and B are both damaged.
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Figure 6. A simple frame structure model.

In each damage case, a virtual mass is added in turn at different positions of the beam
from joint A to joint B, and correspondingly the virtual structure is constructed with regard
to the virtual mass position. When the value of the additional virtual mass is decided, the
sensitivity analysis shows that the most sensitive natural frequency to joint damage for
all virtual structures constructed on the basis of this structure is the second order. The
sensitivity analysis method will be shown in detail in the numerical simulation section.
Take the position of the additional virtual mass as the horizontal coordinate, and the second
order natural frequency, for instance, obtained from the corresponding virtual structure as
the vertical coordinate, their relation curves in the considered four damage cases are shown
in Figure 7.
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Figure 7. The relation curves of the second order natural frequency of virtual structures with the
positions of the added virtual mass in four damage cases.

From Figure 7, it can be seen that in the case where the semi-rigid joints are not
damaged, the frequencies of the virtual structure are symmetrically distributed with the
position of the additional mass, and the changes are large. In the case of joint A or B being
damaged, the frequency decreases to the maximum when the position of the added virtual
mass is approximately 1/4 of the beam length to the damaged joint. In the case of joints A
and B having the same damage, the change of the structural frequencies is symmetrically
distributed and their values do not decrease by much.

In summary, when the position of the additional virtual mass is close to the damaged
joint, the change of the natural frequency is obvious, and this favorite position is approxi-
mately 1/4 of the beam length to the damaged joint. In practice, if the additional virtual
mass is too close to the damaged joint, it is not convenient for practical operation. On the
other hand, if the distance is too far from the damaged joint, it is hard to reflect the natural
frequency changes.

3.2.2. Damage Estimation by Relative Identification Coefficient

Based on the above analysis, virtual structures are constructed by adding virtual
masses at 1/4 of the beam length from its two ends (of course, it is possible to add virtual
masses at more positions to obtain more information for structural damage identification).
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In this way, virtual structures with the same number of semi-rigid joints are constructed.
The advantage of this method is that the natural frequency of each virtual structure can
reflect, to some extent, the damage possibility of the joints near the additional mass. The
difference between the frequencies of the undamaged and damaged virtual structures are
calculated, normalized, and defined as the relative identification coefficient of joints.

The positions of the added virtual masses are shown in Figure 8, and the normalization
is performed as shown in Equation (6). Assume that there are n virtual structures (cor-
responding to n semi-rigid joints), where Ci denotes the relative identification coefficient
of the ith virtual structure, ωA,i denotes the natural frequency of a specific order of the
ith virtual structure obtained from the measured acceleration data of the actual damaged
structure, and ωi denotes the corresponding natural frequencies of the undamaged virtual
structures. It is worth noting that the sensitivity analysis is needed to determine the specific
frequency order and the value of additional mass. The greater the Ci, the bigger probability
of joint damage. 

Ci =
∆i

∆max
(i = 1, 2, . . . , n)

∆i = |ωA,i −ωi|
∆max = max( ∆1, ∆2, . . . , ∆n)

(6)
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3.3. Estimation of Damaged Joints Based on Natural Frequency

Although the method described in the above section can quickly and qualitatively
identify the potential damage, it cannot accurately determine the location and extent of the
damage. Furthermore, a natural frequency-based optimization method is proposed here to
obtain more accurate information about joint damage.

3.3.1. The Objective Function Based on Natural Frequency

As in Section 3.2.2, the virtual structures are constructed by adding a virtual mass
to the beam at a position 1/4 beam length away from each semi-rigid joint, i.e., there
are n virtual structures in total. Assuming that Q different virtual masses are added, N
different virtual structures can be constructed (N = Q × n). All the additional virtual
masses can be expressed as m =

