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Abstract: In current decades, significant advancements in robotics engineering and autonomous
vehicles have improved the requirement for precise depth measurements. Depth estimation (DE)
is a traditional task in computer vision that can be appropriately predicted by applying numerous
procedures. This task is vital in disparate applications such as augmented reality and target tracking.
Conventional monocular DE (MDE) procedures are based on depth cues for depth prediction. Various
deep learning techniques have demonstrated their potential applications in managing and supporting
the traditional ill-posed problem. The principal purpose of this paper is to represent a state-of-the-
art review of the current developments in MDE based on deep learning techniques. For this goal,
this paper tries to highlight the critical points of the state-of-the-art works on MDE from disparate
aspects. These aspects include input data shapes and training manners such as supervised, semi-
supervised, and unsupervised learning approaches in combination with applying different datasets
and evaluation indicators. At last, limitations regarding the accuracy of the DL-based MDE models,
computational time requirements, real-time inference, transferability, input images shape and domain
adaptation, and generalization are discussed to open new directions for future research.

Keywords: monocular depth estimation; single image depth estimation; deep learning; multi-task
learning; supervised, semi-supervised, and unsupervised learning

1. Introduction

Indisputable breakthroughs in the field of computational photography have helped
the emergence of novel functionalities in the imaging process [1,2]. Many works have been
carried out so far in the field of computer vision [3–6]. Depth estimation (DE) is a traditional
computer vision task that predicts depth from one or more two-dimensional (2D) images.
DE estimates each pixel’s depth in an image using offline-trained models. In machine
perception, recognition of some functional factors such as the shape of a scene from an
image and image independence from its appearance seems to be fundamental [7–9]. DE
has great potential for use in disparate applications, including grasping in robotics, robot-
assisted surgery, computer graphics, and computational photography [10–15]. Figure 1
schematically illustrates the evaluation trend of DE.

The DE task needs an RGB image and a depth image as output. The depth image often
consists of data about the distance of the object in the image from the camera viewpoint [16].
The computer-based DE approach has been under evaluation by various investigators
worldwide, and the DE problem has been an exciting field of research. Most successful
computer-based methods are employed by determining depth by applying stereo vision.
With the progress of recent deep learning (DL) models, DE based on DL models has been
able to demonstrate its remarkable efficiency in many applications [17–19]. DE can be
functionally classified into three divisions, including monocular depth estimation (MDE),
binocular depth estimation (BDE), or multi-view depth estimation (MVDE).
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Figure 1. Evaluation trend of DE approaches divided into three sections: traditional methods,
hand-crafting and machine learning methods, and deep learning methods.

MDE is an identified significant challenge in computer vision, in which no reliable
cues exist to perceive depth from a single image. For instance, stereo correspondences
are easily lost from MDE images [20]. Thus, the classical DE methods profoundly depend
on multi-view geometry such as stereo images [21,22]. These approaches need alignment
procedures, which are of great importance for stereo- or multi-camera depth measurement
systems [23,24]. Consequently, using visual cues and disparate camera parameters, BDE
and MVDE methods helps to obtain depth information (DI). The majority of BDE or MVDE
techniques can accurately estimate DI; however, many practical/operational challenges,
such as calculation time and memory requirements for different applications, should be
considered [17,25]. The application of monocular images seems to be an excellent idea to
capture DI to solve the memory requirement problem. The recent progression in using
convolutional neural networks (CNN) and recurrent convolutional neural networks (RNN)
yields a considerable improvement in the performance of MDE procedures [26–28].

Scientists worldwide have conducted various medical-based investigations to study
the difference in depth perception with MDE or BDE systems. Despite the efforts to use
BDE or MVDE systems to estimate depths up to hundreds of meters, the majority of results
imply that the most efficient distance for a BDE system is restricted to almost 10 m [29–31].
Small baseline of stereo pairs is the main reason behind the small depth range. Beyond this
amount, human vision follows a monocular situation [31]. According to this information, it
is obvious that the MDE systems can make better depth predictions than a human. Some
problems, including the requirement for a great amount of training data and domain
adaptation issues, exist and must be solved appropriately [32].

In addition, research shows that industrial companies are looking at reducing costs
and increasing the performance of their AI-based systems. Therefore, this article discusses
the main advantages of MDE compared to stereo-based DE due to the low cost of grabbing
sensors. In addition, it compares the MDE models from different aspects such as input
data shapes and training manner. It discusses the advantages and disadvantages of each
model to make it easier for the companies to better understand the differences between
these models and select the suitable model for their system.

This paper aims to review the highlighted studies on the recent advancements in the
functional application of deep-learning-based MDE. Thus, many DE works from differ-
ent aspects, including data input types (mono-sequence [16,33,34], stereo sequence [7,26]
and sequence-to-sequence [35,36]) and the training manner (i.e., supervised learning
(SL) [9,37,38], unsupervised learning (UL) [16,39,40], and semi-supervised learning
(SSL) [26,41,42] approaches) combined with the application of different datasets and evalu-
ation indicators have been studied. Eventually, key points and future outlooks such as the
accuracy, computational time, resolution quality, real-time inference, transferability, and
input data shapes are discussed to open new horizons for future research.
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This survey includes over 150 papers, most of them recent, on a wide variety of
applications of DL in MDE. To identify relevant contributions, PubMed was queried for
papers containing (“Depth Estimation” OR “Relative Distance Prediction”) in the title
or abstract. ArXiv was searched for papers mentioning one of a set of terms related to
computer vision. Additionally, conference proceedings for CVPR and ICCV were searched
based on the titles of papers. We checked references in all selected papers and consulted
colleagues. The papers without reported results are excluded. When overlapping work
had been reported in multiple publications, only the publication(s) deemed most important
were included.

