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Abstract: In networked control systems, sensor faults in a subsystem have a major influence on the
entire network as the fault effect reaches the other subsystems through the network interconnections.
In this paper, a fault diagnosis-oriented model is proposed for linear networked control systems that
can be applied to the robotics platoon. In addition, this model can also be used to design distributed
Unknown Input Observers (UIO) in each subsystem to accomplish weak sensor faults isolation by
treating the network disturbances and fault propagation through the network as unknown inputs. A
case study was developed in which the subsystems were represented by robots that are connected
in a wireless communication-based leader-follower scheme. The simulation results show that the
model successfully reproduces the expected behaviour of the robotics platoon in the presence of
sensor faults. Furthermore, weak sensor faults isolation is also achieved by observing the residual
signals produced by the UIOs in each of the subsystems.

Keywords: Unknown Input Observer; mobile robot platoons; weak fault isolation; sensor faults;
networked systems

1. Introduction

The theory of cooperative robotics deals with such groups of robots that communicate
with each other to achieve some common goals. Such systems have always been an
important topic to be researched because they can be applied to perform challenging tasks
such as space exploration, domestic help, healthcare, military operations, and mobile
Wireless Sensor Networks (WSN) [1]. In this era of Industry 4.0, robot platoons becomes
more popular and have an increasing demand in the modern industrial environment
because they can solve tasks that can not be done by only one robot [2]. Multiple robots
can cooperate in accomplishing predefined tasks, such as goods transportation in the
warehouses or monitoring and surveillance of production systems. However, there are
many safety-critical issues to be handled here in the area of communication and control of
these systems [3,4] for example the fault isolation problem for each robot in the platoons.

To achieve a common goal, besides local measurement from its attached sensors,
each robot in the multi robotic systems also needs information from the others through
a communication network. Because sensor faults on a robot can propagate through the
network, fault isolation problems must be acknowledged so that these faults will not
affect the others and disturb the coordination. There are many approaches to solve the
fault diagnosis problem in control system [5]. A book by Varga et al. discusses fault
detection and isolation from a computational perspective [6]. In the case of a model-based
approach, a simple linear model is proposed to detect and isolate faults in electrical grids
by Pozna et al. [7]. Gertler et al. proposed the design of dynamic parity relations for fault
detection and isolation [8]. The optimization-based approach usually using either H2 or

Sensors 2021, 21, 6702. https://doi.org/10.3390/s21206702 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4471-5457
https://orcid.org/0000-0003-1070-2877
https://doi.org/10.3390/s21206702
https://doi.org/10.3390/s21206702
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21206702
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21206702?type=check_update&version=2


Sensors 2021, 21, 6702 2 of 21

H∞ has also been done by Song et al. and Niemann et al. [9,10]. Menke et al. and White
et al. used the Kalman filter for fault estimation in aerospace systems [11,12]. There is
also a book by Simani et al. explaining how to undertake fault diagnosis based on system
identification techniques [13]. The current emerging trend in Artificial Intelligence (AI)
has also been exploited by Michail et al, Nasiri et al, and Xiao et al. to undertake fault
detection and isolation [14–16]. In a recent article, Li et al. have also made a summary about
many methods which have been researched to solve this fault detection and identification
problems [17].

Other than those already mentioned, Unknown Input Observer (UIO) is a popular
approach in a model-based fault diagnosis because it can decouple the influence of un-
known inputs on state estimation. In [18], it was shown that weak faults isolation can be
achieved using this UIO. Weak faults isolation means that the faults in different sensors
can be isolated when no simultaneous fault occurs. Residual generators are built from
these UIOs for fault diagnosis purposes which are sensitive to some groups of faults but
insensitive to others. Chakrabarty et al. have further explored the implementation of
this UIO to accommodate bounded exogenous inputs and delayed measurements [19,20].
Xu et al. combined UIO with set-theoretic methods for robust fault detection purpose [21].
Sensor faults detection on a UAV using UIO has also been researched by Zuo et al. [22].

Because the network contributes to many unpredicted unknown inputs such as dis-
turbance and fault propagation, this unknown inputs decoupling feature becomes more
important in networked control systems. Thus, much research to implement UIO in this
networked environment has been done. Taha et al. investigated state estimation conducted
by UIO which is connected to an observed plant via network [23]. UIO for interconnected
second-order system investigation has also been done by Shames et al. [24]. Chen et al.
and Chakrabarty et al. explored the design of UIO for a class of interconnected non-linear
systems [25,26].

In terms of fault diagnosis in a networked environment, Liu et al. and Shames et al.
explored the utilization of UIO to detect a faulty agent in a multi-agent system [27,28].
Zhang et al. investigated how to do either actuator or sensor faults identification for each
agent using a global UIO in networked control systems [29].

To take this research trend further, this paper proposes the design of a bank of local
UIOs to detect and isolate faulty sensors in each subsystem of the robotics platoon, not just
detecting faulty robots. The research questions we are going to answer are:

• How can we develop such sensor faults isolation method for each robot of the pla-
toons using only conventional sensors (GPS, velocity sensor, radar) and network
communication?

• How to compensate faults propagation effect in the communication network from one
robot to the others so that it does not affect the sensor faults isolation process?

• How to implement the sensor faults isolation in a distributed way?