[
m1, . . . , mQ], and mq (q = 1, 2, . . . , Q) denotes the qth

mass. According to Equation (4), the structural frequency response at the ith position with
additional mass mq can be estimated, and the corresponding natural frequency of the virtual
structure ωA,i(mq) can be obtained from the measured acceleration data, which is noted as
the identified frequency. On the other hand, the virtual structure of the beam element is
designed using the finite element method to optimize the damage factor µ. The mass matrix
of the ith virtual structure is Mi(mq), when the virtual mass mq is added at the ith position
of the finite element model (Figure 8), and the stiffness matrix of the finite element model
of the ith virtual structure is Ki(µ), when the damage factor is assumed to be µ. Given µ,
the natural frequencies ωi(µ, mq) of the ith virtual structure are calculated mainly by using
eigenvalue decomposition of Ki(µ) and Mi(mq). Therefore, an objective function T(µ) in
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Equation (7) is constructed using the differences of the identified frequency ωA,i(mq) and
the calculated frequency ωi(µ, m) with regard to the given damage factor µ. During the
optimization, the value of the objective function T(µ) is calculated repeatedly with regard
to the given damage factor µ. When the damage factor µ matches the real joint damage
factor best, the difference between the frequency ωA,i(mq) and the frequency ωi(µ, mq) is
minimized. Therefore, the damage factor µ that minimizes the objective function T(µ) is
the optimal value of the identified damage factor.

T(µ) =
1
2

Q

∑
q=1

n

∑
i=1

(
ωA,i(mq)−ωi(µ, mq)

ωA,i(mq)

)2

(7)

The objective function shown in Equation (7) can be optimized by intelligent algorithm,
such as Genetic Algorithm and the Particle Swarm Optimization method. However, the
convergence rate of these intelligent algorithms is slow. During the optimization, ωi(µ, mq)
must be re-modeled every time it is calculated, which requires a lot of computational
work. In order to improve the computational efficiency, the natural frequencies ωi(µ, mq)
of the virtual structure are written in an approximate linear expression, for which a Taylor
expansion is performed at µ0 = 1, as shown in Equation (8). Ri(µ0) is a row vector composed
of the sensitivity of ωi(µ, mq) to each damage factor. Combining Equations (7) and (8), the
objective function Equation (7) can be optimized using Newton’s method.

ωi(µ, mq) = ωi(µ0, mq) +
∂ωi(µ, mq)

∂µ

∣∣∣∣
µ=µ0

(µ− µ0) = ωi(µ0, mq) + Ri(µ0)(µ− µ0) (8)

3.3.2. Optimization Based on Improved Orthogonal Matching Pursuit (IOMP) Algorithm

In practice, since not all the joints are damaged, there are usually a large number
of undamaged joints in the actual structure. If the potential damaged joints could be
picked via some a priori condition of damage sparsity, the optimization accuracy could
be improved.

Substitute Equation (8) into the objective function (7) and the l0 norm of the damage
factor increment ∆µ = (µ – µ0) is used as the constraint to construct the objective function
for the sparse damage identification, as shown in Equation (9). An Orthogonal Matching
Pursuit (OMP) algorithm [35] can be used to optimize the objective function to obtain
sparse recognition results. However, the OMP algorithm relies on the iterative screening
results of the previous step, and the final optimization result is usually a local optimal
solution. The iteration stopping criterion is the estimated damage vector sparsity or the
termination threshold set in advance, which is empirical in nature. To address this problem,
Zhang et al. [36] proposed an improved OMP (IOMP) algorithm to obtain more stable
and accurate sparse damage identification results. The objective function used for damage
identification derived in Ref [36] is shown in Equation (9).

T(µ) =
1
2

Q

∑
q=1

n

∑
i=1

(
ωA,i(mq)−ωi(µ0, mq)−Ri(µ0)(µ− µ0)

ωA,i(mq)

)2

+ ‖∆µ‖0 (9)

where Ri(µ0) is the row vector composed of the sensitivity of ωi(µ, mq) for each dam-
age factor, and the l0 norm of the damage factor change vector ∆µ = (µ – µ0) is used as
the sparse constraint term. Assume that the initial sensitivity matrix of the structure is
R0 =

[
R1(µ0), . . . , Ri(µ0), . . . , Rq(µ0)

]T, the initial value of the localization vector is η = ∅,
and the remaining vector η∗ = (1, · · · , l, · · ·N). Take the Sth iteration as an example to
illustrate the screening process of damaged semi-rigid joints as follows.
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(1) Constructing the dynamic characteristic residual matrix
RS−1 = [rS−1,1, · · · , rS−1,l , · · · rS−1,N−S+1]

