
sensors

Article

OctoPath: An OcTree-Based Self-Supervised Learning
Approach to Local Trajectory Planning for Mobile Robots

Bogdan Trăsnea 1,2,* , Cosmin Ginerică 1,2, Mihai Zaha 1,2, Gigel Măceşanu 1,2, Claudiu Pozna 1

and Sorin Grigorescu 1,2

����������
�������

Citation: Trăsnea, B.; Ginerică, C.;

Zaha, M.; Măceşanu, G.; Pozna, C.;

Grigorescu, S. OctoPath: An

OcTree-Based Self-Supervised

Learning Approach to Local Trajectory

Planning for Mobile Robots. Sensors

2021, 21, 3606. https://doi.org/

10.3390/s21113606

Academic Editor: Gabriel

Oliver-Codina

Received: 26 March 2021

Accepted: 19 May 2021

Published: 22 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Robotics, Vision and Control Laboratory (ROVIS), Transilvania University of Brasov, 500036 Brasov, Romania;
cosmin.ginerica@unitbv.ro (C.G.); mihai.zaha@unitbv.ro (M.Z.); gigel.macesanu@unitbv.ro (G.M.);
cp@unitbv.ro (C.P.); s.grigorescu@unitbv.ro (S.G.)

2 Elektrobit Automotive, 500365 Brasov, Romania
* Correspondence: bogdan.trasnea@unitbv.ro

Abstract: Autonomous mobile robots are usually faced with challenging situations when driving in
complex environments. Namely, they have to recognize the static and dynamic obstacles, plan the
driving path and execute their motion. For addressing the issue of perception and path planning, in
this paper, we introduce OctoPath, which is an encoder-decoder deep neural network, trained in a self-
supervised manner to predict the local optimal trajectory for the ego-vehicle. Using the discretization
provided by a 3D octree environment model, our approach reformulates trajectory prediction as a
classification problem with a configurable resolution. During training, OctoPath minimizes the error
between the predicted and the manually driven trajectories in a given training dataset. This allows us
to avoid the pitfall of regression-based trajectory estimation, in which there is an infinite state space
for the output trajectory points. Environment sensing is performed using a 40-channel mechanical
LiDAR sensor, fused with an inertial measurement unit and wheels odometry for state estimation.
The experiments are performed both in simulation and real-life, using our own developed GridSim
simulator and RovisLab’s Autonomous Mobile Test Unit platform. We evaluate the predictions of
OctoPath in different driving scenarios, both indoor and outdoor, while benchmarking our system
against a baseline hybrid A-Star algorithm and a regression-based supervised learning method, as
well as against a CNN learning-based optimal path planning method.

Keywords: sensor fusion; mobile robot systems; path planning; autonomous vehicles; artificial
intelligence; deep learning

1. Introduction

Recent developments in the fields of deep learning and artificial intelligence have
aided the autonomous driving domain’s rapid advancement. Autonomous vehicles (AVs)
are robotic systems that can navigate without the need for human intervention. The
deployment of AVs is predicted to have a major impact on the future of mobility, bringing
a variety of benefits to daily life, such as making driving simpler, increasing road network
capacity, and minimizing vehicle-related crashes.

For Advanced Driver Assistance Systems(ADAS) systems and autonomous robot
control, one of the top priorities is ensuring functional safety. When a car is driving,
it encounters varieties of dynamic traffic scenarios in which the moving objects in the
environment may pose a risk to safe driving. The car must consider all threats present
in the surrounding environment in order to create a collision-free path and determine
the next steps based on it. Due to the complexity of such a task, deep learning models
have been used to aid in solving it. There are several conceptually different self-driving
architectures, namely end2end learning [1], Deep Reinforcement Learning [2] (DRL), and
the sense-plan-act pipeline [3].

Sensors 2021, 21, 3606. https://doi.org/10.3390/s21113606 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6169-1181
https://orcid.org/0000-0002-0790-9343
https://orcid.org/0000-0003-4763-5540
https://www.mdpi.com/1424-8220/21/11/3606?type=check_update&version=1
https://doi.org/10.3390/s21113606
https://doi.org/10.3390/s21113606
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21113606
https://www.mdpi.com/journal/sensors

Sensors 2021, 21, 3606 2 of 17

In the sense-plan-act case, an important component is the one that plans the future
driving path of the ego-vehicle. Determining a safe path over a finite prediction horizon
is a key aspect when employing a control strategy, especially when considering dynamic
and static obstacle avoidance. The main problem is split into smaller sub-problems in a
modular pipeline, with each module intended to solve a particular task and provide the
result as input to the next component. Therefore, AVs must have the ability to sense their
surroundings and form an adequate environment model which precisely represents the
dynamic and stationary objects. Afterward, it needs to plan its path, which is defined
as the AV’s ability to find a collision-free route between the current position and the
desired destination. Finally, it needs to act based on the computed path, by applying the
appropriate control signals (acceleration and steering) for the AV.

In this paper, we address the path planning component from the perception-planning-
action pipeline. Figure 1 highlights the block diagram of the proposed concept. The
currently proposed method, coined OctoPath, is self-supervised and aims to combine the
configurable discretization of an octree-based environment model with a classification-
based encoder-decoder RNN architecture. It takes as input a sequence of sensor measure-
ments, together with the current segment of a reference trajectory, building upon the RNN
encoder-decoder architecture which has shown excellent performance for sequence-to-
sequence tasks.

Figure 1. Local trajectory prediction using a neural network encoder-decoder architecture. The training data consists of
sequences of OcTrees (X<t−τi ,t>) and points from the reference path (Z<t−τi ,t+τ0>

re f). Future trajectory points (Y<t+1,t+τ0>)

are used to calculate the labels in a self-supervised manner. The encoder-decoder network architecture is designed to take
advantage of the neural network’s ability to learn effective temporal representations. The input sequences are passed
through an encoder network, which maps raw inputs to a hidden feature representation known as a thought vector, and a
decoder network, which takes this feature representation as input, processes it, and outputs a trajectory prediction.

As opposed to Reference [4], we now sense the world in 3D using an octree represen-
tation, and we no longer use convolutional layers for processing the input sequences, as
this intermediate representation has been taken over by the fixed state vector between the
encoder and the decoder of our architecture.

The key contributions of this paper are:

1. based on the octree environment model, we provide a solution for estimating local
driving trajectories by reformulating the estimation task as a classification problem
with a configurable resolution;

2. we define an encoder-decoder deep neural network topology for predicting desired
future trajectories, which are obtained in a self-supervised fashion;

3. we leverage the innate property of the state vector between the encoder and the decoder
to represent a learned sequence of trajectory points constrained by road topology.