We do it by extending the UIO-based sensor faults isolation problem into networked
control systems. This local faults isolation scheme has advantages in terms of scalability
features compared to a global UIO. The concerned networked control systems for the
implementation of these banks of UIOs are a controlled robots platoon inspired by Adaptive
Cruise Control (ACC) system [30]. The proposed approach ensures the isolation of faults
in sensors that are critical for safe platooning.

The new contributions of this paper are as follows:

1. We have developed a model for sensor faults diagnosis purposes for the robotics
platoon.

2. We have proposed a general UIO-based distributed sensor faults isolation approach
for a network of linear control systems.

3. Based on these two results, we have solved the weak sensor faults isolation problem in
such robotics platoon that use conventional sensors: GPS-based localization; velocity
sensor; and radar sensor.
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The organization of this paper will be as follow: In Section 2, the existing Unknown
Input Observer method for sensor faults isolation is recalled. In Section 3, sensor faults
propagation and the proposed distributed sensor faults isolation in networked control
systems using UIO are explained. In Section 4, the proposed modelling of a controlled
robots platoon is discussed both in the fault-free case and faulty case. In Section 5, the
implementation of weak sensor faults isolation on the robotics platoon is presented. In
Section 6, the simulation results of sensor faults isolation in 5 robots moved together as
a platoon in a leader-follower control scheme are discussed. Finally, conclusions and
suggestions for future works are given in Section 7.

2. UIO-Based Sensor Faults Isolation

This section recalls general notions about UIO-based estimation and faults isolation,
see [18] for details.

2.1. General Model of Unknown Input Observer (UIO)

Consider a fault free linear system injected with unknown inputs. In addition, also
consider for the sake of convenience but without loss of generality, that the system’s outputs
are not directly affected by the inputs. Hence, the fault free model can be written in the
form of:

ẋ(t) = Ax(t)+ Bu(t)+ Ed(t)

y(t) = Cx(t)
(1)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rm is the measured output vector, u(t) ∈ Rr is
the known control input vector, d(t) ∈ Rq is the unknown inputs (or disturbance) vector.
A, B, C, and E are known matrices with appropriate dimension.

An Unknown Input Observer (UIO) is a special observer, which despite of the presence
of some unknown inputs d(t), it still produces a state estimation x̃ that converges to the
real one if certain conditions hold. The state-space equation for this UIO’s state z(t) is:

ż(t) = Fz(t)+ TBu(t)+ Ky(t)

x̃(t) = z(t)+ Hy(t)
(2)

where x̃(t) ∈ Rn is the state estimation vector and z(t) ∈ Rn is the UIO’s internal state
vector.

By choosing the matrices F, T, K, and H to satisfy:

HCE = E

T = I − HC

F = A− HCA− K1C

K2 = FH

K = K1 + K2

(3)

with I is the Identity Matrix, then limt→+∞(x− x̃) = 0.
The necessary conditions so that Equation (3) can be satisfied are:

1. rank(CE) = rank(E)

2. (C, A− HCA) is a detectable pair
(4)

The first condition is to ensure that H matrix in Equation (3) exists. It also indicates
that the maximum size of the disturbances vector that can be decoupled can not exceed
the number of independent measurements which are done. In other words, sensor faults
isolation encourages redundancy either in the measurement or in the number of the
used sensors. The second condition is a milder condition related to observability. If
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(C, A − HCA) is already observable, a pole placement method can be directly used to
determine the value of K1. If it is not observable, an observable canonical decomposition
procedure must be performed to do a matrix transformation before using pole placement
to find the value of K1. The details of this procedure are explained in [31].

2.2. UIO for Sensor Faults Isolation

Sensor faults isolation refers to a process for determining in which sensor the fault
has occurred. One way to accomplish this is by using structured residual signals. These
structured residual signals are made in such a way that each of them is sensitive (or
insensitive) to a certain group of faults while insensitive (or sensitive) to the others. This
property becomes the basis to solve the isolation problem. As mentioned earlier, because
UIO can decouple some unknown input signals so that it is insensitive to them, it has the
potential to produce the needed structured residual signals for sensor faults isolation. One
remark is that this scheme can only isolate a single or a certain group of faults. It can not
isolate simultaneous faults. This is called weak sensor faults isolation.

Consider a linear system with sensor faults and disturbance as follows:

ẋ(t) = Ax(t)+ Bu(t)+ Ed(t)

y(t) = Cx(t)+ fs(t)
(5)

To apply the UIO for weak sensor faults isolation, we delete one by one of the rows in
the C matrix in Equation (5) related with each sensor fault as shown in Equation (6) below:

yi(t) = Cix(t)+ f i
s(t) (6)

where Ci ∈ Rn×(m−1) is the C matrix without the ith row, yi(t) ∈ Rm−1 is y vector without
the ith entry, and f i

s(t) ∈ Rm−1 is fs(t) vector without the ith entry.
Then, a bank of m UIOs for the system can be derived with the following dynamics:

żi(t) = Fizi(t)+ TiBu(t)+ Kiyi(t)

ri(t) = (I − Ci Hi)yi(t)− Cizi(t)
(7)

with i = 1, 2, 3, ..., m; zi(t) ∈ Rn is the ith sensor fault UIO’s state vector; ri(t) ∈ Rm−1 is
the ith sensor fault UIO’s residual signal; and the Fi, Ti, Ki, and Hi matrices are chosen in
such a way to satisfy the following conditions:

HiCiE = E

Ti = I − HiCi

Fi = Ti A− Ki
1Ci

Ki
2 = Fi Hi

Ki = Ki
1 + Ki

2

(8)

where Ki
1 is chosen to stabilize Fi.