εS,l = (I−R∗S−1,l(R
∗
S−1,l)

+)rS−1,l∆µl
ES = [εS,1, · · · , εS,l , · · · εS,N−S+1]

(10)

The calculation process is shown in Equation (10). εS−1,l is the residual vector cor-
responding to the lth node in the S−1th iteration step, and ∆µl is the damage factor
change variable vector corresponding to it. rS−1,l is the lth column of RS−1, R∗S−1,l is the
low-dimensional matrix after eliminating rS−1,l from RS−1, (R∗S−1,l)

+ denotes the pseudo-
inverse matrix of R∗S−1,l , and ES is the residual matrix of the step iteration.

(2) Screening and eliminating undamaged joint

ẼS = ES − εS,mI (11)

aS,i = arg min
l=1,··· ,N−S+1

ε̃T
S,lrS−1,l

‖rS−1,l‖2
(12)

εS,m is the column vector composed of the mean values of each row of ES. Based on the
sensitivity correlation criterion (Equation (12)), the screening parameters of each column
vector of ẼS are calculated, and the semi-rigid joint corresponding to the smallest parameter
is selected as undamaged;

(3) Sorting damage priority and constructed final residual matrix and location vector

ε f inal,N−S+1 = εS,i

E f inal =
[
ε f inal,N−S+2, · · · , ε f inal,N

]
∪ ε f inal,N−S+1

ηn−S+1 = η∗(i) = ι
η = [ηN−S+2, · · · , ηn] ∪ ηN−S+1

η∗ = {η∗ι
RS = [rS−1,1, · · · , rS−1,i−1, rS−1,i+1 · · · rS−1,N−S+1] = [rS,1, · · · , rS,i, · · · rS,N−S]

(13)

Repeat the above steps (1)~(3) to achieve the damage priority ranking by iteration.
Finally, the approximate L-curve is drawn using the residual vector parametrization of
each semi-rigid joint, and the number of damaged joints is estimated by the inflection point
position. The damage locations identified by the above iterative screening correspond to
elements in µ that are non-1 and the rest are 1. The specific damage degree of each joint is
determined using the objective function, as shown in Equation (7).

3.4. Flow Chart

To further elaborate the proposed methods, a flow chart is drawn as shown in Figure 9.
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4. Numerical Simulation of a Frame Structure with Semi-Rigid Joints

In order to verify the proposed methods, damage identification of semi-rigid joints
was performed numerically, where a three-story steel frame structure model was adopted,
as shown in Figure 10.
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4.1. Frame Structure Model with Semi-Rigid Joints
4.1.1. Physical Parameters of Frame Structure Model

Assume that the beams and columns have the same cross section size and elastic
modulus. The basic parameters of the frame are listed in Table 2. Define the damping of
the structure as Rayleigh damping with the damping ratio 0.01 for the first two orders.
The beam-column joints Gi(i = 1, 2 . . . 12) shown in Figure 10 are all semi-rigid and are
simulated by a spring element.
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Table 2. Basic physical parameters of frame structure.

Physical Parameters Unit Value

Story height m 0.6
Span m 0.6

Material Density of Beam/column kg/m3 7850
Elasticity modulus of Beam/column Pa 2.1 × 1011

Cross-section width of the beam/column m 0.05
Cross-section height of the beam/column m 0.006

Second moment of area m4 9 × 10−4

4.1.2. Modal Analysis of Frame Structure Model

Assume the initial rotational stiffness of the intact joints R0 = 3150 N · m/rad with β =
10, and the first 10 orders of the corresponding structural natural frequencies are shown in
Table 3, and the modal shapes are shown in Figure 11.

Table 3. The first 10 order of natural frequencies of the intact structure (Hz).

Frequency Order 1 2 3 4 5

Frequency value (Hz) 3.33 11.13 20.43 40.85 46.82

Frequency Order 6 7 8 9 10

Frequency value (Hz) 49.62 56.46 56.99 60.14 63.07
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It can be seen from Figure 11 that the structure mainly performs bending vibrations.
The first three orders of modes are dominated by the overall vibration information, and the
fourth order and later modes start to show local vibration information. Since the excitation
and measurement point is on the beam, the identified original structural modes from the
measured acceleration response are likely to be the fourth or more than fourth order. Modes
of a higher order are more useful for joint damage identification, but they are not easily
excited. Therefore, the specific order of natural frequencies used for damage identification
needs to be determined by sensitivity analysis of the virtual structure to joint damage.