Several surveys concerning MDE have been published in recent years, as summarized
in Table 1. In this survey, we are concerned with six parameters that are used to assess
any MDE method; “TM”: training manner, “ACC”: accuracy, “CT”: computational Time,
“RQ”: resolution quality, “RTI”: real-time inference, “TRAN”: transferability, “IDS”: input
data shapes. In Table 1, we also compare our paper to the recent surveys in terms of the six
parameters to show that all of these surveys do not focus on all of these parameters.

Table 1. Comprehensive to the related recent surveys in MDE in terms of six parameters; “TM”:
training manner, “ACC”: accuracy, “CT”: computational time, “RQ”: resolution quality, “RTI”: real-
time inference, “TRAN”: transferability, “IDS”: input data shapes.

Title Year TM ACC CT RQ RTI TRAN IDS

Deep-Learning-Based Monocular Depth
Estimation Methods [17] 2020 X X X

Monocular Depth Estimation Based on
Deep Learning [43] 2020 X X X X

Deep Learning for Monocular Depth
Estimation [15] 2020 X X

Towards Real-Time Monocular Depth
Estimation for Robotics [44] 2021 X X X X

Outdoor Monocular Depth Estimation [45] 2022 X X

Ours 2022 X X X X X X X

This survey is organized in the following way: Section 2 describes the background
of DE. The DE task’s main datasets and evaluation metrics are reviewed in Sections 3 and
Section 4, respectively. MDE based on DL models and a comparison of three main data
input shapes and training manner approaches are described in Sections 5 and 6. Section 7
presents the discussion, and Section 8 concludes this review.

2. Depth Estimation (DE)

Objects’ depth in a scene possesses the remarkable ability of estimation/calculation
by applying passive and active approaches. In the active approaches (i.e., applications of
LIDAR sensors and RGB-D cameras), the DI is achieved quickly [46,47]. RGB-D camera is a
specific type of depth-sensing device that combines an RGB image and its corresponding
depth image [48]. RGB-D cameras can be used in various devices such as smartphones
and unmanned aerial systems due to their low cost and power consumption [49]. RGB-D
cameras have limited depth range and they suffer from specular reflections and absorbing
objects. Therefore, many depth completion approaches have been proposed to mitigate the
gap between sparse and dense depth maps [44].

In passive techniques, DI is often achieved using two principal methodologies: depth
from stereo images and monocular images. The main purpose of both techniques is to
assist in building the spatial structure of the environment, which presents a 3D view of the
scene. After achieving DI, the situation of the viewer would be recognized relative to the
surrounding objects. Stereo vision is a widely-applied depth calculation procedure in the
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computer vision area. Stereo vision is known as a computer-based passive approach in
which stereo images are applied to extract DI [50–52]. To compute disparity, pixel matching
must be implemented among the pixels of both images. It is worth noting that a good
correspondence (pixels) matching needs the rectification of both images. Rectification
is defined as the transformation process of images to match the epipolar lines of the
original images horizontally [53,54]. Figure 2 demonstrates the images before and after the
rectification process. The matching process of the pixel in an image with its similar pixel in
another image along an epipolar line occurs using a matching cost function. By matching
the pixels of both images, the calculation of depth applying the distance between two
cameras and the pixel distance between matched pixels will be possible [55,56]. Reflective
and highly transparent zones accompanied by smooth areas are the major challenges for
stereo matching algorithms. Owing to perspective alteration, an image’s edge details can
disappear in the second image. If the algorithm does not have sufficient capability to match
the edge points on another image, it can create an erroneous depth value and noise in the
predicted depth map at those points [57,58].

Figure 2. (Top) Non-rectified left and right images, and (down) red–cyan anaglyph from stereo pair
of rectified stereo images.

Sometimes, the application of algorithms for calculating depth may create different
challenges. For instance, the matching cost function utilized in the algorithm can generate
false-positive signals, which eventuates in the creation of depth maps with low accuracy.
Thus, the use of post-processing approaches (i.e., median filter, bilateral filter, and interpo-
lation) is of great importance in stereo vision applications to delete noise and refine depth
maps [59–62].

On the contrary, MDE does not require rectified images since MDE models work with
a sequence of images extracted from a single camera. This simplicity and easy access are
one of the main advantages of MDE compared to stereo models, which require additional
complicated pieces of equipment. Because of that, in recent years, demand for MDE
increased significantly. Most MDE methods focused on estimating distances between scene
objects and the camera from one viewpoint. It is essential for regressing depth in 3D
space in MDE methods since there is a lack of reliable stereoscopic visual relationship in
which images adopt a 2D form to reflect the 3D space [15]. Therefore, MDE models try to
recover the depth maps of images, which reflects the 3D structure of the scene. Most of
the MDE models have the main architecture, which contains two main parts: depth and
pose networks. The depth network predicts the depth maps. In turn, the pose network
works as an ego-motion estimation (i.e., rotation and translation of the camera) between
two successive images. The estimated depth (i.e., disparity) maps with the ego-motion
parameters used to reconstruct an image should be compared to the target image. Figure 3
represents the schematic illustration of this method.
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Figure 3. Main network structure for MDE [34]. This network contain two sub-networks: DepthNet
for predicting the depth map and PoseNet for estimating the camera pose.

3. Datasets

There are various types of datasets for depth prediction based on different viewpoints.
This section highlights the most popular public datasets of DL models for MDE.

3.1. KITTI

The KITTI dataset [63] is considered the most commonly applied dataset in computer
vision, such as optical flow, visual odometry (VO), and semantic segmentation [63–66].
This dataset is also the most prevalent criterion in the unsupervised/semi-supervised MDE.
In this dataset, 56 scenes are divided into two main compartments: 28 scenes for training
and the rest for testing [9]. Due to the incredible capability of the KITTI dataset to create
the pose ground truth for 11 odometry sequences, it is extensively applied to assess deep-
learning-based VO algorithms [67,68]. This dataset contains 39,810 images for training,
4424 for validation, and 697 for testing. The resolution of the images is 1024× 320 pixels.
The MDE results of the UL, SL, and SSL procedures investigated on the KITTI dataset are
presented in Table 2.