Remark that Equation (7) shows zi(t) is affected by all inputs except the ith entry
related to a specific sensor fault (yi(t)). If a fault occurs, all the residual signals will be
triggered except for the ith one. Hence, this bank of UIOs can be used as residual generators
for weak sensor faults isolation.

3. Sensor Faults Isolation in Networks of Control Systems
3.1. Sensor Faults in Networked Control Systems

In networked control systems, besides the local control inputs, the states of each
subsystem in that network are also affected by the states of its neighbouring subsystems.
This is shown in Equation (9) as follows:
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ẋj = Ajxj + Bjuj + Ijij

yj = Cjxj
(9)

where subscript j = 1, 2, 3, ..., N represents jth subsystem, xj ∈ Rn is the state vector,
yj ∈ Rm is the measured output vector, uj ∈ Rr is the control input vector, and ij ∈ Rp

is the interconnection input vector which represents the states from the neighbouring
subsystems. Ij is an interconnection input matrix with appropriate dimension.

By assuming static linear interconnections, the interconnection inputs ij can be gener-
ally written as:

i(t) = Ly(t)

i1(t)
i2(t)
i3(t)

.

.

.
iN(t)


=



0 L12 L13 . . . L1N
L21 0 L23 . . . L2N
L31 L32 0 . . . L3N

. . . . . . .

. . . . . . .

. . . . . . .
LN1 LN2 LN3 . . . 0





y1(t)
y2(t)
y3(t)

.

.

.
yN(t)


(10)

where L is called the interconnection matrix. This L matrix contains the matrices Ljk which
describes the relations between output measurements from kth subsystem being connected
as interconnection inputs to jth subsystem.

For N connected Linear Time Invariant (LTI) subsystems subject to sensor faults and
measurement noises, each of them has dynamics described by state-space equations as
follows:

ẋj = Ajxj + Bjuj + Ij(ij + δij)

yj = Cjxj + fsj + wj
(11)

where fsj ∈ Rm is the fault sensor vector, wj ∈ Rm is the measurement noises vector, and
δij ∈ Rp is the disturbance term that describes the sensor faults propagation through
network such that:

δij =
N

∑
k=1

Ljk( fsk + wk) (12)

Now, consider a general linear control algorithm where the control inputs uj depend
on the state variable which is obtained from the output measurements yj so that:

uj = Kjyj + ucj (13)

where Kj is the controller gain matrix and ucj is a feed-forward term.
Hence, by substituting Equations (12) and (13) into Equation (11) and rearranging it,

it can be seen that the sensor faults are now affecting the dynamics of the subsystem as
follows:

ẋj =
[
Aj + BjKjCj

]
xj +

[
Bj Ij

][ucj
ij

]
+
[
Ijδij + BjKj fsj + BjKjwj

]
yj = Cjxj + fsj + wj

(14)

3.2. UIO for Sensor Faults Isolation in Networked Control Systems

In this section, we show that the UIO-based weak sensor faults isolation scheme
presented in the earlier section can be applied to develop proper sensor faults isolation
despite fault propagation through the network. The resulting observer can be implemented
in a distributed way which means that it uses local subsystem’s measurements and the
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measurements of the neighbouring subsystems. The model in Equation (14) can be written
in a more compact way as follows:

ẋj = Âjxj + B̂jûj + Êjd̂j

yj = Cjxj + fsj + wj
(15)

where

Âj = Aj + BjKCj

B̂j =
[
Bj Ij

]
Êj =

[
Ij BjKj

]
d̂j =

[
δij

fsj + wj

]
ûj =

[
ucj
ij

]
(16)

Remark that Equation (15) has the same form as Equation (5) such that the weak
sensor faults isolation scheme can be applied directly. In addition, it is also seen that the
input ûj depends only on the control inputs of the jth subsystem and the measured outputs
of the neighbouring subsystems.

3.3. Threshold Computation for Fault Isolation

As previously explained, to perform weak sensor faults isolation, the UIOs are treated
as residual generators in which each residual is insensitive to a specific fault while sensitive
to the others. Consequently, because we determine the faulty sensor by observing noisy
measurement signals, a suitable threshold need to be specified. By substituting Equation (6)
into Equation (7), we get:

żi(t) = Fizi(t)+ TiBu(t)+ Ki(Cix(t)+ f i
s(t)+ wi(t))

ri(t) = (I − Ci Hi)(Cix(t)+ f i
s(t)+ wi(t))− Cizi(t)

(17)

Thus, the sole effect of the measurement noises ˙zi
w(t) and ri

w(t) on the residuals are
defined by the following equation:

˙zi
w(t) = Fizi(t)+ Kiwi(t)

ri
w(t) = (I − Ci Hi)wi(t)− Cizi(t)

(18)

To minimize the occurrence of false alarm situation, the highest peak gain of the
system’s frequency response is chosen as threshold values (thi) as follows:

thi = ‖Gi
rw‖∞‖wi‖∞ (19)

where ‖Gi
rw‖∞ is the infinity norm of the system in Equation (18).

