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Abstract: The title compound was synthesized in near quantitative yields via initial nucleophilic aro-
matic substitution of pentafluoropyridine (PFP) with 4-(2-bromoethyl)phenol as a versatile precursor
for ionic liquids (ILs). The purity and structure were determined using 1H, 13C, and 19F NMR and
GC-EIMS.
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1. Introduction

Ionic liquids (IL), often referred to as “liquid salts,” have captivated the scientific
community with their unique properties and versatile applications and have been recently
reviewed extensively [1]. Unlike traditional liquids, which are primarily composed of
molecules, ionic liquids are made up of ions, resulting in their distinct behavior and in-
triguing characteristics. These remarkable substances exhibit low volatility, high thermal
stability, and an exceptional ability to dissolve a wide range of compounds, making them
valuable in various fields, such as chemistry, engineering, and materials science. With their
tunable properties, including viscosity, conductivity, and solvation ability, ionic liquids
have opened up new avenues for innovative research and have the potential to revolu-
tionize numerous cleaner and waste-reducing industrial processes [2]. The preparation of
fluorinated ionic liquids has been reported to a lesser extent due to limited synthetic path-
ways and availability of starting materials but has shown remarkable properties, leaving
the pursuit of such novel systems worthwhile [3–5].

Perfluoropyridine (PFP) serves as a remarkably versatile feedstock for nucleophilic
aromatic substitution (SNAr), exhibiting its reactivity towards a wide array of O-, N-, S-,
and C-nucleophiles, selectively targeting the 4 -position [6,7]. Furthermore, by adding
sequentially to the 2,6- positions, the 3,5- fluorines remain unreacted under mild condi-
tions. Notably, PFP showcases its value as a protective agent for phenols [8,9], a reagent
for introducing fluorine [10,11], and can also be subjected to site-specific catalytic de-
fluorination [12,13]. Additionally, PFP has been utilized as a derivatization agent for the
quantification of phenols in lignin [14]. The impetus behind incorporating PFP into polymer
frameworks has resulted in the emergence of an array of novel fluoropolymer architectures,
such as solvent processable polyarylethers, fluorosilicones, dendrimers, resins yielding
high char, and mechanically milled fluoroelastomers tailored for demanding commercial
and defense applications [15,16]. These extraordinary materials have exhibited substan-
tial enhancements in processability, mechanical strength, and compatibility with hybrid
composites, all while retaining exceptional resistance to high temperatures. As a potential
expansion of the area of fluorinated ionic liquids, we detail the synthesis and structural
characterization of a tetrafluoropyridine aryl ether with a halogen alkyl tether as a precursor
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for ionic liquids. As shown in Scheme 1, such a methodology would complement recent
reports of ionic liquids using the PFP as a precursor [17,18].
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Scheme 1. Perfluoropyridine as a regio-selective electrophile for the synthesis of tetrafluoropyridine
IL precursors.

2. Results and Discussion

Nucleophilic aromatic substitution of pentafluoropyridine (PFP) with 4-hydroxyphenylethyl
bromide using cesium carbonate in acetonitrile at room temperature afforded 4-(4-(2-
bromoethyl)phenoxy)-2,3,5,6-tetrafluoropyridine (1) in excellent isolated yield (96%)
(Scheme 2). Quantitative reaction conversion was observed via 19F NMR after 16 h and
showed the quantitative regio-selective conversion of the 4-substituted F (δ–130 ppm) of
PFP to exclusively the set of 2,6- and 3,5-substituted F multiplets at δ–88.525–(–88.535) and
δ–153.147–(–153.158) (Figure S2). GC-MS confirmed the purity > 98% with an observed set
of molecular ions (due to 79Br and 81Br isotopes) at m/z = 351, 349 [M]+ and required no
further purification (Figure S4).
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Scheme 2. Synthesis of 4-(4-(2-bromoethyl)phenoxy)-2,3,5,6-tetrafluoropyridine 1 from PFP.

3. Materials and Methods

Chemicals and solvents were purchased as reagent grade by commercial suppli-
ers. 1H, 13C{1H}, and 19F NMR spectra were recorded on a Jeol 500 MHz spectrometer.
Chemical shifts were reported in parts per million (ppm), and the residual solvent peak
was used as an internal reference for proton (chloroform δ 7.26) and carbon (chloroform,
triplet, δ 77.2 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet,
m = multiplet), coupling constants (Hz), and integration. Gas chromatography–mass spec-
trometry (GC-MS) analyses were performed on an Agilent 7890 gas chromatograph coupled
to an Agilent 5975C electron impact mass spectrometer with initial 2 min temperature hold
at 80 ◦C, then temperature gradient of 80 to 250 ◦C at 15 ◦C/min.

4-(4-(2-Bromoethyl)phenoxy)-2,3,5,6-tetrafluoropyridine (1)

Cesium carbonate (9.87 g, 30.3 mmol), pentafluoropyridine (5.0 g, 30.3 mmol), and 4-(2-
bromoethyl)phenol (5.50 g, 27.3 mmol) were combined in acetonitrile (50 mL) and allowed
to stir for 48 h at room temperature. The reaction was monitored via 19F NMR or GCMS until
100% conversion of the desired product was observed. The solution was vacuum filtered to
remove carbonate salts and washed with diethyl ether (100 mL). The filtrate was combined
with saturated ammonium chloride (100 mL), and the aqueous layer was extracted with
diethyl ether (2 × 50 mL). The combined organic fractions were washed with saturated
brine (1 × 100 mL), dried with magnesium sulfate, vacuum filtered, concentrated using
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rotary evaporation, and dried under high vacuum, affording a white, waxy crude solid
(10.2 g, 96%). Column chromatography (99:1 Hex/EtOAc, v/v) of the crude solid afforded
the pure titled compound as a light yellow oil (8.0 g, 75%). Rf 0.45 (99:1 Hex:EtOAc). 1H
NMR (CDCl3, 500 MHz) δ 7.25–7.21 (m, JAB = 8.50 Hz, 2H), 7.01-7.00 (m, JAB = 8.50 Hz, 2H),
3.55 (t, J = 5.0 Hz, 2H), 3.16 (t, J = 5.0 Hz, 2H); 13C{1H} NMR (126 MHz) δ 154.8, 144.6 (m,
Cipso), 144.3 (dm, J = 244 Hz), 136.3 (dm, J = 245 Hz), 135.9, 130.5, 116.9, 38.5, 32.8; 19F NMR
(CDCl3, 471 MHz) δ -88.4-(-88.5) (m, 4F), -154.1-(-154.2) (m, 4F); GC–EIMS (70 eV) m/z (%
relative intensity) 351, 349 ([M]+, 40, 38), 270 (35), 256 (100), 138 (25), 91 (30), and 77 (25).

Supplementary Materials: The following supporting information is available online. 1H, 19F,
13C NMR spectra and GC-MS for 1 (Figures S1–S4).
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