The changes of the first four orders of natural frequencies with β of the frame are
calculated respectively and are shown in Figure 12.
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As can be seen from Figure 12, the natural frequency is stable when β > 25. It means
that in this case the change of joints does not influence the dynamic behavior of the structure
and so the joints can be treated as a rigid connection at this time. When the value of β is
between 0.5 and 25, the natural frequency gradually becomes large, which tells that there is
an effect of semi-rigid joints on the modal properties of the structure. The above analysis
verifies the statement about the definition of the semi-rigid joints referred in Ref. [33] in
a certain degree. Therefore, β taken as 10 in this study can simulate the performance of
semi-rigid joints.

4.1.3. Damage Cases

Two cases of damage conditions are defined as shown in Table 4. In Case 1, only one
joint damage is damaged, and four joints are damaged in Case 2. The damage factors are
expressed in the vector µ and need to be identified.

Table 4. Damage factors of the joints.

Cases Damaged Joints Damage Factors

Case 1 (Single damage) G1 µ = [0.6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T

Case 2 (Multiple damages) G1, G2, G7, G9 µ = [0.5, 0.6, 1, 1, 1, 1, 0.8, 1, 0.9, 1, 1, 1]T

The structure natural frequencies in the two cases are respectively obtained and shown
in Table 5, which are compared with the values of the intact structure. It can be seen that in
the two cases, the changes of the structural natural frequencies caused by the local joint
damage are minimal. This further reflects that the low-order modal information of the
structure is not sensitive to local damage and so the damage is difficult to identify, using
the estimated structural natural frequencies in this case. By applying virtual masses on
the structure to obtain enough useful modal information, the sensitivity of the structural
vibration to joint damage can be increased, which is good for increasing the efficiency of
damage identification.
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Table 5. The first four order natural frequencies of the intact and damaged structure (Hz).

Damage Cases The Frequency Order

1 2 3 4

Intact 3.33 11.12 20.42 40.85
Case 1 3.30 11.11 20.41 40.85
Case 2 3.26 10.95 20.36 40.83

4.2. Construction of Virtual Structures Based on Adding Virtual Mass Mothed
4.2.1. Potential Positions of the Additional Virtual Mass

Assume one virtual mass added on the damaged frame, the frequency responses of the
virtual structure with additional virtual mass can be obtained from Equation (4). According
to Section 3.2.1, the specific virtual mass mq is added near each joint, that is, at the position
of 1/4 beam length from the joints. Therefore, there are 12 positions for adding the virtual
mass near different joints Gi(i = 1, 2 . . . , 12), and it turned out to be 12 virtual structures,
denoted as Sq

i (i = 1, 2 . . . , 12). The position mi (i = 1, 2 . . . , 12) where the virtual mass
needs to be added is shown in Figure 13, and the virtual structure Sq

1 is shown in Figure 14,
which represents the qth virtual mass applied at the position m1.
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4.2.2. Determination of the Virtual Mass Value Based on the Sensitivity Analysis

From Equation (5), it shows that the sensitivity of the virtual structure to joint damage
changes as the structural parameters change. In order to improve the sensitivity of structural
modal information to joint damage, a suitable additional mass value is required to be
determined. Firstly, select the virtual mass value from the range between 0 and 7 kg, which
is divided into 30 equal parts and the selected value is respectively added to the positions
shown in Figure 13. The sensitivity of each virtual structure can be calculated with regard
to the change of the virtual mass value.