Hence, the weak sensor faults isolation is achieved by formulating the decision signal
σi in which the fault happened at the ith sensor using the relation:

σi =

{
1 if ‖ri(t)‖ ≤ thi and ‖rî(t)‖ > thî, ∀î(t) 6= i
0 otherwise.

(20)

4. Modelling of Controlled Robots Platoon
4.1. Fault Free Model of Controlled Robots Platoon

In this paper, the subsystems in networked control systems are represented by robots
in a controlled robots platoon. The modelling of this controlled robots platoon is inspired
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by Adaptive Cruise Control (ACC) which is used for vehicle following system [32]. Several
robots are assumed to move along x axis and each of them has a double integrator dynamic
as follows:

mj ẍj = uj (21)

where j = 2, 3, 4, ..., n represents the jth follower robot with n being the number of robots
(j = 1 is allocated to represent the leader robot), ẍj = v̇j = aj with xj is position, vj is
velocity, aj is acceleration, mj is mass, and uj is the control input of the jth robot.

According to [30], two conditions that must be achieved in this leader-following
control system are individual stability and string stability.

Individual stability means that the spacing error of the concerned robot should con-
verge to zero when the preceding robot has a constant speed. The spacing error describing
the distance with the preceding robot can be expressed as:

εj = xj − xj−1 + lj−1

ej = xj − xj−1 + Lj
(22)

where εj is the measured inter-robot spacing, ej is the spacing error of the jth robot, and Lj
is some desired value of inter-robot spacing and includes the length of the preceding robot
lj−1. Figure 1 shows the block diagram of the concerned robots platoon.

Figure 1. Robots platoon block diagram.

Meanwhile, string stability means that the spacing errors on each robot should not
amplify towards the end of the string (‖ej‖∞ ≤ ‖ej−1‖∞). To satisfy both individual stability
and string stability, a constant time-gap policy must used to formulate the control input for
each robot. In this policy, the desired inter-robot spacing Lj is not made constant. Instead,
it varies in proportional with velocity as well as the spacing error ej as follows:

Lj = lj−1 + hẋj

ej = εj + hẋj
(23)

where h is a prescribed positive constant parameter called time-gap and εj is as given in
the Equation (22).

A previous research [30] found that a suitable control input uj for this constant time-
gap policy is in the form of:

uj = ẍj = −
1
h
(ε̇j + λej)

= −1
h
(ẋj − ẋj−1 + l̇j−1 + λxj − λxj−1 + λlj−1 + λhẋj)

= −λ

h
xj + (−1

h
− λ)ẋj +

λ

h
xj−1 +

1
h

ẋj−1 + (−λ

h
)lj−1

(24)

where λ is a constant chosen such that λ > 0.
For the sake of generality, Equation (24) is rewritten as:

uj = k1jxj + k2j ẋj + k3jxj−1 + k4j ẋj−1 + k5jlj−1 (25)
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where k1j = − λ
h , k2j = − 1

h − λ, k3j =
λ
h , k4j =

1
h , and k5j = − λ

h .
Hence, the related state-space model for the jth robot is:ẋ1j

ẋ2j
ẋ3j

 =

 0 1 0
k1j/mj k2j/mj 0

0 1 0

x1j
x2j
x3j

+

 0 0 0
k5j/mj k3j/mj k4j/mj

0 0 −1

 lj−1
xj−1
ẋj−1

 (26)

where x1j = xj, x2j = ẋj, and x3j = xj − xj−1.

4.2. Model of Controlled Robots Platoon with Sensor Faults

To implement the robots platoon’s control system, it is assumed that each robot is
equipped with conventional sensors which are a GPS-based sensor, a velocity sensor, and a
radar sensor. Thus, the considered measurement outputs are:

1. y1j is a position measurement to obtain the x1j state using a GPS-based sensor (S1).
2. y2j is a velocity measurement obtained from the same GPS-based sensor. For GPS-

based velocity measurement, please refer to [33].
3. y3j is a velocity measurement by using the wheel-mounted velocity sensor (S2) on the

robot to obtain the x2j state.
4. y4j is an inter-vehicle distance measurement to obtain the x3j state using a radar-based

sensor (S3).

In addition, it is also assumed that each robot receives the position information from
the preceding robot through wireless inter-vehicle network communication (xj−1). The
velocity from the preceding robot can also be calculated by differentiating this information
(vj−1 = ẋj−1).

Note that the common use of local sensors and inter-vehicle communication introduces
measurements redundancy. Velocity can either be obtained from the GPS-based sensor or
measured by the wheel-mounted velocity sensor. In the same manner, the inter-vehicle
distance also can either be measured directly or obtained by the difference between GPS-
based measurement and the position of the preceding vehicle which is received through
the wireless communication network.