The rest of this paper is organized as follows. Section 2 covers the related work.
In Section 3, the trajectory estimation problem for mobile robots is briefly described
(Section 3.1), together with the octree environment model (Section 3.2) and the Rovis-
Lab’s AMTU kinematic model (Section 3.3). Our choice of recurrent encoder-decoder

Sensors 2021, 21, 3606 3 of 17

neural network architecture (Section 4.1) is detailed in Section 4, in combination with the
training setup (Section 4.2) using the gathered mobile robot data. Performance evaluation
can be found in Section 5, where we first overview the experimental setup (Section 5.1) and
detail the related experiments (Sections 5.2 and 5.3), and second, we analyze the deploy-
ment of our OctoPath network on the NVidia AGX Xavier (Section 5.5) and an ablation
study of varying the octree resolution and the network model parameters (Section 5.4).
Sections 6 covers the conclusions of the paper.

2. Related Work

Deep learning [5,6] has emerged as the driving force behind many of the new devel-
opments in recent years, with notable advancements in computer vision, robotics, and
natural language processing. DNNs have effectively learned representations that general-
ize well for different scenarios arising from real data when applied to a variety of machine
learning tasks.

Among the different kinds of DNN architectures available, recurrent neural networks
(RNN) are used to analyze the structure of time series data, such as text or video streams [7].
All of these advancements in the field of deep learning have obviously influenced the
growth of intelligent vehicles. The first automated cars were described in the late 1980s
and early 1990s, and following these first implementations, various control architectures
for automated driving were proposed [8]. The driving functions are generally applied
as perception-planning-action pipelines, as seen in Grigorescu et al.’s deep learning for
autonomous driving survey [9], but recent approaches based on end2end learning have
also been proposed, though most as research prototypes.

In this context, end2end learning is defined as developing and training a complex
neural network to directly map input sensory data to vehicle commands [10]. The authors
of Reference [11] present an end-to-end imitation learning system for off-road autonomous
driving by using only low-cost onboard sensors, having their DNN policy trained for agile
driving on a predefined obstacle-free track. Since self-driving cars must manage roads with
complex barriers and unclear lane borders, this strategy restricts the applicability of their
system to autonomous driving. In the PilotNet algorithm proposed by Bojarski et al. [12],
the input images are directly mapped to the vehicle’s steering control.

Because large annotated datasets are needed to train such deep networks, the alter-
native of self-supervised learning approaches has also been employed. In Reference [13],
BADGR—Berkeley Autonomous Driving Ground Robot, an End2End self-supervised learn-
ing system, was created to navigate in real-world situations with geometrically distracting
obstacles (such as tall grass). It can also take into account terrain preferences, generalize to
new environments, and improve on its own by collecting more data.

DRL (Deep Reinforcement Learning) is an algorithm or a system in which agents learn
to act by communicating with their surroundings. Although DRL does not use training
data, it maximizes a cumulative reward that quantifies its behavior [14]. In Reference [15],
well-established route planning techniques are correlated with novel neural learning
approaches to find the best path to a target location within a square grid. A combination
of global guidance and a local RL-based planner is presented in Reference [16]. A major
downside of DRL is that such an architecture is difficult to train in real-life scenarios due
to the interaction constraint and tends to generalize on specific driving scenarios (e.g.,
highway driving). Furthermore, because the input from the sensors is straightly mapped
to actuators, these systems’ functional safety is normally difficult to monitor [17].

Path planning in mobile robotics has been a topic of research for decades [18], and it
is categorized into global and local planning based on the scope and executability of the
plan [19]. The survey in Reference [3] offers a broad overview of route planning in the
automotive industry. It focuses on the task planner, behavior planner, and motion planner,
which are all taxonomy elements of path planning. It does not, however, provide a study
of deep learning technology, despite increased interest in using deep learning technologies
for route planning and behavior arbitration in the state-of-the-art literature.

Sensors 2021, 21, 3606 4 of 17

Novel DNN-based path planning methods which have been developed are based on
biologically inspired cognitive architectures [20], with the three primary methods being swarm
intelligence, evolutionary algorithms, and neurodynamics. In the case of Reference [21], an
optimal path planning algorithm based on convolutional neural networks (CNN) and
random-exporing trees (RRT) is presented. Their approach, called Neural RRT*, is a
framework for generating the sampling distribution of the optimal path under several
constraints. In our previous work on local state trajectory estimation [4], we used a multi-
objective neuro-evolutionary approach to train a regression-based hybrid CNN-LSTM
architecture using sequences of 2D occupancy grids.

Since motion planning can also be viewed as a sequence to sequence mapping problem,
or as a sequence generation task, RNNs have been proposed for modeling the driving
trajectories [22–24]. The input sequence in this technique is composed of the most recent
sensor readings, while the output sequence contains the future trajectory points. In contrast
to traditional neural networks, RNN memory cells have a time-dependent feedback loop. In
order to use RNNs for predicting a future trajectory, each separate point is considered a state,
which further implies that the whole trajectory is represented as a sequence. The transition
from one state to another is strictly constrained by the topology of the network [25].

Many approaches address the task of predicting the trajectory of vehicles surrounding
the ego-car: in Reference [26], the authors suggested a multi-modal trajectory prediction
system for surrounding vehicles, which assigns confidence values to vehicle maneuvers
and generates a multi-modal distribution over future motion based on those values. The
authors of Reference [27] suggest an LSTM that predicts the location of cars in an occupancy
grid at discrete intervals of 0.5 s, 1 s, and 2 s in the future, while Park et al. [23] employs an
encoder-decoder architecture to generate the K most likely trajectory candidates over an
occupancy grid map using the beam search method.

Most of the RNN solutions proposed for solving the task of trajectory estimation need
a discrete environment model. In this work, the proposed environment model is based
on octrees [28,29] and uses probabilistic occupancy estimation. The main advantages of
using this model are that it explicitly represents not only occupied space but also free and
unknown areas and that it enables a compact memory representation and configurable
resolutions. In Reference [30], the authors used an octree-based model to determine the
surrounding obstacle locations in real-time, and use it for path planning and robot motion
generation. The authors of Reference [31] present the advantages of having an environment
with multiple resolutions and a uniform octree representation mechanism of models from
various sensors.

3. Method

A variable’s value is defined either as a discrete sequence defined in the < t, t + k >
time interval, where k represents the length of the sequence, or as a single discrete time step
t, written as superscript < t >. The value of a trajectory output variable y, for example,
may be specified at discrete time t as y<t> or within a sequence interval Y<t,t+k>.

3.1. Problem Definition: Local Trajectory Prediction

A trajectory is defined as a time-and-velocity-parameterized sequence of states visited
by the vehicle. Local trajectory planning (also known as local trajectory generation) is
concerned with the real-time planning of a vehicle’s transition from its current state to
the next while avoiding obstacles and meeting the vehicle’s kinematic limitations, over a
prediction horizon. Depending on the speed and line-of-sight of the vehicle’s on-board
sensors, the route planner module produces an estimated optimal trajectory from the
vehicle’s current location, with a look-ahead distance, during each planning cycle.