Taking the sensitivity analysis of virtual structure Sq
1 as an example, the sensitivity to

the damage of joint G1 with different value of additional mass m is estimated and shown in
Figure 15.
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From Figure 15, it can be seen that the 4th-order natural frequency of the virtual
structure Sq

1 becomes increasingly sensitive to joint damage as the additional mass increases.
Although the high sensitivity is good for detecting damage, the influence of the noise would
also be enlarged [37]. The sensitivity of the virtual structure increases significantly when
the virtual mass is 2–4 kg, so a total of 5 mass values (Q = 5) are selected in this interval,
denoted as m = [2, 2.5, 3, 3.5, 4], and the qth mass value is denoted by m1. The virtual
masses of the other positions are determined in the same way and can be confirmed to be
the same value as the masses at position m1. Therefore, the virtual mass at each position is
denoted by m.

When the virtual mass m1 (2 kg) is added at position m1, the virtual structure is
denoted as S1

1. The variation of the 4th-order natural frequencies of the original structure
and the virtual structure S1

1 with the β of the joint G1 are shown in Figure 16a,b, respectively.
The natural frequency of the virtual structure exhibits a larger change as the β of G1 is
varied in the range of semi-rigid joints (0.5 to 25) compared to the original structure. In
particular, the slope of the curve is larger when β is smaller, indicating a greater change in
the 4th-order natural frequency when there is the same degree of damage, which facilitates
the identification of joint damage.
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4.2.3. Modal Shapes of the Virtual Structure

Take virtual structure S1
1 as an example to show the modal shapes of the virtual

structure. Its modal shapes are obtained using the finite element method as shown in
Figure 17. It is observed that for virtual structure S1

1, the excitation is applied at the
position of the added virtual mass m1, and the vibration of the beam with the added virtual
mass is the most pronounced at the 4th-order modal shape. Similarly, for the rest of the
virtual structures, the vibration of the beam with the added virtual mass is also the most
pronounced at the 4th-order modal shape.
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4.2.4. Frequency Response Construction of Virtual Structures with Adding Virtual Mass

Here, virtual structure S1
1 is also taken as an example to describe the construction of the

frequency responses of the virtual structure. The excitation is applied vertically at position
m1 of virtual mass m1 of the actual structure, and a sensor is located at the position of m1

to measure the acceleration response along the direction of the excitation. The impulse
excitation is applied using a hammer shown in Figure 18, and the corresponding impulse
response of the original structure with 5% Gaussian white noise is simulated and shown
in Figure 19. After noise reduction, the frequency response of the damaged structure is
obtained by Fourier transform, as shown in Figure 20. Then, the frequency response of
virtual structure S1

1 is derived from Equation (4) as shown in Figure 21, and so the frequency
responses of the other virtual structures are obtained.
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4.2.5. Natural Frequencies Estimation of the Virtual Structural

It can be seen from Figure 21 that not all the frequencies of virtual structure can
be excited to the impulse excitation, and so the specific order of the excited frequency
needs to be judged via the finite element model(FEM) of the virtual structure with no
damage. Take structure S1

1 as an example to illustrate this problem. By the FEM of the
intact virtual structure S1

1, the natural frequencies can be obtained and Table 6 lists its first
five order natural frequencies. In Figure 21, the frequency corresponding to the maximum
of the frequency response is approximately 35 Hz, which is closer to the 4th-order natural
frequency listed in Table 6. That’s to say, the modal information obtained of the virtual
structure S1

1 from the measured data is dominated by the 4th order, which also justifies
the effectiveness of taking the 4th-order natural frequency as an indicator for damage
identification. The analysis process for other virtual structures is similar.
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Table 6. The first five order natural frequency of virtual structure S1
1 with no damage.

Frequency Order 1 2 3 4 5

Frequency value (Hz) 3.33 11.13 20.42 35.24 42.00

As can be seen from the above, high sensitivity modes are often easily excited out
of the mode. Ref. [34] points out the high amplitudes of the frequency response and the
high sensitivities of the corresponding natural frequencies are correlated, that is, the larger
the amplitude of the frequency response, the higher the sensitivity of the corresponding
frequency. According to the frequency response of virtual structure S1

1 in Figure 21, the
amplitude of the fourth mode (35.2 Hz) is the largest, that is, the structure mainly vibrates
in the 4th mode. On the other hand, according to the modal shape analysis of applying unit
impulse excitation at the position of virtual structure m1, it is obvious that the 4th mode is
more easily excited. The most easily excited modes analyzed by the above two methods are
consistent with the most sensitive (4th-order natural frequency) in the sensitivity analysis.