Besides that, the sensors are affected by additive faults and measurement noises. The
measurement noises are considered high frequency and low amplitude signals. Meanwhile,
sensor faults are due to malfunctioning of sensors, the measurements signal from them is
expected to have a sudden or incremental change of amplitude at the time of the incident.
Thus, the faults are assumed to be high magnitude signals (e.g., sensor biases) as compared
to measurements noise that has a considerable influence on the dynamic behaviour of the
controlled robots platoon. Hence, the output measurements can be modelled as:

yj = Cjxj + fsj + wj

Cj =


1 0 0
0 1 0
0 1 0
0 0 1

 (27)

where yj = [y1j y2j y3j y4j]
T is the measurement vector, xj = [x1j x2j x3j]

T is the state
vector, fsj = [ fs1j ḟs1j fs2j fs3j]

T is the sensor faults vector which contains position sensor
fault ( fs1j), derivative of the position sensor fault ( ḟs1j), velocity sensor fault ( fs2j), distance
sensor fault ( fs3j), and wj = [w1j ẇ1j w2j w3j]

T is the measurement noises vector.
The received information from the network is also considered to be affected by network

disturbances as follows:
ij−1 = xj−1 + δij−1 (28)

where ij−1 is the received position information from the preceding robot, xj−1 is the position
information from the preceding robot, and δij−1 represents the disturbance on the signal
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received through the network due to the possible position sensor fault of the preceding
robot.

The control input for each robot in this controlled robots platoon can be calculated
from the enumerated sensor measurements which are affected both by sensor faults and
network disturbance. Because of the redundancy in measurements, there are several ways
to compute the control signal uj. One possible way to compute is:

uj = k1jy1j + k2jy3j + k3jij + k4j i̇j + k5jlj−1

uj = k1j(x1j + fs1j + w1j) + k2j(x2j + fs2j + w2j) + k3j(xj−1 + δij−1)

+ k4j(ẋj−1 + δ̇ij−1) + k5jlj−1

uj = k1jxj + k2j ẋj + k3jxj−1 + k4j ẋj−1 + k5jlj−1 + Dj

(29)

where Dj represents an unknown disturbance term which sums up the additive faults
and the noises terms that arrive through the networks or from the local faulty sensors as
follows:

Dj = k1j fs1j + k1jw1j + k2j fs2j + k2jw2j + k3jδij−1 + k4j δ̇ij−1 (30)

If we implement the control input using measurements from other sensors, uj will
have the same form as in Equation (29) and only Dj will change.

Thus, the state-space equation with unknown disturbance term for the jth robot in a
controlled robots platoon is:ẋ1j

ẋ2j
ẋ3j

 =

 0 1 0
k1j/mj k2j/mj 0

0 1 0

x1j
x2j
x3j

+

 0 0 0
k5j/mj k3j/mj k4j/mj

0 0 −1

 lj−1
xj−1
ẋj−1



+

 0 0 0 0
k3j/mj k4j/mj k1j/mj k2j/mj

0 0 0 0




δij−1
δ̇ij−1

fs1j + w1j
fs2j + w2j




y1j
y2j
y3j
y4j

 =


1 0 0
0 1 0
0 1 0
0 0 1


x1j

x2j
x3j

+


fs1j
ḟs1j
fs2j
fs3j

+


w1j
ẇ1j
w2j
w3j



(31)

4.3. Special Case: The Leader Robot

It is considered that the leader (first) robot moves with a prescribed controlled speed
and it does not receive information from the other robots. In a similar manner, this leader
is assumed to move along x axis and has a double integrator dynamic as follows:

m1 ẍ1 = u1 (32)

where ẍ1 = v̇1 = a1 with x1 is leader’s position, v1 is leader’s velocity, a1 is leader’s
acceleration, m1 is leader’s mass, and u1 is the control input for this leader robot.

The needed control input for leader is calculated only from its sensor measurements
without being affected by the states of the other robots. A proportional integrator (PI)
velocity controller is assumed as it is shown in the Equation (33):

u1 = ki

∫ t

0
(vre f − v1) dτ + kp(vre f − v1)

u1 = −kix1 − kpv1 + uc

uc = ki

∫ t

0
vre f dτ + kpvre f

(33)
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where ki is the integral control gain, kp is the proportional control gain, uc is the feed-
forward control term, and vre f is a predefined speed set-point for the leader robot.

The related state-space model of the leader is as seen in the Equation (34).[
ẋ11
ẋ21

]
=

[
0 1

−ki/m1 −kp/m1

][
x11
x21

]
+

[
0

1/m1

]
uc (34)

where x11 = x1 and x21 = ẋ1 = v1.

4.4. Model of the Leader Robot with Sensor Faults

The assumed measurement outputs for this leader robot are:

1. y11 is a GPS-based position measurement to obtain the x11 state.
2. y21 is a velocity measurement based on the same GPS sensor.
3. y31 is a velocity measurement by using the wheel-mounted velocity sensor on the

robot to obtain the x21 state.