Table 2. Comprehensive information about the quantitative results of the SL, SSL, and UL algorithms
investigated on the KITTI dataset.

Lower Better Higher Better

Method Training Pattern Abs-Rel Sq-Rel RMSE RMSE-Log δ < 1.25 δ < 1.252 δ < 1.253

Bhat [69] SL 0.058 0.190 2.360 0.088 0.964 0.995 0.999

Wang [70] SL 0.088 0.245 1.949 0.127 0.915 0.9984 0.996

Patil [71] SL 0.102 0.655 4.148 0.172 0.884 0.966 0.987

BTS [72] SL 0.059 0.241 2.756 0.096 0.956 0.993 0.998

DepthNet [35] SL 0.137 1.019 5.187 0.218 0.809 0.928 0.971

Kuznietsov [73] SL 0.122 0.763 4.815 0.194 0.845 0.957 0.987

Monodepth [7] SSL 0.148 1.344 5.927 0.247 0.803 0.922 0.964

SemiSup [26] SSL 0.113 0.741 4.621 0.189 0.803 0.960 0.986

GMS [74] SSL 0.143 2.161 6.526 0.222 0.850 0.939 0.972

GAN [75] SSL 0.119 1.239 5.998 0.212 0.849 0.940 0.976

DepthGAN [76] SSL 0.152 1.388 6.016 0.247 0.789 0.918 0.965

MonoRes [18] SSL 0.111 0.867 4.714 0.199 0.864 0.954 0.979

Hints [77] SSL 0.112 0857 4.807 0.203 0.862 0.952 0.978

SfMLearner [16] UL 0.208 1.768 6.958 0.283 0.678 0.885 0.957

Vid2Depth [33] UL 0.163 1.240 6.220 0.250 0.762 0.916 0.968

GeoNet [78] UL 0.155 1.296 5.857 0.233 0.793 0.931 0.973

Struct2Depth [79] UL 0.141 1.036 5.291 0.215 0.816 0.945 0.979

CC [80] UL 0.140 1.070 5.326 0.217 0.826 0.941 0.975

LearnK [81] UL 0.128 0.959 5.232 0.212 0.845 0.947 0.976

DualNet [82] UL 0.121 0.837 4.945 0.197 0.853 0.955 0.982

Monodepth2 [83] UL 0.115 0.882 4.701 0.190 0.879 0.961 0.982

FeatDepth [84] UL 0.104 0.729 4.481 0.179 0.893 0.965 0.984

GCNDepth [34] UL 0.104 0.720 4.494 0.181 0.888 0.965 0.984
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3.2. NYU Depth-V2

The NYU Depth [85] is a vital dataset, which includes 464 indoor scenes that concen-
trate on indoor environments. Compared to the KITTI dataset, which collects ground truth
with LIDAR, this dataset accepts monocular video sequences of scenes and an RGB-D cam-
era’s ground truth of depth. The NYU Depth is the main training dataset in the supervised
MDE. The indoor scenes are divided into 249 and 215 sections for training and testing. Due
to disparate variable frame rates, there is no one-to-one communication between depth
maps and RGB images. Intending to arrange the depth and the RGB images, each depth
map is related to the nearest RGB image. In addition, due to the discretion of the projection,
all pixels do not possess an associated depth value. Therefore, those pixels that do not have
depth value are masked within the experiments [28,85]. The resolution of the RGB images
in sequences is 640× 480 pixels. The MDE results of the investigation on the NYU-V2
dataset are presented in Table 3.

Table 3. Comprehensive information about the quantitative results of the DL algorithms investigated
on the NYU-V2 dataset.

Lower Better Higher Better

Method Training
Pattern Abs-Rel Sq-Rel RMSE RMSE-Log δ < 1.25 δ < 1.252 δ < 1.253

DeepV2D [86] SL 0.061 0.094 0.403 0.026 0.956 0.989 0.996

VNL [87] SL 0.113 0.034 0.364 0.054 0.815 0.990 0.993

Fast-MVSNet [88] SL 0.551 0.980 3.241 0.243 0.816 0.915 0.939

DORN [28] SL 0.138 0.051 0.509 0.653 0.825 0.964 0.992

BTS [72] SL 0.110 0.066 0.392 0.142 0.885 0.978 0.994

GASDA [89] SSL 1.356 1.156 0.963 1.223 0.765 0.897 0.968

DnD [90] SSL 0.213 0.320 2.360 0.084 0.761 0.889 0.932

DenseDepth [91] SSL 0.093 0.589 4.170 0.171 0.886 0.965 0.986

SharpNet [19] UL 0.139 0.047 0.495 0.157 0.888 0.979 0.995

MonoRes [18] UL 1.356 1.156 0.694 1.125 0.825 0.965 0.967

DepthComple [92] UL 0.842 0.760 5.880 0.233 0.863 0.921 0.972

Packnet-SfM [93] UL 2.343 1.158 0.887 1.234 0.821 0.945 0.968

Monodepth2 [83] UL 2.344 1.365 0.734 1.134 0.826 0.958 0.979

3.3. Cityscapes

This dataset prominently concentrates on semantic segmentation tasks. In this dataset,
5000 fine-annotation images and 20,000 coarse-annotations images exist [66,94]. Cityscapes
dataset includes a series of stereo video sequences, which has only the potential of ap-
plication for the training process of disparate unsupervised DE procedures [78]. The
efficiency of depth networks can be significantly improved by pretraining the networks on
the Cityscapes [7,16,95]. The training data of this dataset include 22,973 stereo image pairs
with a resolution of 1024× 2048.