Figure 2 depicts an illustration of the local state trajectory prediction task for au-
tonomous driving. The task is to learn a local trajectory for navigating the ego-vehicle to
destination coordinates y<t+τ0>

dest given a sequence of octrees x<t−τi> : R3 × τi, the current
sequence from the reference route z<t−τi ,t+τ0>

re f : R2 × τi, the position of the ego-vehicle

Sensors 2021, 21, 3606 5 of 17

p<t>
ego ∈ R2 in x<t>, and the destination coordinates p<t>

dest ∈ R2 at time t. The length of the
input data sequence is τi, and τ0 is the number of time steps for which the ego-vehicle’s
trajectory is computed. The reference path is represented by a collection of points in the
global coordinate system, which depict the route that the robot has to follow.

Figure 2. Estimating local trajectories for autonomous robots and vehicles using encoder-decoder
recurrent neural networks. Considering the current ego vehicle’s position p<t>

ego , an input sequence of

octrees X<t−τi ,t> = [x<t−τi>, . . . , x<t>], the current sequence from the reference route z<t−τi ,t+τ0>
re f

and a desired destination from the reference path y<t+τ0>
dest , the aim is to estimate a driving trajectory

Y<t+1,t+τ0> = [y<t+1>, . . . , y<t+τ0>
dest].

The local trajectory problem can be expressed as a classification problem with N classes,
where N is determined by the OcTree resolution (density of points in the environment
space) and the prediction horizon (how far away is the destination point). It is a multi-
class classification problem in which each time step’s point on the trajectory is selected
sequentially from an input sequence of octree environment snapshots and points from the
reference route.

In other words, we pursue a desired local navigation trajectory of the ego-vehicle
from any arbitrary starting point p<t>

0 (which is a coordinate in the current input octree) to
y<t+τ0>

dest , with the following properties:

• the longitudinal velocity v<t,t+τ0> is maximal and is contained within the bounds
[vmin, vmax];

• the total distance between consecutive trajectory points is minimal: ||(p<t>
0 − y<t>

dest) +
τ0
∑

i=0
(y<t+i>

dest − y<t+i+1>
dest)||;

• the lateral velocity v<t,t+τ0>
δ is minimal. It is is determined by the rate of change of

the steering angle vδ ∈
[
δ̇min, δ̇max

]
.

The vehicle is modeled based on the kinematics of a skid-steering wheeled mobile
robot, with position state p<t> = (p<t>

x , p<t>
y) and no-slip assumptions, which is further

detailed in Section 3.3.

3.2. Octree Environment Model

Most robotic applications require an environment model, which must be effective in
terms of runtime and memory usage, and include free, occupied, and unmapped zones.
Sensor models often have range measurement errors, and there may also be apparently
random measurements caused by reflections or dynamic barriers. The underlying uncer-
tainty must be taken into account when creating an accurate model of the environment
from such noisy data. Multiple uncertain measurements can then be combined to form a
reliable estimation of the environment’s true state.

An octree is a hierarchical data structure for 3D spatial subdivision that is most
commonly used to partition a given 3D space into eight octants by recursively subdividing

Sensors 2021, 21, 3606 6 of 17

it. Every node on an octree is the space of a cubic volume that is commonly referred to
as a voxel. Each internal node has exactly eight children, and the octree’s resolution is
determined by the minimum voxel scale. If the inner nodes are retained accordingly, the
tree can be cut down at any level to acquire a more coarse subdivision. Octrees prevent
one of the key weaknesses in fixed grid systems in robotic mapping, the fact that the
surroundings should not previously be known, and that the environmental model includes
only the assessed volume.

Octrees prevent one of the key weaknesses in fixed grid systems in robotic map-
ping, the fact that the mapping surroundings should not previously be known, and the
environmental model includes only volume measured.

When referring to a laser range finder, for example, the endpoints of the sensor
generate occupied space, while the detected region between the sensor and the endpoint
is considered to be free space. The occupied space is mapped from the point cloud data
packets at the corresponding distance in space for our input LiDAR data. As a result,
we use LiDAR data to generate an octree environment model, which depicts free-space
(driving area) and inhabited areas in three dimensions.

A central property of our approach is that it allows for efficiency of occupied and free
space while keeping the memory consumption low, which is essential for our model car
hardware from Figure 3. The octrees have fixed sizes, as required by the neural network
input, based on the field of view of the LiDAR sensor. The nodes which are neither occupied
nor free (these are always beyond the detected obstacles) are marked as unknown and
initialized with zero 0 to prevent them from influencing the inference result. Additionally,
we can configure the resolution to a lower value, to reduce the processing times and
memory usage even further. Details regarding the impact of varying the octree resolution
are provided in Section 5.4

Figure 3. RovisLab AMTU (Autonomous Mobile Test Unit). The robot is a SSWMR (skid-steer
wheeled mobile robot) platform equipped with a 360 degree, 40-Channel Hesai Pandar Lidar, 4×
e-CAM130A cameras, a Tinkerforge inertial measurement unit (IMU), and an NVIDIA AGX Xavier
computer board for real-time data processing and control.

3.3. Kinematics of RovisLab’s AMTU as a SSWMR (Skid-Steer Wheeled Mobile Robot)

Figure 4 shows the schematic diagram of a SSWMR (skid-steer wheeled mobile
robot) [32], together with a top view of RovisLab’s AMTU. The following model assump-
tions are taken into account:

1. The robot’s mass center is at the geometric center of the body frame;
2. Each side’s two wheels rotate at the same speed;
3. The robot is operating on a firm ground floor with all four wheels in contact with it at

all times.

Sensors 2021, 21, 3606 7 of 17

As shown in Figure 4, we define an inertial frame (X, Y) (global frame) and a local
(robot body) frame (x, y). Presume the robot movies in a plane with linear velocity
v = (vx, vy, 0)T and rotates with an angular velocity ω = (0, 0, ωz)T , both expressed in the
local frame. If q = (X, Y, θ)T is the state vector defining the robot’s generalized coordinates
(position X and Y, as well as the orientation θ of the local coordinate frame with respect to
the inertial frame), then q̇ = (Ẋ, Ẏ, θ̇)T is the vector of generalized velocities.

The relationship between the robot velocities in both frames is then calculated
as follows: Ẋ

Ẏ
θ̇

 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

vx
vy
ωz

. (1)

Figure 4. A skid-steering mobile robot’s kinematics diagram and the top view of RovisLab Au-
tonomous Mobile Test Unit.

Because it only specifies free-body kinematics, Equation (1) places no limits on the
SSWMR plane movement. As a result, the relationship between wheel velocities and local
velocities must be analyzed. For simplicity, the thickness of the wheel is neglected and
is assumed to be in contact with the plane at point Pi, as according to the initial model
assumption nr. 3. In comparison to other wheeled vehicles, the SSWMR has a non-zero
lateral velocity. This property stems from the SSWMR’s mechanical structure, which
necessitates lateral skidding if the vehicle’s orientation shifts. As a result, the wheels are
only tangent to the path when ω = 0, that is, when the robot travels in a straight line. It is
important to consider all wheels together when developing the kinematic model.