The control input of the leader only depends on it’s own sensor measurements. The
unknown inputs, which act as disturbance for the faulty model of the leader robot, come
from this leader’s sensor fault. With this additive sensor fault, the leader’s measurements
become as shown in the Equation (35):

y1 = C1x1 + fs1 + w1

C1 =

1 0
0 1
0 1

 (35)

where y1 = [y11 y21 y31]
T is the leader’s measurement vector, x1 = [x11 x21]

T is the leader’s
state vector, fs1 = [ fs11 ḟs11 fs21]

T is the leader’s sensor faults vector which contains
position sensor fault ( fs11), derivative of the position sensor fault ( ḟs11), velocity sensor
fault ( fs21), and w1 = [w11 ẇ11 w21]

T is the leader’s measurement noises vector.
By taking into consideration the sensor faults, one possible way to compute the control

input of the leader is as shown in the Equation (36):

u1 = −kiy11 − kpy31 + uc

u1 = −ki(x11 + fs11 + w11)− kp(x21 + fs21 + w21) + uc

u1 = −kix11 − kpx21 + uc + D1

(36)

where D1 contains the additive fault-induced disturbance and noise terms as follows:

D1 = −ki fs11 − kiw11 − kp fs21 − kpw21 (37)

Thus, the state-space equation with sensor faults for the leader robot in a controlled
robots platoon is as seen in Equation (38):[

ẋ11
ẋ21

]
=

[
0 1

−ki/m1 −kp/m1

][
x11
x21

]
+

[
0

1/m1

]
uc +

[
0 0

−ki/m1 −kp/m1

][
fs11 + w11
fs21 + w21

]
y11

y21
y31

 =

1 0
0 1
0 1

[x11
x21

]
+

 fs11
ḟs11
fs21

+

w11
ẇ11
w21

 (38)

5. Sensor Faults Isolation in Controlled Robots Platoon
5.1. Sensor Faults Isolation in the Follower Robots

In the case of controlled robots platoon, the network disturbance yields from the
position sensor fault measurement of the preceding robot which is transmitted to the robot
behind it. For the jth robot, we can treat both the network disturbance from the preceding
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(j− 1)th robot and the effect of its own sensor faults on control as unknown input part dj.
By comparing Equation (15) with Equation (31), we can write:

Âj =

 0 1 0
k1j/mj k2j/mj 0

0 1 0


B̂j =

 0 0 0
k5j/mj k3j/mj k4j/mj

0 0 −1


Êj =

 0 0 0 0
k3j/mj k4j/mj k1j/mj k2j/mj

0 0 0 0


xj =

x1j
x2j
x3j


ûj =

 lj−1
xj−1
ẋj−1



d̂j =


δij−1
δ̇ij−1

fs1j + w1j
fs2j + w2j



(39)

The output matrix Cj is given by Equation (27). The C1
j , C2

j , and C3
j matrices, which

correspond to the design of UIO for weak sensor faults isolation, are obtained in the same
manner as in Equation (6) so that we get:

C1
j =

[
0 1 0
0 0 1

]

C2
j =

1 0 0
0 1 0
0 0 1


C3

j =

1 0 0
0 1 0
0 1 0


(40)

One remark for UIO which is designed to be insensitive to a fault in S1 is that both the
1st and 2nd row of the C matrix is deleted to form C1

j because y2j represents velocity which
is obtained from the same sensor to obtain y1j. Thus, GPS-based velocity measurement is
not treated as an extra sensor that needs faults isolation.

By using each of those three new Cj matrices, three UIOs for each sensor faults isolation
can be designed for each robot according to Equation (7) to produce residual signals r1j, r2j,
and r3j which are insensitive to a fault in S1, S2, and S3, respectively. Afterwards, these
residual signals are compared to each threshold value thi computed from Equation (19).
When a fault occurs, the decision signal σi will rise based on that comparison results as
shown in Equation (20). For example, if the residual signals from S1 (r1j) and S3 (r3j) are
higher than the threshold values while a residual signal from S2 (r2j) is lower, then decision
signal for S2 (σ2) will rise from zero to one indicating that a fault is happening in S2. The
block diagram of this bank of UIOs along with its isolation logic is shown in Figure 2.
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Figure 2. Local UIOs for sensor faults isolation on each robot.

5.2. Sensor Faults Isolation in the Leader Robot

Sensor faults isolation for the leader robot has a rather different scheme because its
states are not affected by the states of the other robots. One more thing to be noted is that
it only has redundancy in velocity measurement which comes from both the GPS-based
sensor measurement (S1) and the wheel-mounted velocity sensor measurement (S2).

Because the leader robot has redundancy in the velocity measurement, we can directly
use the method as in the case of the follower robots to design the UIO which is insensitive
to fault in S2. By comparing Equation (15) with Equation (38), we use these matrices in
constructing the UIO which produces r21 as follows:

Â2
1 =

[
0 1

−ki/m1 −kp/m1

]
B̂2

1 =

[
0

1/m1

]
C2

1 =

[
1 0
0 1

]
Ê2

1 =

[
0 0

−ki/m1 −kp/m1

]
x2

1 =

[
x11
x21

]
û2

1 = uc = ki

∫ t

0
vre f dτ + kpvre f

d̂2
1 =

[
fs11 + w11
fs21 + w21

]

(41)

As the position measurement of the leader does not have any redundancy, we refer
to Equation (36) to design a residual generator for fault isolation in S1 by neglecting the
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disturbance parts E1
1 and D1 so that the produced residual signal will respond to any sensor

bias fault in S2. We can do that because we perform weak sensor faults isolation that
assumes no simultaneous fault. Thus, we get:

ẋ21 = −
kp

m1
x21 −

ki
m1

x11 +
1

m1
uc (42)

After that, by comparing the equation above with Equation (15), the matrices to design
the UIO to produce residual signal r11 are:

Â1
1 = −kp/m1

B̂1
1 =

[
−ki/m1 1/m1

]
C1

1 = 1

Ê1
1 = 0

x1
1 = x21

û1
1 =

[
x11
uc

]
uc = ki

∫ t

0
vre f dτ + kpvre f

(43)

6. Results and Discussion
6.1. Simulation Method

To verify the behaviour of the proposed model and the performance of the proposed
weak sensor faults isolation method, we performed simulations using the MATLAB pro-
gramming environment. In these simulations, the controlled robots platoon consists of
five robots where one robot acts as the leader while the remaining four robots act as
the followers. Each of them transmits its GPS-based position measurement to the robot
behind it.