3.4. Make3D

These data include both monocular RGB and depth images but do not possess stereo
images that are different from the datasets mentioned above [96,97]. Due to the non-
existence of monocular sequences in the Make3D dataset, SSL and UL procedures do not
apply it as the training set, while SL techniques often adopt it for training. The fact of
the matter is that the Make3D dataset is extensively used as a testing set of unsupervised
algorithms to assess the production capability of networks on disparate datasets [7]. The
RGB image resolution is 2272× 1704, and the depth map resolution is 55× 305 pixels. The
MDE results of the investigation on the Make3D dataset are presented in Table 4.
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Table 4. Comprehensive information about the quantitative results of the DL algorithms investigated
on the Make3D dataset.

Method Training Pattern Abs_Rel Sq_Rel RMSE log10

Karsch [98] SL 0.428 5.079 8.389 0.149

Liu [99] SL 0.475 6.562 10.05 0.165

Laina [100] SL 0.204 1.840 5.683 0.084

SfMLearner [16] UL 0.383 5.321 10.47 0.478

DDVO [101] UL 0.387 4.720 8.090 0.204

Monodepth2 [83] UL 0.322 3.589 7.417 0.201

Jia [102] UL 0.289 2.423 6.701 0.348

GCNDepth [34] UL 0.424 3.075 6.757 0.107

3.5. DIODE

DIODE [103] is the Dense Indoor/Outdoor Depth dataset for monocular depth esti-
mation comprising diverse indoor and outdoor scenes acquired with the same hardware
setup. This dataset consists of 8574 indoor and 16,884 outdoor samples from 20 scans each
for training and 325 indoor and 446 outdoor samples with each set from 10 different scans
for validation with the resolution of 768× 1024. The indoor and outdoor ranges for the
dataset are 50 m and 300 m, respectively.

3.6. Middlebury 2014

Middlebury [104] is a dense indoor scene dataset which contains 33 images of 6-
megapixel high resolution. Images are captured via two stereo DSLR cameras and two point-
and-shoot cameras. Disparity ranges are between 200 and 800 pixels at a resolution of 6
megapixels. The image resolution of this dataset is 2872× 1984.

3.7. Driving Stereo

The driving stereo [105] is one of the new large-scale stereo driving datasets that
contains 182k images. The disparity images are captured via LIDAR, the same as the
KITTI dataset. They mainly focus on two new metrics, a distance-aware metric and a
semantic-aware metric, for evaluating stereo matching on MDE. The image resolution of
this dataset is 1762× 800. Table 5 represents the summary of datasets features for DE.

Table 5. A summary of depth estimation public datasets.

Dataset Sensors Annotation Type Scenario Images Resolution Year

KITTI [63] LIDAR Sparse Real Driving 44 K 1024× 320 2013

NYU-V2 [106] Kinect V1 Dense Real Indoor 1449 640× 480 2012

Cityscapes [94] Stereo Camera Disparity Real Driving 5 K 1024× 2048 2016

Make3D [96] Laser Scanner Dense Real Outdoor 534 2272× 1704 2008

DIODE [103] Laser Scanner Dense Real In/Outdoor 25.5 K 768× 1024 2019

Middlebury 2014 [104] DSLR Camera Dense Real Indoor 33 2872× 1984 2014

Driving Stereo [105] LIDAR Sparse Real Driving 182 K 1762× 800 2019

Although many valuable datasets and benchmarks exist for assessing monocular and
stereo DE methods, there are still some limitations in the available datasets. For instance, all
these datasets include images captured only during day or night, yet there are no datasets
to have both together, and the same applies for indoor or outdoor images. In addition, no
dataset concerns different challenges related to the change in weather conditions (e.g., fog,
sunny, snow, etc.).
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4. Evaluation Metrics

To assess the efficiency of the DE models, an accepted evaluation procedure was
recommended by Eigen et al. [9], which possesses five evaluation metrics, including
absolute relative difference (Abs-Rel), square relative error (Sq-Rel), root mean square error
(RMSE), RMSE-log, and accuracy, with a threshold (δt). They are formulated using the
following equations [9]:

Abs− Rel =
1
|D| ∑

pred ∈ D
|gt− pred|/gt (1)

Sq− Rel =
1
|D| ∑

pred ∈ D
||gt− pred||2/gt (2)

RMSE =

√
1
|D| ∑

pred ∈ D
||gt− pred||2 (3)

RMSE− Log =

√
1
|D| ∑

pred ∈ D
|| log(gt)− log(pred)||2 (4)

δt =
1
|D| |{pred ∈ D |max(

gt
pred

,
pred
gt

) < 1.25t}| × 100% (5)

In these equations, the pred and gt denote predicted depth and ground truth, respec-
tively. D represents the set of all predicted depths value for a single image, | . | returns the
number of the elements in each input set, and δt represents the threshold.

5. Input Data Shapes For MDE Applying Deep Learning

This section mainly introduces common types of data input for MDE. The input data
shapes in MDE networks can be divided into three main categories: mono-sequence, stereo
sequence, and sequence-to-sequence input data. Based on the architecture of the networks,
the input data shapes will be different.

5.1. Mono-Sequence

Monocular sequence input is mainly used for training the UL models. Figure 4 shows
the basic structure of mono-sequence models, which have a single input image and a single
output image. UL networks consist of a depth network for predicting depth maps and a
pose network for camera pose estimation. The camera pose estimation works similarly to
image transformation estimation, which helps to improve the results of MDE. These two
sub-networks are connected in parallel, and the whole model is obliged to reconstruct the
image. In mono-sequence, mostly the geometric constraints are built on adjacent frames.
Lately, researchers have used VO [107] to predict the camera motion for learning the scene
depth. Zhou et al. [16] were the pioneers of mono-sequence input type, and they proposed
a network to predict camera motion and depth maps with photometric consistency loss
and reconstruction loss.

Figure 4. Data input/output structure of mono-sequence models. Single image input and single
image output.