Let ωi and vi, with i = 1, 2, 3, 4 denote the wheel angular and center linear velocities
for front-left, rear-left, front-right, and rear-right wheels, respectively. Thus, we have:

ωL = ω1 = ω2, ωR = ω3 = ω4. (2)

We can use the previous equation to state the direct kinematics on the plane:vx
vy
ωz

 = f
[

ωlr
ωrr

]
, (3)

where v = (vx, vy) is the vehicle’s translational velocity with respect to its local frame, ωz
is its angular velocity, and r is the radius of the wheel.

The instantaneous centers of rotation (ICR) of the left-side, right-side, and robot body
are denoted as ICRl , ICRr, and ICRG, respectively, while the mobile robot moves. ICRl ,

Sensors 2021, 21, 3606 8 of 17

ICRr, and ICRG are all known to lie on a line parallel to the x-axis [33]. We define the
x-y coordinates for ICRl , ICRr, and ICRG as (xICRl , yICRl), (xICRr , yICRr), and (xICR, yICR),
respectively. The sides’ angular velocity is equal to the velocity of the robot body ωz. We
further obtain the following geometrical relations:

xICR = xICRl = xICRr = −
vy

ωz
(4)

yICR =
vx

ωz
, (5)

yICRl =
vx −ωlr

ωz
, (6)

yICRr =
vx −ωrr

ωz
. (7)

From Equations (4)–(7), the kinematics relation (3) can be represented as:vx
vy
ωz

 = Jω

[
ωlr
ωrr

]
, (8)

where the elements of matrix Jω are determined by the ICR coordinates on the left and
right sides:

Jω =
1

yICRl − yICRr

−yICRr yICRl
xICR −xICR
−1 1

. (9)

Since the SSWMR is symmetrical in our case, we can obtain a symmetrical kinematics
model, as seen on the right side of Figure 4. As a result, the ICRs are symmetrically
distributed on the x-axis, and the matrix Jω can be written as follows:

Jω =
1

2yICR0

yICR0 yICR0

0 0
−1 1

, (10)

where yICR0 = yICRl = −yICRr represents the side ICR values. Considering that, for our
symmetrical model, vl = ωlr and vr = ωrr, the relations between the angular wheel
velocities and the robot velocities are as follows:

vx = ωlr+ωrr
2 = vl+vr

2

vy = 0
ωz =

−ωlr+ωrr
2yICR0

= −vl+vr
2yICR0

. (11)

Based on Equation (11), the control signal u can be written as:

u =

[
vx
ωz

]
= r

[
ωl+ωr

2−ωl+ωr
2yICR0

]
. (12)

The last equation shows that the pair of angular velocities ωl and ωr, as well as
velocities vx and ωz, can technically be viewed as a control kinematic input signal. The
accuracy of relation (12), on the other hand, is heavily reliant on longitudinal slip, and
it can only be used if this phenomenon is not dominant. Furthermore, the parameters r
and yICR0 can be calculated experimentally to ensure that the angular robot velocity is
accurately estimated in relation to the angular velocities of the wheels.

Sensors 2021, 21, 3606 9 of 17

4. OctoPath: Architecture, Training and Deployment
4.1. RNN Encoder-Decoder Architecture

In contrast to traditional neural networks, an RNN’s memory cell comprises a time-
dependent feedback loop. A recurrent neural network itself can be “unrolled” τi + τ0 times
to produce a loop-free architecture that matches the input length, if we consider an input
sequence [x<t−τi>, . . . , x<t>] which is time dependant, together with an output sequence
[y<t+1>, . . . , y<t+τ0>]. Unrolled networks have τi + τ0 + 1 similar or even identical layers,
which means that each layer has the same learned weights.

This architecture is comprised of two models: a stack of several recurrent units for
reading the input sequence and encoding it into a fixed-length vector, and a second one for
decoding the fixed-length vector and outputting the predicted sequence. The combined
models are known as an RNN Encoder-Decoder, which is designed specifically for sequence
to sequence problems. Given the input sequence X<t−τi ,t>, a basic RNN encoder computes
the sequence of hidden states (h1, h2, h3, . . . , hN):

ht = tanh(Uxhxt + Uhhht−1), (13)

where the two matrices Uxh and Uhh are the weight matrix between the input layer and hidden
layer, and the weight matrix of recurrent connections in a given hidden layer, respectively.

The vanishing gradient experienced during training is the major challenge when using
simple RNNs. The gradient signal can be multiplied an infinite number of times, up to the
number of time steps. As a result, a classical RNN cannot capture long-term dependencies
in sequence data. The gradient of the network’s output will have a hard time propagating
back to affect the weights of the earlier layers if the network is very deep or processes long
sequences. The weights of the network will not be successfully modified as a result of
gradient vanishing, resulting in very small weight values.

To counter these challenges, in our work, we use a set of Long Short-Term Memory
(LSTM) networks for both the encoder and the decoder, as shown in Figure 1. LSTMs solve
the vanishing gradient problem by adding three gates that control the input, output, and
memory state, as opposed to classical recurrent neural networks.

Θ = [Wi, Ui, bi] parametrizes an LSTM network, where Wi embodies the weights of
the gates and memory cells multiplied with the input state, Ui represents the weights
controlling the network’s activations, and bi contains the bias values of the neurons. A
network output sequence is defined as a desired ego-vehicle optimal trajectory:

Y<t+1,t+τ0> = [y<t+1>, y<t+2>, . . . , y<t+τ0>], (14)

where y<t+1> is a predicted trajectory set-point at time t + 1. τi and τ0 are not necessarily
equal: τi 6= τ0.

The LSTM encoder takes the latest octree samples X<t−τi ,t>, as well as the reference
trajectory sequence Z<t−τi ,t+τ0>

re f for the current time step t, and produces an intermediate
fixed-size vector ct that preserves the temporal correlation of the previous observations.
The hidden state of the LSTM encoder ht is calculated using the following equations:

zt = σ(Uxzxt + Uhzht−1), (15)

rt = σ(Uxrxt + Uhrht−1), (16)

h̃t = tanh(Uxhxt + Urh(rt ⊗ ht−1)), (17)

ht = (1− zt)⊗ ht−1 + zt ⊗ h̃t, (18)

where σ represents the sigmoid activation function. zt, rt, and h̃t are the update gate, reset
gate, and candidate activation, respectively. Uxz, Uxr, Uxh, Uhz, Uhr, and Urh are the related
weight matrices. The notation ⊗ represents an element-wise multiplication operator.