Firstly, the M-file feature in MATLAB is used to initialize the state-space parameters
of both the leader and followers robots, to check the fulfilment of the UIO’s existence
requirement, and, if it exists, to compute the required parameters of the UIO’s matrices for
weak sensor faults isolation purpose. In this simulation, the parameters for the controlled
leader robot in both Equations (41) and (43) are: ki = 0.05, kp = 2, and m1 = 1 where
the values of ki and kp are the PI controller gain values for leader’s velocity which is
determined to get fast settling time with small overshoot.

Meanwhile, the parameters for the remaining four of the follower robots in Equation (39)
are obtained from Equation (25) in which mj = 1, lj−1 = 3, h = 2, and λ = 20 refers to the
adaptive cruise control examples in [30]. It yields that: k1j = −10, k2j = −20.5, k3j = 10,
k4j = 0.5, and k5j = −10.

Because each robot sends its GPS-based position measurement (S1) to the robot behind
it, the interconnection matrix L in the Equation (10) is:

L =


0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


By using the new C matrices as in Equations (40), (41) and (43), the rank and detectabil-

ity conditions necessary to UIO existence in Equation (4) are checked and it turns out that
they are fulfilled.

Subsequently, the UIOs Hi
j , Ti

j , Fi
j , and Ki

j matrices are computed to design residual
generators where i represents ith sensor and j represents jth robot. Hence, the UIO-based
residual generators for each sensor in each robot as shown in Figure 2 are implemented
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based on those matrices. The observer gains were determined using pole placement to
satisfy all the equations in Equation (8) with poles: at −15 for the leader’s sensor S1; at
−15 and −10 for the leader’s sensor S2; at −15 and −10 for both the follower’s sensor S1
and sensor S3; and poles at −15, −10, and −5 for the follower’s sensor S2.

After that, Equations (18) and (19) are used to calculate the residuals threshold by
considering measurement noises such that ‖wi‖∞ = 0.35 in the simulation. The infinity
norm gain values of the residual generators are 1 for the followers and 2.6 for the leader.
By observing the produced residual signals from the UIOs and comparing them with the
threshold values, weak sensor faults isolation are done using the detection/isolation logic
shown in Equation (20). Based on that relation, assuming a single sensor fault happens in a
robot, the decision signal related to the malfunctioning sensor will arise.

Lastly, the Simulink feature in MATLAB is used to build and simulate the controlled
robots platoon model with sensor faults and fault diagnostics. The computation results of
UIOs are passed to the Simulink model which represents the residual generators.

6.2. Simulation Results

In this simulation, the leader’s desired velocity was set to 10 m/s. For the non-faulty
case, the system’s response for every robot (position, velocity, and distance) and their
residual signals (residual signal for S1, residual signal for S2, and residual signal for S3) are
shown in Figures 3 and 4 respectively. It can be seen that all of them achieve the desired
velocity of 10 m/s and have a distance of 22.4 m between each robot with a slower settling
time consecutively. Furthermore, all residual signals show very small amplitudes below
the threshold indicating that no false alarms are produced.

Meanwhile, for the faulty case, we simulate four different scenarios. In these scenarios,
all of the sensor faults are simulated as sensor bias errors using a step function where the
magnitude is increased from 0 to 10 at the 10th second.

In the first scenario, the fault is happening at sensor S1 in the 1st robot (leader) by
which the system’s response and UIO’s residual signals are shown in Figures 5 and 6
respectively.

Figure 3. System’s response without fault.
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Figure 4. Residual signals without fault.

Figure 5. System’s response with sensor S1 fault in the 1st robot.

Figure 6. Residual signals with sensor S1 fault in the 1st robot.
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In the second scenario, the fault is happening at sensor S1 in the 2nd robot by which
the system’s response and UIO’s residual signals are shown in Figures 7 and 8 respectively.

Figure 7. System’s response with sensor S1 fault in the 2nd robot.

Figure 8. Residual signals with sensor S1 fault in the 2nd robot.

In the third scenario, the fault is happening at sensor S2 in the 3rd robot by which the
system’s response and UIO’s residual signals are shown in Figures 9 and 10 respectively.

Finally, in the fourth scenario, the fault is happening at sensor S3 in the 5th robot by
which the system’s response and UIO’s residual signals are shown in Figures 11 and 12
respectively.
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Figure 9. System’s response with sensor S2 fault in the 3rd robot.

Figure 10. Residual signals with sensor S2 fault in the 3rd robot.

Figure 11. System’s response with sensor S3 fault in the 5th robot.
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Figure 12. Residual signals with sensor S3 fault in the 5th robot.