Furthermore, Mahjourian et al. [33] introduced a network with 3D geometric con-
straints and enforced consistency of the estimated 3D point clouds and ego-motion across
consecutive frames. Recently, Masoumian et al. [34] designed two jointly connected sub-
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networks for depth prediction and ego-motion. They used CNN-GCN encoder–decoder
architecture for their networks with three losses: reconstruction loss, photometric loss,
and smooth loss. In addition, Shu et al. [84] proposed a similar method with two jointly
connected depth and pose predictions that were slightly different. They also added a
feature extractor encoder to their model to improve the quality of their predicted depth
maps. Their proposed architecture is shown in Figure 5.

Figure 5. Developed network by Shu et al. [84].

5.2. Stereo Sequence

The projection and mapping relationship between the left and right pairwise images
is mainly constrained by stereo matching. In order to build geometric constraints, a stereo
images dataset is required. These types of inputs are commonly used in UL and SL
networks. Figure 6 represents the basic structure of stereo sequence models which have left
and right images as input and a single output. Similar to the monocular sequence input
data shape, the stereo sequence works with image reconstruction with slight differences.
An image will be reconstructed based on warping between the depth map and the right
image. For instance, Kuznietsov et al. [26] proposed an SSL model for MDE with sparse
data, and they built a stereo alignment as a geometric constraint.

Figure 6. Data input/output structure of stereo sequence models. Stereo pairs of images as an input
and single image output.

Furthermore, Godard et al. [7] designed a UL network with left–right consistency
constraints. They used CNN-based encoder–decoder architecture for their model with the
reconstruction loss, left–right disparity consistency, and disparity smoothness loss. Recently,
Goldman et al. [108] proposed a Siamese network architecture with weight sharing, which
consists of two twin networks, each learning to predict a disparity map from a single image.
Their network is composed of an encoder–decoder pair with skip connections, which is
shown in Figure 7.
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Figure 7. Developed network by Goldman et al. [108].

5.3. Sequence-to-Sequence

Sequence-to-sequence data input is necessary for recurrent neural network (RNN)
models [109]. These models have memory capability, which helps the system learn a group
of features in sequence images. Figure 8 represents the basic structure of sequence-to-
sequence models, which have a sequence of images as input and a sequence of depth
maps as an output. Most RNN methods use long short-term memory (LSTM) to learn
the long-term dependencies with a three-gate structure [109]. However, RNN and CNN
networks will be combined to extract spatial–temporal features. The sequence-to-sequence
data primarily will be trained on SL models. Kumar et al. [35] proposed an MDE model
with ConvLSTM layers for learning the smooth temporal variation. Their model consists of
encoder–decoder architecture, which is shown in Figure 9. Furthermore, Mancini et al. [36]
improved LSTM layers to obtain the best outcome of the predicted depth maps by feeding
the input images sequentially to the system.

Figure 8. Data input/output structure of sequence-to-sequence models. Sequence of images as an
input and sequence of images as an output.

Figure 9. Developed network by Kumar et al. [35].

6. Mde Applying Deep Learning Training Manners

Although DE from multiple images possesses a lengthy background in the computer
vision area, the DI extraction process from single images is considered a novel concept in
DL. The advancements have initiated comprehensive investigations of the DI concept in
DL techniques. The most critical challenge towards the application of DL is the absence of
datasets that fit the problem [110–112]. This challenge may also be of great importance for
the MDE network. Data applied in training may be collected by LIDAR sensors, RGB-D
cameras, or stereo vision cameras. Despite the expensive data collection process, disparate
learning strategies have been developed to decrease dependency on the dataset used for
training. The learning process in MDE networks can be divided into three parts, including
SL, UL, and SSL [7,9,26,37,40,113].
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6.1. Supervised Learning Approach

The SL approach for DE needs pixel-wise ground truth DI [114]. The SL procedure ap-
plies ground truth depth (GTD) to train a neural network as a regression model [83,115,116].
Eigen et al. [9] were pioneers in investigating DI to train a model using DL. They explained
that their developed CNN-based network consists of two deep network stacks. Figure 10
presents a schematic illustration of the network structure proposed in [9]. As shown in
Figure 10, the preparation of the input image occurred for both stacks. Additionally, the
preparation of the output depth map of the first stack takes place to refine the depth map.
The main responsibility of the second stack is to arrange obtained coarse depth predictions
with the objects in the scene [9].

Figure 10. Developed network structure by Eigen et al. [9].

After Eigen’s investigation, different procedures were implemented to increase the
precision of the estimated depth map (EDP). For example, Li et al. [117] developed a DL
network applying conditional random fields (CRFs). They utilized a two-stage network
for depth map estimation and refinement. In the first stage, a super-pixel technique on the
input image is applied, and image patches are extracted around these super-pixels. In the
second stage, CRFs are applied to refine the depth map by changing the super-pixel depth
map to the pixel level. In order to extract an appropriate depth map, some approaches
use geometric relationships. For example, Qi et al. [37] utilized two networks to estimate
the depth map and surface normal from single images. Figure 11 depicts the developed
network in [37]. These two networks enable the conversion of depth-to-normal and normal-
to-depth and collaboratively increase the accuracy of the depth map and surface normal.
Although their neural network can increase the accuracy of depth maps, for training, they
require ground truth, including surface normal, which is hard to obtain. Ummenhofer et al.
worked on developing a network to estimate depth maps using the structure from motion
(SfM) technique. They corroborated that basic encoder–decoder architecture does not have
sufficient capacity to process two input images simultaneously. Therefore, they developed
a computer-based neural architecture that can extract optical flow, ego-motion, and a depth
map from an image pair [38].