Sensors 2021, 21, 3606 10 of 17

The LSTM decoder takes the predicted trajectory sample to produce the subsequent
trajectory samples, producing the entire future trajectory Y<t+1,t+τ0> for the current time
step, given the context vector ct as input. Y<t+1,t+τ0> is defined as a sequence variable Y
with data instances [y<t+1>, . . . , y<t+τ0−1>, x<t+τ0>] in a specific time interval [t+ 1, t+ τ0].
Each predicted sequence variable’s probability is calculated as follows:

p(yt|X, yt−1) = g(Uo(Eyt−1 + Usst + Ucct)), (19)

where g is a softmax activation function, as it can be observed in Figure 1. st is the current
hidden state of the decoder, and yt−1 represents the previous target symbol, while E
denotes the embedding matrix.

The earlier target sequence variable yt−1 and the context vector ct are also inputs to
the decoder, which uses a single unidirectional layer to compute the hidden state st:

z′t = σ(UyzEyt−1 + Uszst−1 + Cczct), (20)

r′t = σ(UyrEyt−1 + Usrst−1 + Ccrct), (21)

s̃t = tanh(UysEyt−1 + Urs(r′t ⊗ st−1) + Ccsct), (22)

st = (1− z′t)⊗ st−1 + z′t ⊗ s̃t, (23)

where z′t, r′t, and s̃t are the update gate, reset gate, and candidate activation, respectively.
Uxx and Cxx are the related weight matrices.

The decoder retains the best sequence candidates in the algorithm when creating the
future trajectory sample for each time step. As a result, using the octree input framework,
the proposed model would predict the most likely hypotheses of the vehicle trajectory.
As analogy to machine translation problems, a point coordinate inside an octree is a
character, an octree is a word, and the sequence of input octrees represents an sentence.
Our experiments show that an encoder-decoder RNN produces an acceptable trajectory and
that its prediction accuracy is improved in comparison to traditional prediction methods.

4.2. Training Setup

To train the network, we used data collected with RovisLab AMTU, with the robot be-
ing manually driven in the test environment while encountering various static and dynamic
obstacles. When acquiring training samples, the point cloud sensory data acquired over
Ethernet as UDP packets from a Hesai Pandar LiDAR is used to populate octrees X<t−τi ,t>.
Afterwards, together with the global reference trajectory z<t−τi ,t+τ0>

re f and with the future

position states Y<t−τi ,t>, these are stored as sequence data. For practical reasons, the global
reference trajectory is stored at sampling time t over the finite horizon [t− τi, t + τ0].

A single training sample, combined from the snapshot of an octree generated from
input LiDAR data, maps to X<t> and a continuous sequence of octrees is represented
further as X<t−τi ,t>. Figure 5 shows an example of input LiDAR data and afferent octree
representations queried for occupied voxels, together with the projected 2D environment
model. A script implementation is also necessary for processing the sequences from the
acquired input data. There is a large number of configurable parameters, such as the
sampling time, resolution of the camera, rotations per minute of the LiDAR, and coordinate
system for the ego-vehicle data.

We train our method using a self-supervised learning approach; therefore, we do not
require any manual labeling of the training data. In order to mitigate overfitting, the obsta-
cles were placed differently each time. During training, we have used an 80/10/10 train-
validation-test-data split. OctoPath has been trained for 15,000 epochs in a self-supervised
fashion using the stochastic gradient decent method with the Adam optimizer [34], with a
learning rate of 0.0003. As presented in Section 3.1, we express the local trajectory estima-
tion task as a multi-classification problem with N classes (given by the OcTree resolution);
thus, the loss function to be minimized is given by the negative log-likelihood (NLL)
function, as we also have a softmax layer in the last layer of our network. The learning

Sensors 2021, 21, 3606 11 of 17

curve of our network (between the training and validation set) can be found on the right
side of Figure 8.

We used the following hardware configuration to decrease the time required for train-
ing: two high-performance graphics cards, namely Nvidia GeForce RTX2080Ti, connected
with NVLink, managed by an Intel Core i9-9900K CPU, 64 GB RAM, and a 1TB SSD. For
the training itself, we have used TensorFlow, because it has seamless integration with the
Keras API and is maintained in Python.

5. Results
5.1. Experimental Setup Overview

OctoPath was compared to the baseline hybrid A* algorithm [35], to a regression-
based approach [25], and to a CNN learning-based approach [21]. We put the OctoPath
algorithm to the test in two distinct environments: (I) in the GridSim simulator [36] (More
information is available at www.rovislab.com/gridsim.html, accessed on 21 May 2021.)
(Section 5.2) and (II) in a real-world navigation environment, both indoor and outdoor
(Section 5.3), using the RovisLab AMTU robot from Figure 3. RovisLab AMTU is an AgileX
Scout 2.0 platform which acts as a 1:4 scaled car, equipped with a 360° Hesai Pandar 40
Lidar, 4× e-130A cameras providing a 360° visual perception of the surroundings, a VESC
inertial measurement unit, GPS, and an NVIDIA AGX Xavier board for data processing
and control. The state of the vehicle was measured using wheels odometry and the Inertial
Measurement Unit (IMU).

All experiments aimed at solving the trajectory estimation problem illustrated in
Figure 2, which was to calculate a trajectory for safely navigating the driving environment
without performing the motion control task. To implement motion control, the predicted
states were used as input to a model predictive controller, which computed the necessary
vx and ωz control signals for the RovisLab AMTU, as detailed in Section 3.3. The motion
controller’s design and implementation are beyond the scope of this paper.

The hybrid A* algorithm employs a modified state-update rule to apply a variant of
the well-known A* algorithm to the vehicle’s octree environment model. The search space
(x, y, θ) is discretized, just like in traditional A*, but unlike A*, which only allows visiting
cell centers, the hybrid version of the algorithm associates a more continuous state of the
car with each grid cell, allowing also trajectory points that are not in the exact center of the
octree cell.

In the case of trajectory prediction as a regression problem, the goal is to achieve a
direct prediction of continuous future positions without any discretization. Because the
average prediction minimizes the regression error, such methods have a bias to output the
average of several options, thus rendering it inaccurate.

The Neural RRT* algorithm, proposed by Wang et al. in Reference [21], is a novel
optimal path planning algorithm based on convolutional neural networks. It used the
A* algorithm to generate training data, considering map information as input, and the
optimal path as ground truth. Given a new path planning problem, the model can quickly
determine the optimal path’s probability distribution, which is then used to direct the RRT*
planner’s sampling operation. The performance of the algorithm varies under different
values of the clearance to the obstacles and step size. A wider clearance indicates that the
planned route is far from the obstacles, while a smaller clearance indicates that the planned
path is closer to them. We have used a fixed step size of 2 and a robot clearance value of 4.

