(Z)-3-(dicyanomethylene)-4-((5-fluoro-3,3-dimethyl-1-(3-phenylpropyl)-3H-indol-1-ium-2-yl) methylene)-2-(((E)-5-fluoro-3,3-dimethyl-1-(3-phenylpropyl) indolin-2-ylidene) methyl) cyclobut-1-en-1-olate

Stefanie Casa ${ }^{1}$, Guliz Ersoy Ozmen ${ }^{1}$ and Maged Henary ${ }^{1,2}$ *
${ }^{1}$ Department of Chemistry, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA, 30303, USA
${ }^{2}$ Center for Diagnostics and Therapeutics, Petit Science Center, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA, 30303, USA

* Correspondence: mhenary1 @gsu.edu

Table of Contents
Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of Compound 5.
Figure S2. ${ }^{19}$ F NMR spectrum of Compound 5.
Figure S3. ${ }^{13} \mathrm{C}$ NMR spectrum of Compound 5 .
Figure S4. HRMS of Compound 5.
Figure S5. Structure of SQ
Figure S6. Absorbance of dye 5 in ethanol with increasing concentration (left) and molar extinction coefficient of dye 5 in ethanol (right).

Figure S7. Absorbance of dye 5 in acetonitrile with increasing concentration (left) and molar extinction coefficient of dye 5 in acetonitrile (right).

Figure S8. Absorbance of dye 5 in dimethyl sulfoxide with increasing concentration (left) and molar extinction coefficient of dye $\mathbf{5}$ in dimethyl sulfoxide (right).

Figure S9. Absorbance of dye 5 in toluene with increasing concentration (left) and molar extinction coefficient of dye 5 in toluene (right).

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of Compound 5

Figure S2. ${ }^{19}$ F NMR spectrum of Compound 5

Figure S3. ${ }^{13} \mathrm{C}$ NMR spectrum of Compound 5

Figure S4. HRMS of Compound $\mathbf{5}$

SQ
Figure S5. Structure of SQ

Figure S6. Absorbance of dye 5 in ethanol with increasing concentration (left) and molar extinction coefficient of dye 5 in ethanol (right).

Figure S7. Absorbance of dye 5 in acetonitrile with increasing concentration (left) and molar extinction coefficient of dye $\mathbf{5}$ in acetonitrile (right).

Figure S8. Absorbance of dye 5 in dimethyl sulfoxide with increasing concentration (left) and molar extinction coefficient of dye $\mathbf{5}$ in dimethyl sulfoxide (right).

Figure S9. Absorbance of dye 5 in toluene with increasing concentration (left) and molar extinction coefficient of dye 5 in toluene (right).

Quantum Yield Calculations

The fluorescence quantum yield of the dye was calculated using Equation 1. R is the reference, which is Rhodamine 800 , S refers to the sample. Φ shows the quantum yield, A is the absorbance at the excitation wavelength, F is the area under the fluorescence intensity curve and n shows the refractive index of the solvent. The area of fluorescence intensity curve was calculated using Origin Lab Pro 8.5. The 1 mM dye and reference stock solutions were prepared in DMSO.
$\Phi_{\mathrm{S}}=\Phi_{\mathrm{R}} * \frac{A_{R}}{A_{S}} * \frac{F_{S}}{F_{R}} *\left(\frac{n_{S}^{2}}{n_{R}^{2}}\right)$