Figure 11. Developed geometric neural network by Qi et al. [37].
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The dataset’s quality is an introductory section in SL systems, similar to methodology.
Dos Santos et al. [118] paid enough attention to this challenge. They developed an approach
to creating denser GTD maps from sparse LIDAR measurements via enhancing the valid
depth pixels in depth images. They compared the obtained results of their trained model
with both sparse GTD maps and denser GTD maps. They understood that the application
of denser ground truth results yields increasing performance compared to sparse GTD
maps. Ranftl et al. [119] developed an outstanding learning strategy that can involve
various datasets to improve the efficiency of the MDE network. To prepare their dataset
for three-dimensional movies, they applied stereo matching to conclude the depth of
frames of these movies. Disparate unclear problems, including changing resolution and
negative/positive disparity values, emerged during the creation of this dataset. According
to the assistance of their developed procedures for incorporating multiple datasets, they
achieved high precision with their model MDE problem. Recently, Sheng et al. [120]
proposed a lightweight SL model with local–global optimization. They used an autoencoder
network to predict the depth and used a local–global optimization scheme to realize the
global range of scene depth.

6.2. Unsupervised Learning Approach

Increment of layers and trainable parameters in deep neural networks significantly
increases the requirement for the train data, resulting in difficulty in achieving GTD maps.
For this reason, UL approaches become an appropriate choice because unlabeled data is
relatively easier to find [39,121,122]. Garg et al. [40] were the pioneers of developing a
promising procedure to learn depth in an unsupervised fashion to remove the requirement
of GTD maps. Up until now, developed UL approaches have applied stereo images, and
thus, supervision and train loss depend intensely on image reconstruction. In order to train
a depth prediction network, consecutive frames from a video may have great potential for
application as supervision. Camera transformation estimation (pose estimation) between
successive frames is the major challenge of this procedure, which results in extra complexity
for the network. As illustrated in Figure 12, Zhou et al. [16] developed computer-based
architecture to estimate depth map and camera pose simultaneously. As input, three
successive frames are fed to the network. Pose CNN and Depth CNN estimate relative
camera poses and a depth map from the first image.

Figure 12. Developed network by Zhou et al. [16].

In order to obtain greater accuracy in DE, some approaches have existed that possess
the great potential of application to merge multiple self-supervision procedures into one.
For instance, Godard et al. [83] applied MDE and estimated relative camera poses to
build other stereoviews and contiguous frames in the video sequence. They added a pose
network to their model to predict relative camera pose in adjacent frames. One of the crucial
challenges towards using self-supervised approaches via video is occluded pixels. They
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applied minimum loss compared to the classical average loss to obtain non-occluded pixels,
which is known as a significant improvement [7]. The improvement in the precision of UL
approaches has motivated other investigators to modify knowledge distillation methods
for the MDE problem. Pilzer et al. developed a system to adapt an unsupervised MDE
network to the teacher–student learning framework by applying stereo image pairs to train
a teacher network. Despite the promising performance of their student network, it was not
as accurate as their teacher network [123]. Masoumian et al. [34] developed a multi-scale
MDE based on a graph convolutional network. Their network consists of two parallel
autoencoder networks: DepthNet and PoseNet. The DepthNet is an autoencoder composed
of two parts: encoder and decoder; the CNN encoder extracts the feature from the input
image, and a multi-scale GCN decoder estimates the depth map, as illustrated in Figure 13.
PoseNet is used to estimate the ego-motion vector (i.e., 3D pose) between two consecutive
frames. The estimated 3D pose and depth map are used to construct a target image.

Figure 13. Developed network by Masoumian et al. [34].

6.3. Semi-Supervised Learning Approach

Compared to SL and UL approaches, few investigations have been conducted to study
the performance of SSL methods for MDE. Apart from SL and UL approaches, Kuznietsov
et al. [26] developed an SSL method by simultaneously applying supervised/unsupervised
loss terms during training. Figure 14 demonstrates the components/inputs of the developed
semi-supervised loss function in [26].

Figure 14. Components/inputs of the developed semi-supervised loss function by Kuznietsov
et al. [26].

In their approach, the estimated disparity maps (i.e., inverse depth maps) were used
to rebuild left and right images via warping. Computation of unsupervised loss term took
place by rebuilding the target images. Simultaneously, the calculation of the supervised loss
term occurred by the estimated depth, and GTD maps [26]. Luo et al. [41] classified the MDE
problem into two subdivisions and investigated them separately. Based on their procedure,
the network requirement for labeled GTD data decreased. Additionally, they corroborated
that the application of geometric limitations during inference may significantly increase the
efficiency and the performance. Their proposed architecture is shown in Figure 15. Their
developed architecture consists of two sub-networks, including view synthesis network
(VSN) and stereo matching network (SMN). Their proposed VSN synthesizes the right
image of the stereo pair via the left image. In SMN, simultaneous application of left and
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synthesized right images occurs in an encoder–decoder architecture pipeline to achieve a
disparity map. In SMN, GTD maps are used to calculate the loss for estimated depth maps.

Figure 15. Components/inputs of developed semi-supervised loss function by Luo et al. [41].

Cho et al. [124] developed a novel teacher–student learning strategy to train an MDE
network in an SSL approach. Their proposed procedure is demonstrated in Figure 16. They
first introduced a stereo matching network with GT labeled data and permitted the teacher
network to estimate depth from stereo pairs of an extensive unlabeled dataset. Then, they
applied the aforementioned estimated depth maps/unlabeled dataset to train an optimized
student network for MDE [124]. They also investigated the trade-off between the precision
and the density of pseudo labeled depth maps. The density increases as the pixels in the
depth map increase. They concluded the increment of the pseudo labeled depth maps’
precision by enhancing the density. Additionally, they reported that their MDE network
achieved the greatest accuracy when the density of pseudo labeled depth maps was almost
80% [124].

Figure 16. Developed network by Cho et al. [124].