We use the Root Mean Square Error (RMSE) between the predicted and the recorded
trajectory in the 2D driving plane:

RMSE =

√
1
τ0

τ0

∑
t=1

[
(p̂<t>

x − p<t>
x)2 + (p̂<t>

y − p<t>
y)2

]
, (24)

where p̂<t>
x , p̂<t>

y are the points on the predicted trajectory, and p<t>
x , p<t>

y are the points
on the ground truth trajectory, respectively. We set the prediction horizon τ0 = 10.

www.rovislab.com/gridsim.html

Sensors 2021, 21, 3606 12 of 17

The workflow of the experiments is as follows:

• collect training data from driving recordings;
• generate octrees and format training data as sequences;
• train the OctoPath deep network from Figure 1;
• evaluate on simulated and real-world driving scenarios.

This experimental setup resulted in 15 km of driving in GridSim, over 1 km of looped
indoor navigation and over 2 km of outdoor navigation outside of Transilvania University of
Brasov’s IHTPSD (Institute of High Tech Products for Sustainable Development). The robot
navigated indoor and outdoor environments while avoiding static and dynamic obstacles.

5.2. Experiment I: GridSim Simulation Environment

GridSim is a self-driving simulation engine that generates synthetic occupancy grids
from simulated sensors using kinematic models, which are then used to produce input
octree data. The user interface was integrated into the GridSim environment menu, such
that the modes can be switched between replay, record, and training, with each one
having access to the five different scenarios. There is a large number of configurable
parameters, such as the resolution of the simulator, occupancy grid precision, number of
traffic participants, ego vehicle’s size, maximum speed, or turning radius.

The first set of experiments compared the four algorithms discussed in Section 5.1
over 15 km of driving in GridSim [36]. The goal is to get from a starting position to a given
destination while avoiding collisions and driving at the desired speed. The Z coordinate
of all obstacle and free space points is set to zero to adjust the encoder-decoder network’s
input data to the GridSim environment. The testing scenarios generated using the GridSim
simulation environment were not used during the training of the network.

For the various types of roads and traffic environments found in the synthetic testing
database, the performance assessment of the benchmarked algorithms is summarized in
the top part of the Table 1. We illustrate the mean position errors (ēx, ēy), as well as the
RMSE metric from Equation (24).

Table 1. Errors between estimated and ground truth trajectories in simulation and real-world
navigation testing scenarios.

Scenario Method ēx[m] max(ex)[m] ēy[m] max(ey)[m] RMSE[m]

GridSim Hybrid A* 1.43 3.21 2.71 4.01 2.71
simulation Regression 3.51 7.20 4.71 8.53 5.10

Neural RRT 1.27 3.01 2.35 2.98 2.48
Octopath 1.16 2.31 1.72 2.75 2.07

Indoor Hybrid A* 1.21 4.33 1.33 3.88 1.74
navigation Regression 1.90 5.73 2.31 4.98 2.75

Neural RRT 1.01 3.29 0.98 2.16 1.44
Octopath 0.55 1.08 0.44 0.87 0.69

Outdoor Hybrid A* 1.35 4.67 1.44 4.44 1.98
navigation Regression 2.41 8.42 2.77 8.98 3.01

Neural RRT 1.05 2.52 1.06 3.24 1.17
Octopath 0.71 1.46 0.57 1.17 0.88

5.3. Experiment II: Indoor and Outdoor Navigation

The indoor navigation experiment was performed using the RovisLab AMTU SSWMR
vehicle from Figure 3, with different indoor navigation tasks. The reference routes which
the car had to follow were composed of straight lines, S-curves, circles, and a 75 m track on
the main hallway of Transilvania University of Brasov’s Institute for Research, as it can be
observed in Figure 5.

Sensors 2021, 21, 3606 13 of 17

Figure 5. Indoor testing setup. (top) RovisLab AMTU on the reference trajectory, with raw LiDAR
data acquired from the top-mounted sensor and the generated 3D and projected 2D octree environ-
ment model. (bottom) The 4 images were acquired with the e-CAM130A quad camera. The order of
the images is, given the camera mounting position, front-right-back-left.

The testing room for the indoor experiment was the same as the one that was used for
gathering training data, but the reference routes and the obstacles were placed differently.
The main hallway was not used for gathering training data.

The first set of 10 trials were performed without any obstacles present on the reference
routes, while the second 10 trials set contained static and dynamic obstacles. Fifty-four
thousand training samples have been collected in the form of LiDAR data and vehicle
states, as seen in Figure 5. The path driven when collecting data was considered as a
reference trajectory and was created in a self-supervised manner.

The outdoor navigation experiment was performed outside of Transilvania University
of Brasov’s IHTPSD (Institute of High Tech Products for Sustainable Development), as it
can be observed in Figure 6. The reference route which the car had to follow was composed
of a full loop around the institute and was created using a GPS tool. The route itself is
around 500 m long, and we ran it 4 times.

Figure 6. Outdoor testing setup. (top-left) Our vehicle mission planner tool generating the GPS
reference route. (top-right) RovisLab AMTU on the reference trajectory with the projected 2D octree
environment model. (bottom) On-route behavior with dynamic obstacle avoidance.

The outdoor reference path which was used for training the network was recorded as
the driven path when collecting the sensory data. When testing the network, the reference
path was generated using our vehicle mission planner tool which can be seen in Figure 6.

Sensors 2021, 21, 3606 14 of 17

The static obstacles were mainly parked cars, while the dynamic obstacles were moving
cars or people.

The mean and standard deviation of the position error (computed as RMSE) can be
viewed in Figure 7, left side for indoor navigation, and right side for outdoor navigation.
The position errors are shown in Table 1 for all scenarios: simulation, indoor navigation
and outdoor navigation. The mean (ēx, ēy) and maximum (max(ex), max(ey)) position
errors, as well as the RMSE metric from Equation (24), are shown. When compared to
OctoPath, Neural RRT has the lowest deviations, but, from the non-learning approaches,
Hybrid A* performs the best, indicating that it is a good candidate for non-learning
trajectory estimation.

Figure 7. Mean (solid line) and standard deviation (shaded region) of the position error, computed as the RMSE from
Equation (24) during indoor and outdoor testing scenarios.

5.4. Ablation Study

In this section, we analyze the impact of varying the octree resolution and the network
model parameters, as well as the length of the input data sequence from the annotated
trajectory dataset. As in the previous section, the RMSE between the estimated and the
ground truth driven trajectory is used to quantify the accuracy of our system with respect
to the variation of these parameters.

In the first development stage of our algorithm, we have varied the number of LSTM
layers inside both the encoder and the decoder, while keeping a fixed number for the
output sequence. The experiments testing errors were averaged together to calculate the
ablation study from the right side of Figure 8.

Figure 8. Learning curve and ablation of octree resolution and encoder-decoder model parameters. (left side) The evolution
of the NLL loss on the training and validation set. (right side) Performance when training with different numbers of LSTM
layers inside both the encoder and the decoder. We see that the RMSE percentages between the estimated and the ground
truth driven trajectory decreases with respect to the added number of layers but gets capped after a certain threshold.
Decreasing the resolution causes a small increase in RMSE but decreases the necessary training time in a significant manner.