When the frequency response of the virtual structure is constructed, it is theoretically
possible to determine the caused natural frequency of the structure by the peak picking
method. However, the peak of the frequency response shown in Figure 21 may not exactly
correspond to the natural frequency. Therefore, the Eigensystem Realization Algorithm
(ERA) [38] is used to calculate the natural frequencies of each virtual structure, which
are shown in Table 7. Via ERA, structural modal information can be solved by impulse
response. Firstly, the structural impulse responses are discretized in time series, based on
which a generalized Hankel matrix is constructed and then by performing singular value
decomposition of the Hankel matrix, structural minimum realization matrix is determined.
Finally, structural modal parameters are obtained by eigenvalue decomposition of the
minimum realization matrix.

Table 7. The 4th-order natural frequencies of each virtual structure with additional mass m1 obtained
by different methods in case of no damage (Hz).

Virtual Structure Real Peak Extraction Method ERA Algorithm

S1 35.24 35.20 35.23
S2 35.59 35.92 35.79
S3 35.59 35.48 35.52
S4 35.24 35.06 35.57
S5 34.24 33.74 34.23
S6 34.58 34.67 34.62
S7 34.58 34.73 34.59
S8 34.24 34.51 34.51
S9 32.39 32.25 32.60
S10 32.93 33.03 33.00
S11 32.93 33.06 33.06
S12 32.39 32.51 32.50

The natural frequency accuracy obtained respectively by ERA and the peak picking
method for each virtual structure with no damage are compared and shown in Table 7. It
shows that although natural frequencies obtained by the two methods are both close to the
values estimated by the FEM, the accuracy of ERA is higher.

4.3. Qualitative Identification of the Joint Damage Based on Natural Frequencies

For two damage conditions mentioned in Section 4.1.3, the 4th-order natural frequen-
cies of the 12 virtual structures with additional virtual mass of m1 are respectively estimated
by ERA from the measured data, denoted as ‘Estimated’ in Table 8. In order to verify the
accuracy of the estimated frequencies of the virtual structure, the frequencies are also
estimated using the FEM of the virtual structure with the same damage conditions, denoted
as ‘Theoretical’ in Table 8. It can be seen that the estimated values of the frequencies are
very close to the theoretical values. This shows that the virtual structural responses are
accurately constructed, and the natural frequencies are estimated accurately.
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Table 8. The 4th-order natural frequencies of different virtual structures with additional mass m1

obtained by the two methods in different damage cases.

Virtual Structure
Undamaged Case 1 Case 2

Theoretical Estimated Theoretical Estimated Theoretical Estimated

S1 35.24 35.23 34.49 34.47 33.70 33.79
S2 35.59 35.79 35.27 35.25 34.15 34.35
S3 35.59 35.52 35.57 35.69 35.51 35.54
S4 35.24 35.57 35.23 35.25 35.20 35.19
S5 34.24 34.23 34.24 34.41 34.21 34.18
S6 34.58 34.62 34.58 34.62 34.56 34.50
S7 34.58 34.59 34.58 34.62 34.29 34.25
S8 34.24 34.51 34.24 34.48 34.11 33.98
S9 32.39 32.60 32.39 32.48 32.32 32.33
S10 32.93 33.00 32.93 33.08 32.89 32.86
S11 32.93 33.06 32.93 33.10 32.92 32.95
S12 32.39 32.50 32.39 32.36 32.39 32.38

The relative identification coefficients of the two cases are calculated via Equation (6),
as shown in Figures 22 and 23, which can be used to estimate the possibility of different
joints damage.
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In Case 1 (Figure 22), the relative identification coefficient of joint G1 is significantly
larger than the other joints, and it indicates that this joint has the highest probability of
damage, which fits well with that actual damage condition. In Case 2 (Figure 23), the relative
recognition coefficients of joints G1, G2, G7, and G8 are significantly larger than the rest of
the joints, and it indicates that the three joints are the most likely to be damaged. However,
the damaged joint G6 is failed to be determined. The relative identification coefficient of
joint G8 is similar to G7, while joint G8 is actually intact and so it is misestimated. Therefore,
qualitative identification can only identify the damaged joints to a certain extent.
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4.4. Damage Identification Using Natural Frequency and Frequency Response
4.4.1. Comparison of Identification Results in Low Noise Using Different Methods