7. Discussion

Due to the ability of humans to use theoretical-based information about the world,
estimating depth maps from a single image may be easy for them [43]. Relying on the
aforementioned fact, former investigations obtain MDE via mixing some old data, such
as the communication between some geometric structures [17,28,125,126]. Due to the
acceptable efficacy of image processing, CNN has illustrated a powerful capability to
precisely predict dense depth maps from single images [9,127]. In recent years, numerous
researchers have studied different types of cues of depth networks required for MDE
according to four corroborated procedures, including MonoDepth, SfMLearner, Semidepth,
and GCNDepth [7,16,26,34]. Deep neural networks are identified as a black box. In this
black box, the supervised signals are applied to accelerate the learning process of some
structural information for depth inference. The lack of sufficient datasets with ground truth
due to their high economic cost can be considered one of the most critical DL problems.
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Table 6 aims to represent comprehensive information about the existing procedures based
on their training data, supervised signals, and contributions.

Table 6. Comprehensive information about the applied procedures in the deep learning of MDE.

Ref Training Set SL SSL UL Major Contribution

Mousavian et al. [128] RGB + Depth X Multi-task (semantic + depth)

Jung et al. [129] RGB + Depth X Adversarial learning, global-to-local

Mayer et al. [64] RGB + Depth X Multi-task (optical flow + depth)

Laina et al. [100] RGB + Depth X Residual learning, BerHu loss

Kendall et al. [130] Stereo sequences + Depth X End-to-end learning

Fu et al. [28] RGB + Depth X Ordinal regression

Facil et al. [131] RGB + Depth X Multi-scale convolution

Wofk et al. [132] RGB + Depth X Lightweight network

Garg et al. [40] Stereo sequences X Image reconstruction, CNN

Chen et al. [133] RGB + Relative depth
annotations X The wild scene dataset

Godard et al. [7] Stereo sequences X Left–right consistency

Kuznietsov et al. [26] Stereo sequences + LIDAR X Direct image alignment

Ramirez et al. [74] Stereo sequences + Semantic
label X Semantic prediction

Pilzer et al. [76] Stereo sequences X Cycled generative network

Aleotti et al. [75] Stereo sequences X Generative adversarial network

He et al. [134] Stereo sequences + LIDAR X Sparse optimization

Fei et al. [135] Stereo sequences + IMU +
Semantic label X Physical information

Li et al. [136] Stereo sequences X Absolute scale recovery

Zhao et al. [89] Stereo sequences + Synthesized
Depth X Domain adaptation

Wu et al. [137] Mono-sequences+LIDAR X Attention mechanism

Zhou et al. [16] Mono-sequences X Ego-motion framework

Wang et al. [138] Stereo sequences X Multi-task (optical flow + depth)

Zhan et al. [39] Stereo sequences X Deep feature reconstruction

Chen et al. [139] Mono-sequences X Connecting flow, depth, and camera

Gordon et al. [81] Mono-sequences X Camera intrinsic prediction

Li et al. [140] Mono-sequences X Sequential adversarial learning

Almalioglu et al. [141] Mono-sequences X Generative adversarial network

Godard et al. [83] Mono-sequences X Left–right consistency

Shu et al. [84] Mono-sequences X Feature metric

Masoumian et al. [34] Mono-sequences X Graph multi-layer

7.1. Accuracy

To achieve high accuracy, several factors are involved. The first factor is using the
supervised or unsupervised model. Our evaluation proves that supervised methods
achieved higher accuracy than unsupervised and semi-supervised methods due to labeling
the original ground truth. However, collecting a large dataset of monocular videos with
accurate depth maps is a challenging task. Therefore, we can consider that unsupervised
methods perform better than supervised methods if we neglect the slight difference in
precision against the time for labeling data. Another factor is the frameworks of the
developed networks. For instance, developing a DL model, such as graph convolution [34],
3D convolution [83], and 3D geometry constraint [84] outperforms other DL methods for
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DE. The last factor can be the loss of functions. There is some lack of information from
monocular videos, such as scale inconsistency and scale ambiguity. One of the solutions
for that is using semantic information and smooth loss to learn the scales. However,
increasing the loss of functions will create more complicated networks and cause more
computational time.

7.2. Computational Time

Computational times depend on the number of parameters of the whole network. The
complex networks can predict high-quality and accurate depths, but this will cause them
to not be considered in real-time applications due to the increased consumption power
requirement. One of the best ways to reduce the computational time is to use pretrained
models such as ResNet [142] or DenseNet [143] for feature extractions, and the model
can focus only on the decoder part of the network. Table 7 represents the comparison of
complex and lightweight models developed so far for monocular depth estimation based on
the NYUDv2 dataset. As shown in Table 7, there is a kind of trade-off between the accuracy
and the complexity of the models. The complex models [69] (e.g., [120] with 77 million
parameters (params) and 186 G floating-point operations per second (FLOPs)) require
higher computational time and with a large number of trained parameters; however, they
give a more accurate depth estimation. On the contrary, lightweight models (e.g., [120] with
1.7 million params and 1.5 G FLOPs) require low computational time with a low number
of trained parameters. Still, the accuracy is lower than complex models. In addition, the
resolution of the resulted depth images is an essential key for increasing or decreasing the
computational resources for the developed MDE models.

Table 7. Comparison of complex and lightweight models based on the NYUDv2 dataset.