Sensors 2021, 21, 3606 15 of 17

The main takeaway from this study is that the performance of the system increases
with respect to the number of added layers and neurons. However, the training time also
increases at an exponential rate. We have concluded that the optimal structure for the deep
network in Figure 1 is composed of 256 LSTM layers for the encoder and 256 LSTM layers
for the decoder.

5.5. Deployment of OctoPath on the Nvidia AGX Xavier

The results of the network deployment on the Nvidia AGX Xavier mounted on
RovisLab AMTU are presented in this section. The board supports three different power
modes: 10 watts, 15 watts, and 30 watts, with each mode having several configurations
with different CPU and GPU frequencies and a number of available cores. The comparison
of OctoPath inference times when using different power modes are shown in Table 2. The
TensorRT column represents the processing time using an optimized model with 4 bytes
FP representation (UFF file with the TensorFlow operations replaced by TensorRT plugin
nodes), while the Native Tensorflow column shows the processing time when using the
original TF model (as ProtoBuf file .pb).

Table 2. Inference time measured on the NVIDIA AGX Xavier with different power mode (nvpmodel)
and optimization level settings.

Nvidia AGX Xavier
Power Mode

Number of
Online Cores

CPU Maximal
Frequency (MHz)

TensorRT
(ms)

Native
Tensorflow (ms)

MODE_10W 2 1200 41.24 314.66
MODE_15W 4 1200 29.89 207.12

MODE_30W_4CORE 4 1780 21.37 153.86
MODE_30W_6CORE 6 2100 17.85 121.38

MODE_MAXN 8 2265 14.23 89.61

Because of the input OcTree environment model, the network’s memory requirements
are very low. The native TF ProtoBuf .pb file is slightly less than 10 MB in size. OctoPath
can be used in embedded systems with real-time performance, as the network will process
a frame in 14.23 ms with the Max-N setup. To put it another way, the device is capable
of generating 70 paths per second, which is more than enough for most applications.
The importance of optimization combined with FP32, as well as the power mode, is
emphasized when compared to native TensorFlow solutions. Our robot is more than
capable of supplying the current required for the AGX Xavier to operate in MAX-N mode.

5.6. Discussion

In our experiments, the hybrid A* algorithm behaved better than the regression
approach, mostly because of the structure of the octree environment model input data.
This makes A* strictly dependent on the precision of the obstacle representation in the
surrounding environment. Besides, the jittering effect of OctoPath may be a side effect
of the decoder output’s discrete nature. It will, however, provide a reliable ego-vehicle
trajectory prediction over a given time horizon.

We intend to use the e-CAM130A synchronized quad cameras in future research
to perform a full semantic segmentation on the received point cloud and to extend the
validation of our approach to more use-cases. Learning-based approaches, we think,
can deliver better results in the long run than conventional methods. This improvement
would be achieved by training on more data, which would include a greater number of
corner cases.

6. Conclusions

OctoPath, our self-supervised method for local trajectory prediction for autonomous
vehicles within a finite horizon, is outlined in this paper. A discrete octree-based envi-
ronment model with configurable resolution provides the input data, which is then fed

Sensors 2021, 21, 3606 16 of 17

into a recurrent neural network encoder-decoder. To train the network, we used data
collected with a LiDAR sensor mounted on our robot, RovisLab AMTU, a 1:4 scaled vehicle,
and we performed simulation and indoor/outdoor navigation experiments. We base our
evaluation against a hybrid A* algorithm, a regression-based approach, as well as against a
CNN learning-based optimal path planning method, and we conclude that OctoPath is a
valid candidate for local trajectory prediction in the autonomous control of mobile robots.
Having a configurable environment resolution is an advantage especially on target edge
devices, as seen from the deployment on the Nvidia AGX Xavier.

Author Contributions: Conceptualization, B.T., C.P. and S.G.; methodology, B.T., C.P. and S.G.;
software, B.T., C.G., M.Z., G.M.; validation, B.T., C.G., M.Z. and G.M.; formal analysis, B.T., C.G.,
C.P. and S.G.; investigation, B.T., C.G., M.Z. and G.M.; resources, C.P. and S.G.; data curation, B.T.;
writing—original draft preparation, B.T.; writing, review and editing, C.P. and S.G.; visualization,
B.T., C.G. and M.Z.; supervision, G.M., C.P. and S.G.; project administration, C.P. and S.G.; funding
acquisition, C.P. and S.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Project website: https://rovislab.com/autonomousvehicles.html
(accessed on 21 May 2021).

Acknowledgments: This work was supported by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 800928, European Processor Initiative EPI.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, H.; Gao, Y.; Yu, F.; Darrell, T. End-to-end learning of driving models from large-scale video datasets. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2174–2182.
2. Jaritz, M.; Charette, R.; Toromanoff, M.; Perot, E.; Nashashibi, F. End-to-End Race Driving with Deep Reinforcement Learning. In

Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018.
3. Pendleton, S.D.; Andersen, H.; Du, X.; Shen, X.; Meghjani, M.; Eng, Y.H.; Rus, D.; Ang, M.H. Perception, planning, control, and

coordination for autonomous vehicles. Machines 2017, 5, 6. [CrossRef]
4. Grigorescu, S.M.; Trasnea, B.; Marina, L.; Vasilcoi, A.; Cocias, T. NeuroTrajectory: A Neuroevolutionary Approach to Local State

Trajectory Learning for Autonomous Vehicles. IEEE Robot. Autom. Lett. 2019, 4, 3441–3448. [CrossRef]
5. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach.

Intell. 2013, 35, 1798–1828. [CrossRef]
6. Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Ostrovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; Silver, D. Rainbow:

Combining improvements in deep reinforcement learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, New Orleans, LA, USA, 2–7 February 2018.

7. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.

8. González, D.; Pérez, J.; Milanés, V.; Nashashibi, F. A review of motion planning techniques for automated vehicles. IEEE Trans.
Intell. Transp. Syst. 2015, 17, 1135–1145. [CrossRef]

9. Grigorescu, S.; Trasnea, B.; Cocias, T.; Macesanu, G. A survey of deep learning techniques for autonomous driving. J. Field Robot.
2020, 37, 362–386. [CrossRef]

10. Amini, A.; Gilitschenski, I.; Phillips, J.; Moseyko, J.; Banerjee, R.; Karaman, S.; Rus, D. Learning robust control policies for
end-to-end autonomous driving from data-driven simulation. IEEE Robot. Autom. Lett. 2020, 5, 1143–1150. [CrossRef]

11. Pan, Y.; Cheng, C.A.; Saigol, K.; Lee, K.; Yan, X.; Theodorou, E.A.; Boots, B. Imitation learning for agile autonomous driving. Int.
J. Robot. Res. 2020, 39, 286–302. [CrossRef]

12. Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.; Flepp, B.; Goyal, P.; Jackel, L.D.; Monfort, M.; Muller, U.; Zhang, J.; et al.
End to End Learning for Self-Driving Cars. arXiv 2016, arXiv:1604.07316.