For the first scenario, Figure 5 shows that a fault in S1 in the 1st robot is affecting
all the states (position, velocity, and distance) of the 2nd, 3rd, 4th, and 5th robots. This is
happening because, as mentioned earlier, the transmitted information in these networked
control systems comes from this GPS-based position measurement (S1). Besides that,
Figure 6 shows a significant change of amplitude in the residual signals produced by the
UIO for sensor S2 while the other residual for sensor S1 is below the threshold value. Thus,
based on the previous relation shown in the Equation (20), a decision signal for sensor S1
arise indicating that a fault occurred in this sensor at the 10th second.

For the second scenario, Figure 7 shows a similar situation as in the first scenario
where a fault in S1 in the 2nd robot is affecting all the states of the 3rd, 4th, and 5th robots.
In terms of sensor faults isolation, Figure 8 shows a significant change of amplitude in
the residual signals for both sensor S2 and sensor S3 exceeding the threshold value while
residual for sensor S1 is not. Hence, the decision signal for S1 arises revealing an occurrence
of a fault in this sensor of the 2nd robot at the 10th second.

For the third scenario, Figure 9 shows that fault in S2 in the 3rd robot does not directly
affect the states of the 4th and 5th robots because the measurement of this sensor (S2) is not
the information that is transmitted to the robot behind it. In addition, Figure 10 shows a
change of amplitude exceeding the threshold in both the residual signals from this robot’s
UIO for sensor S1 and sensor S3 triggering a decision signal to indicate that sensor S2 is
faulty at the 10th second.

Lastly, for the fourth scenario, Figure 11 shows that fault in S3 in the 5th robot does not
directly affect any other robots at all because this 5th robot is the last in these networked
control systems. Furthermore, Figure 12 shows a significant change of amplitude in this
last robot’s UIO residual signal for both sensor S1 and sensor S2 triggering a decision signal
to indicate that sensor S3 is faulty at the 10th second.

6.3. Discussion

The simulation results presented in the previous section show that the proposed faults
isolation method ensures fast response time, the interval between the rise of the fault signal
and the rise of the decision signal is less than 5 ms in each case. Moreover, those decision
signals are always correct and accurate in determining where the fault is happening. In the
case of the robot platoons, the UIO existence conditions are fulfilled.

Comparing with other similar works, this UIO-based approach shows its popularity
as a favourite choice in the field of fault detection and isolation in the multi-agents system.
Liu et al. implemented multiple UIOs in each agent for fault detection and isolation in the
multi-agents system that is robust to disturbance [27]. While their method prioritizes the
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detection of which agents are failed, our approach is more refined in terms of it can detect
a specific sensor fault in each agent. Other works by Shames et al. also used UIO to detect
a faulty agent in a power network [28]. Yet, they also did not aim to detect a specific sensor
fault in an agent.

The research object of Zhang et al. is the most similar to ours compared with the others.
They derived a global augmented system model included with actuator and sensor faults
and then used it to design a global UIO able to undertake faults estimation processes [29].
Their proposed faults isolation logic was a centralized one. The used case study was a
simulation of five aircraft in a leader-follower network scheme. Even though we are lacking
in actuator faults feature compared to them, our approach of local distributed UIOs is more
scalable.

7. Conclusions

The extension of model-based sensor fault isolation schemes to networked control
systems is essential to deal with fault effect propagation through the interconnections. In
this research, we proposed a networked control system model that can be used to describe
the expected behaviour of the robotics platoon with sensor faults and their propagation
through the network. Distributed Unknown Input Observers (UIO) for weak sensor fault
isolation in each robot are also designed using this model as the basis. In designing these
UIOs, the fault propagation is treated as the unknown input part. We have also introduced
a threshold computation method for UIO-based sensor fault isolation in the presence of
measurement noises.

The verification and validation are done in MATLAB using a case study where five
subsystems (robots) are connected with a communication-based connection. In these five
robots, one robot acts as the leader which has two sensors while the remaining four robots
act as the followers by which each of them has three sensors. The simulation results show
that the weak sensor faults isolation in the robotics platoon is successfully achieved by
observing the produced residual signals from the UIOs in each robot.

Some limitations of the UIO-based faults isolation approach in networked control
systems are related to the assumptions, see Equation (4), that the subsystem models have to
be satisfied to decouple the propagation of the faults through the network. Besides that, the
detection and isolation logic depends on a threshold value determined by the maximum
value of measurements noise. Thus, if the measurements noise has excessive values, the
threshold value will also be high so that low magnitude fault can not be detected.

In many communication networks, the delay can not be neglected. According to the
previous works, if the delay is small enough (under 250 ms), then the model of the system
with small delay can be approximated with a model without delay [34]. Hence, if the delay
in the communication network between the subsystems is small, we can implement our
fault isolation approach based on the approximated model.

As the proposed model for faults isolation has low complexity, this approach has a
great potential to be implemented on embedded systems. The bank of UIOs that perform
the faults isolation can be discretized using standard methods. Furthermore, the approach
utilizes only conventional sensors which are available on most mobile robots.

Possible future works include exploring this approach to perform actuator fault isola-
tion in networked control systems. Another possible extension is to take into consideration
the communication time delay in the form of distributed delay among the subsystems.
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