To get more accurate damage identification results, the finite element model is used to
establish the objective function described in Section 3.3. and the damage factors are opti-
mized. Two optimization methods, Newton’s method (Equation (8)) and IOMP algorithm
(Equation (9)) are chosen to optimize the natural frequency-based objective function. The
damage factors identified by the above three methods are shown in Figures 24 and 25, and
the identification errors are calculated using Equation (14), where µ̃ is the identified damage
factor. The identification errors in different damage conditions are shown in Table 9.

errori =
|µ̃i − µi|

µi
× 100% (14)
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Table 9. Identification errors of damage factor in different cases.

Cases Optimization
Method

Joint Number

1 2 3 4 5 6 7 8 9 10 11 12

Case 1
Newton 2.8% 0.1% 0.1% 0.1% 2.9% 0.0% 1.7% 0.0% 0.1% 0.0% 0.0% 0.1%
IOMP 2.0% 0.9% 0.0% 0.8% 0.0% 0.0% 2.3% 0.0% 0.0% 0.0% 0.0% 0.0%

Case 2
Newton 7.7% 3.0% 3.7% 1.4% 7.1% 4.6% 8.5% 8.9% 3.3% 0.9% 6.4% 9.1%
IOMP 3.2% 4.3% 1.5% 0.3% 0.1% 0.0% 4.3% 0.1% 0.1% 0.1% 0.1% 0.1%

It can be seen from Figure 24 and Table 9 that in Case 1 the single joint damage can
be identified accurately by the two optimization methods within a 3% error. However, for
Case 2 (Figure 25) with multiple joint damage, the identification errors of Newton’s method
are obvious, such as the identification results of the undamaged joints G5, G6, G8, G11,
and G12. In contrast, the IOMP algorithm can effectively improve the accuracy of damage
identification, especially to avoid the misestimation of undamaged joints. Therefore, only
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the optimization method of IOMP is discussed in the later damage identification in different
cases.

4.4.2. Influence of High-Level Noise on Identification Results

In practice, the noise pollution on the measurement is inevitable. In order to verify the
application of the proposed method in practice, 15% Gaussian white noise is considered
in the simulated acceleration response signal. Here, the damage condition in Case 2 is
taken as an example. To obtain the natural frequencies of the virtual structures with the
high frequency accuracy required by the method, three identical tests were performed and
the natural frequencies identified were averaged. When the additional virtual mass is m1,
the natural frequency identification results of the first five virtual structures are shown in
Table 10. It can be seen that the averaged values of the identified natural frequencies are
closer to the actual values compared with the results of the separate test.

Table 10. The 4th-order natural frequencies of the first five virtual structures with additional virtual
mass m1 (Hz).

Virtual Structure
Number S1 S2 S3 S4 S5

Real 33.70 34.15 35.51 35.20 34.22
First test 34.13 35.30 35.28 34.61 34.81
Second test 33.29 34.87 34.30 35.26 33.60
Third test 35.34 35.43 35.19 35.82 34.14
Average of three tests 34.25 35.20 34.92 35.23 34.19

Using the above averaged natural frequencies, the damage factors are identified using
the IOMP method and shown in Figure 26. The results of the damage identification in
Figure 26 show that the method of attaching different masses to construct more virtual struc-
tures and averaging the natural frequencies identified by multiple groups can effectively
handle the case of high noise pollution.
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4.5. Discussion of Other Damage Conditions
4.5.1. The Influence of Beam Damage on Damage Identification

Although semi-rigid joints are more prone to be damaged in practice, beam damage
may exist simultaneously with joint damage. To investigate the influence of beam damage
on joint damage identification, the beam between joints G1 and G2 was assumed to be
damaged respectively in the two following cases: one damage near joint G1 and the whole
section damaged. The corresponding damage location is respectively shown in Figures 27
and 28, and the damage factors, i.e., the ratio of the damaged stiffness to the original value,
are all set as 0.8. It is assumed that the frame structure for this test has no joint damage
and only beam damage. The damage of the joints are shown in the above Case 2. The
joint damage is identified by the IOMP method described in Section 4.4, where 5% noise is
added. The identified damage factors of the joints are shown and compared in Figure 29.
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Figure 29. Identification results of joint damages with the existence of different beam damage.