13. Kahn, G.; Abbeel, P.; Levine, S. BADGR: An autonomous self-supervised learning-based navigation system. arXiv 2020,
arXiv:2002.05700.

14. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529. [CrossRef]

https://rovislab.com/autonomousvehicles.html
http://doi.org/10.3390/machines5010006
http://dx.doi.org/10.1109/LRA.2019.2926224
http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1109/TITS.2015.2498841
http://dx.doi.org/10.1002/rob.21918
http://dx.doi.org/10.1109/LRA.2020.2966414
http://dx.doi.org/10.1177/0278364919880273
http://dx.doi.org/10.1038/nature14236

Sensors 2021, 21, 3606 17 of 17

15. Panov, A.I.; Yakovlev, K.S.; Suvorov, R. Grid path planning with deep reinforcement learning: Preliminary results. Procedia
Comput. Sci. 2018, 123, 347–353. [CrossRef]

16. Wang, B.; Liu, Z.; Li, Q.; Prorok, A. Mobile Robot Path Planning in Dynamic Environments through Globally Guided Reinforce-
ment Learning. arXiv 2020, arXiv:2005.05420.

17. Salay, R.; Queiroz, R.; Czarnecki, K. An Analysis of ISO 26262: Machine Learning and Safety in Automotive Software; Technical Report,
SAE Technical Paper; SAE: Pittsburgh, PA, USA, 2018.

18. Steffi, D.D.; Mehta, S.; Venkatesh, K.; Dasari, S.K. Robot Path Planning—Prediction: A Multidisciplinary Platform: A Survey. In
Data Science and Security; Springer: Singapore 2021; pp. 211–219.

19. Cai, K.; Wang, C.; Cheng, J.; De Silva, C.W.; Meng, M.Q.H. Mobile Robot Path Planning in Dynamic Environments: A Survey.
arXiv 2020, arXiv:2006.14195.

20. Li, J.; Yang, S.X.; Xu, Z. A Survey on Robot Path Planning using Bio-inspired Algorithms. In Proceedings of the 2019 IEEE
International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019; pp. 2111–2116.

21. Wang, J.; Chi, W.; Li, C.; Wang, C.; Meng, M.Q.H. Neural RRT*: Learning-based optimal path planning. IEEE Trans. Autom. Sci.
Eng. 2020, 17, 1748–1758. [CrossRef]

22. Wu, H.; Chen, Z.; Sun, W.; Zheng, B.; Wang, W. Modeling trajectories with recurrent neural networks. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence IJCAI-17, Melbourne, Australia, 19–25 August 2017.

23. Park, S.H.; Kim, B.; Kang, C.M.; Chung, C.C.; Choi, J.W. Sequence-to-sequence prediction of vehicle trajectory via LSTM
encoder-decoder architecture. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June
2018; pp. 1672–1678.

24. Ma, Y.; Zhu, X.; Zhang, S.; Yang, R.; Wang, W.; Manocha, D. Trafficpredict: Trajectory prediction for heterogeneous traffic-agents.
In Proceedings of the AAAI Conference on Artificial Intelligence 2019, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33,
pp. 6120–6127.

25. Altché, F.; de La Fortelle, A. An LSTM network for highway trajectory prediction. In Proceedings of the 2017 IEEE 20th
International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 353–359.

26. Deo, N.; Trivedi, M.M. Multi-modal trajectory prediction of surrounding vehicles with maneuver based lstms. In Proceedings of
the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1179–1184.

27. Kim, B.; Kang, C.M.; Kim, J.; Lee, S.H.; Chung, C.C.; Choi, J.W. Probabilistic vehicle trajectory prediction over occupancy grid
map via recurrent neural network. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 399–404.

28. Hornung, A.; Wurm, K.M.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: An efficient probabilistic 3D mapping framework
based on octrees. Auton. Robot. 2013, 34, 189–206. [CrossRef]

29. Han, S. Towards efficient implementation of an octree for a large 3D point cloud. Sensors 2018, 18, 4398. [CrossRef]
30. Vanneste, S.; Bellekens, B.; Weyn, M. 3DVFH+: Real-time three-dimensional obstacle avoidance using an Octomap. In Proceedings

of the MORSE 2014—Model-Driven Robot Software Engineering, York, UK, 21 July 2014; Volume 1319, pp. 91–102.
31. Zhang, G.; Wu, B.; Xu, Y.L.; Ye, Y.D. Multi-granularity environment perception based on octree occupancy grid. Multimed. Tools

Appl. 2020, 79, 26765–26785. [CrossRef]
32. Wang, T.; Wu, Y.; Liang, J.; Han, C.; Chen, J.; Zhao, Q. Analysis and experimental kinematics of a skid-steering wheeled robot

based on a laser scanner sensor. Sensors 2015, 15, 9681–9702. [CrossRef]
33. Wong, J.; Chiang, C. A general theory for skid steering of tracked vehicles on firm ground. Proc. Inst. Mech. Eng. Part D J.

Automob. Eng. 2001, 215, 343–355. [CrossRef]
34. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
35. Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Practical search techniques in path planning for autonomous driving. Ann

Arbor 2008, 1001, 18–80.
36. Trasnea, B.; Marina, L.; Vasilcoi, A.; Pozna, C.; Grigorescu, S. GridSim: A Simulated Vehicle Kinematics Engine for Deep

Neuroevolutionary Control in Autonomous Driving. In Proceedings of the 2019 Third IEEE International Conference on Robotic
Computing (IRC), Naples, Italy, 25–27 February 2019.

http://dx.doi.org/10.1016/j.procs.2018.01.054
http://dx.doi.org/10.1109/TASE.2020.2976560
http://dx.doi.org/10.1007/s10514-012-9321-0
http://dx.doi.org/10.3390/s18124398
http://dx.doi.org/10.1007/s11042-020-09302-w
http://dx.doi.org/10.3390/s150509681
http://dx.doi.org/10.1243/0954407011525683

	Introduction
	Related Work
	Method
	Problem Definition: Local Trajectory Prediction
	Octree Environment Model
	Kinematics of RovisLab's AMTU as a SSWMR (Skid-Steer Wheeled Mobile Robot)

	OctoPath: Architecture, Training and Deployment
	RNN Encoder-Decoder Architecture
	Training Setup

	Results
	Experimental Setup Overview
	Experiment I: GridSim Simulation Environment
	Experiment II: Indoor and Outdoor Navigation
	Ablation Study
	Deployment of OctoPath on the Nvidia AGX Xavier
	Discussion

	Conclusions
	References