Group Method Resolution FLOPs Params REL RMS RMSE-Log δ < 1.25 δ < 1.252 δ < 1.253

Complex

Hu et al. [144] 228 × 304 107G 67M 0.130 0.505 0.057 0.831 0.965 0.991

Chen et al. [145] 228 × 304 150G 258M 0.111 0.420 0.048 0.878 0.976 0.993

Yin et al. [87] 384 × 384 184G 90M 0.105 0.406 0.046 0.881 0.976 0.993

Lee et al. [72] 416 × 544 132G 66M 0.113 0.407 0.049 0.871 0.977 0.995

Bhat et al. [69] 426 × 560 186G 77M 0.103 0.364 0.044 0.902 0.983 0.997

Light Weight

Wofk et al. [132] 224 × 224 0.75G 3.9M 0.162 0.591 - 0.778 0.942 0.987

Nekrasov et al. [146] 480 × 640 6.49G 2.99M 0.149 0.565 - 0.790 0.955 0.990

Yin et al. [87] 338 × 338 15.6G 2.7M 0.135 - 0.060 0.813 0.958 0.991

Hu et al. [147] 228 × 304 14G 1.7M 0.138 0.499 0.059 0.818 0.960 0.990

Sheng et al. [120] 228 × 304 1.5G 8.2M 0.135 0.488 0.057 0.831 0.966 0.991

7.3. Resolution Quality

Computing a high-resolution DE is one of the main challenging tasks for researchers.
Most of the current DE methods are suffering from this, and their results are not satisfied
in reality. Based on the discussed training manners, it is evident that SL models [9,37,38]
achieved higher quality resolution of depth maps than other models, such as UL [16,39,40].
SSL [26,41,42], because training the models with original ground truth helps the model to
learn more accurately with higher quality resolution. However, one of the solutions for im-
proving the resolution quality is to use super-resolution color images for training. However,
this requires creating a new dataset which is expensive and time-consuming. In addition,
the processing of high-resolution images/videos needs high computational resources that
increase the cost, and obtaining high-resolution depth maps and computational resources
is a trade-off.

7.4. Real-Time Inference

For using the MDE methods in industrial applications, it is very important that
the model can perform in real time. There is a negative correlation between real-time
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performance and the complexity of the network, as shown in Table 7. Therefore, for better
performance in real-time applications, lightweight MDE networks are required. However,
researchers need to consider that lightweight networks sometimes reduce the accuracy and
resolution of the predicted depth maps.

7.5. Transferability

Some networks are limited to working on the exact scenarios or environments, making
them useless for other types of datasets. The transferability will make them more useful
for different scenarios, cameras, and datasets. Training and testing the methods on dif-
ferent datasets, using domain adoption technology and 3D geometry, will improve the
transferability of the models, and that will cause them to become more valuable in real life.

7.6. Input Data Shapes

As discussed earlier in Section 5, there are three types of input data: mono-
sequence [16,33,34], stereo sequence [7,26], and sequence-to-sequence [35,36]. The mono-
sequence input shapes models receive a single image as an input and provide a single
output. These types are most commonly used in UL models. On the contrary, stereo-based
models receive left and right pairwise images as inputs (i.e., one pair of images is used as a
target image for unsupervised learning) and provide a single output as depth maps. These
input shapes are mainly used for UL and SL models. The last type, sequence-to-sequence, is
necessary for RNN models. These types receive a series of images as an input and provide
a sequence of depth maps as an output. Due to the simplicity of the resources for mono-
sequence and sequence-to-sequence models, which require a single camera compared to
the stereo models, which require at least a pair of cameras, it is more economical to use
mono-sequence or sequence-to-sequence models. On the other hand, sequence-to-sequence
models require higher computational resources to train the model than mono-sequence
models, since they need to process a sequence of images. Therefore, the most suitable
models regarding low cost and computational resources are mono-sequence models.

7.7. Future Study

The current DL methods [34,83,148] have achieved the best performance so far. How-
ever, there is still no unit network that can predict a depth with high accuracy and resolution
using low computational resources and without needing the actual ground truth. Therefore,
the future study can create lightweight networks working on limited-memory devices
without reducing the quality and resolution of predicted depth. In addition, the developed
models should achieve higher accuracy under UL models to remove the original ground
truth from training and create a self-adaption network for 3D reconstruction. Currently,
the main challenges of MDE are that most MDE approaches depend on high-resolution
images and large-size DL models with a high number of trained parameters that help
predict depth maps with high accuracy. However, these models cannot be worked in
real-time applications because they require high computational time and resources. On
the contrary, lightweight networks are more useful for real-time applications and can be
executed on devices with limited resources. However, reducing the networks’ complexity
will significantly degrade the results’ quality and accuracy. Therefore, there is still a gap
and limitation in this area to be discovered and solved.

Accurate real-depth annotations are difficult to acquire, needing special and expensive
devices such as a LIDAR sensor. Self-supervised DE methods try to overcome this problem
by processing video or stereo sequences, which may not always be available. Therefore,
for DE, the researchers need to cope with the issue of domain adaption that will help
train a monocular depth estimation model using a fully-annotated source dataset and a
non-annotated target dataset. Additionally, although the MDE networks can be trained on
an alternative dataset to overcome the dataset scale problem, the trained models cannot
generalize to the target domain due to the domain discrepancy. For instance, there is no
general MDE network that can still correctly predict the depth maps from day and night
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or indoor and outdoor images. In addition, most advanced MDE methods fail to predict
accurate depth maps with adverse weather conditions (fogs, sunny, snow, etc.). Therefore,
the future study requires a complete dataset to include day and night or indoor and outdoor
images with different weather conditions.

8. Conclusions

DL techniques possess great potential to predict depth from monocular images. Im-
plementation of depth prediction from monocular images is possible using an efficacious
DL network structure and a dataset appropriate for the technique applied in learning. This
paper presented a comprehensive overview of the contribution of this growing area of
science in deep-learning-based MDE. Hence, the authors made an effort to review the
state-of-the-art investigations on MDE from disparate aspects, including data input types,
training manner and SL, UL, and SSL approaches combined with the application of differ-
ent datasets and evaluation indicators. Finally, we highlight valuable opinions related to
accuracy, computational time, resolution quality, real-time inference, transferability, and
input data shapes, opening new horizons for future research. This paper demonstrates
that the networks could train for various representation problems. In future perspectives,
the architecture of DL models has to be improved to enhance the precision and reliability
of the proposed networks and decline their inference time. Additionally, MDE networks
have brilliant potential to be used in autonomous vehicles if high reliability is obtained. In
addition, they must have the capability to output real-time depth maps.
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