For the beam damage near joint G1 labeled ‘left damage’ in Figure 29, the identified
damage factor of joint G1 becomes smaller, i.e., the damage to the beam near the joint
is equated to the damage to the joint. When the whole beam is damaged, the identified
damage factors of both joints at its ends are drastically reduced. Therefore, when the
damage factors of both joints at the ends of the beam are small, it is also possible to
equivalently locate the section of the beam that may be damaged.

4.5.2. Effect of the Stiffness Ratio of the Column and Beam on Joint Damage Identification

In this study, the vertical acceleration response of the beam is required for joint damage
identification, while the beam vibration may be influenced by the stiffness ratio of the
column and beam. Therefore, the influence is investigated by adjusting the stiffness of
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the column comparatively. The stiffness of the column and the beam calculated from the
physical parameters in Table 2 is the same, which is taken as the basic value with the
stiffness ratio of the column and beam equaling to 1, and then different stiffness ratios are
studied as listed in Table 11. Take the analysis of virtual structure S1 as an example. With
regard to each stiffness ratio, the fourth order modal shape of the virtual structure S1 is
respectively shown in Figure 30. In addition, two measurement points u1 and u2 are set
on the structure as shown in Figure 31. The measured acceleration responses at u1 and
u2 in the case of different stiffnesses ratios are respectively shown in Figures 32 and 33.
Moreover, regard to each stiffnesses ratio, the identified damage factors using the frequency
response-based method with 12 virtual structures are shown in Figure 34, considering 5%
noise.

Table 11. Different stiffness ratios of the column and beam.

Column Type Type 1 Type 2 Type 3 Type 4

Stiffness ratios 0.7 1 3 5
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Figure 31. Measurement points u1 and u2 set on the structure.

From the modal shapes analysis in Figure 30, it shows that when the stiffness ratio of
the column and beam increases, the horizontal vibration of the column becomes smaller
and, on the contrary, the vertical vibration of the beam becomes larger, which can also be
reflected intuitively by the acceleration responses at u1 and u2 in Figures 32 and 33. In other
words, the increasing of the beam vibration can more reflect its own characteristics and is
more conducive to the identification of joint damage. From Figure 34, it can be seen that the
stiffness ratio of the column to beam has little effect on overall joint damage identification.
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4.5.3. The Influence of Semi-Rigid Joints with Different Stiffness on Damage Identification

In order to investigate the effectiveness of the proposed method for structures with
different stiffnesses of semi-rigid joints, the results of damage identification for different
values of β in the structure are shown in Figure 35, where the defined damage condition is
shown as Case 2 in Table 4 and the measured acceleration response is obtained with a 5%
Gaussian white noise. As can be seen from Figure 35, the proposed method is effective in
identifying damaged joints for structures with different β. A closer look reveals that the
smaller the β of the structural joint, for example, joint 2, the higher the damage identification
accuracy.
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5. Conclusions

Aimed at the problem that structural dynamic information is insensitive to local joint
damage, this article presents an effective method for semi-rigid joint damage estimation by
constructing virtual structures using additional virtual masses. The main conclusions are
as follows:

(1) By measuring the excitation and acceleration responses of the actual structure,
multiple virtual structures are constructed, which can expand the information of joint
damage, and the damage of semi-rigid joints can be effectively identified by the modal
information of the virtual structures;

(2) Two natural frequency-based damage identification methods are proposed, the
qualitative estimation method and the objective function optimization method. The former
can qualitatively estimate the possibility of joint damage but may have misestimation.
The latter establishes the objective function based on the natural frequency of the virtual
structure and optimizes it using the IOMP method, which can avoid misestimation of
undamaged joints and has high accuracy of damage identification even in a high-level
noise condition;

(3) When a beam is damaged, the damage is equated to the identified joint. If the
beam damage is severe, it will greatly reduce the damage factor of the identified joint, and
further analysis of the beam near the joint should be performed at this time.
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