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(1.1 equiv) in the presence of K2CO3 (1 equiv) gave (E)-4-oxo-3,4-dihydroquinazoline-2-carbaldehyde
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1. Introduction

Quinazolines are important aromatic N-heterocycles that have wide pharmaceutical
applications. Among the 6-membered aromatic nitrogen-containing heterocycles, quina-
zolines rank 3rd in the most frequently used U.S. FDA-approved drugs [1]. Examples of
quinazoline-containing drugs are the anticancer drug erlotinib and the antihypertensive
prazosin (Figure 1). The chemistry and applications of quinazolines have been reviewed [2].
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1. Introduction 
Quinazolines are important aromatic N-heterocycles that have wide pharmaceutical 

applications. Among the 6-membered aromatic nitrogen-containing heterocycles, 
quinazolines rank 3rd in the most frequently used U.S. FDA-approved drugs [1]. 
Examples of quinazoline-containing drugs are the anticancer drug erlotinib and the 
antihypertensive prazosin (Figure 1). The chemistry and applications of quinazolines 
have been reviewed [2]. 
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Figure 1. Quinazolines in drugs. 

2. Results and Discussion 
Our interest in quinazolines began with 3′,5′-dichloro-1H-spiro(quinazoline-2,4′-

[1,2,6]thiadiazin)-4(3H)-ones 1 that can be synthesized in 3 steps starting from 
tetrachlorothiadiazine 2 [3] (Scheme 1). Interestingly, spirocycle 1a (R = H) can also be 
decomposed to 4-oxo-3,4-dihydroquinazoline-2-carbonitrile (3) [4] (Scheme 1). More 
recently, while investigating the stability of 4-chlorobenzo[e][1,2,6]thiadiazino[3,4-
b][1,4]diazepin-10(11H)-one (4), we found that upon heating in MeOH/AcOH (90:10), it 
was converted in 92% yield to the isomeric 2-(4-chloro-1,2,5-thiadiazol-3-yl)quinazolin-
4(3H)-one (5) [5] (Scheme 1). We attributed this transformation to an acid-catalyzed 
nucleophilic addition to the thiadiazine 4 followed subsequent Wagner–Meerwein shifts 
leading to the observed ring contractions [5]. 
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Figure 1. Quinazolines in drugs.

2. Results and Discussion

Our interest in quinazolines began with 3′,5′-dichloro-1H-spiro(quinazoline-2,4′-[1,2,6]
thiadiazin)-4(3H)-ones 1 that can be synthesized in 3 steps starting from tetrachlorothia-
diazine 2 [3] (Scheme 1). Interestingly, spirocycle 1a (R = H) can also be decomposed to
4-oxo-3,4-dihydroquinazoline-2-carbonitrile (3) [4] (Scheme 1). More recently, while inves-
tigating the stability of 4-chlorobenzo[e][1,2,6]thiadiazino[3,4-b][1,4]diazepin-10(11H)-one
(4), we found that upon heating in MeOH/AcOH (90:10), it was converted in 92% yield
to the isomeric 2-(4-chloro-1,2,5-thiadiazol-3-yl)quinazolin-4(3H)-one (5) [5] (Scheme 1). We
attributed this transformation to an acid-catalyzed nucleophilic addition to the thiadiazine 4
followed subsequent Wagner–Meerwein shifts leading to the observed ring contractions [5].

We were interested in developing an independent synthesis for thiadiazole 5 to inves-
tigate its chemistry. The proposed independent synthesis started from 2-aminobenzamide
6, which can be converted to quinazolinone-2-carbaldehyde 7 in two steps with 51% overall
yield [6] (Scheme 2). The conversion of aldehyde 7 into oxime 8, followed by the addition
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of cyanide should give hydroxylamine 9 [7]. The subsequent reduction to aminoacetonitrile
10 [8] followed by reaction with S2Cl2 was expected to give the desired thiadiazole 5 [9].
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Scheme 2. Proposed synthesis for thiadiazole 5.

The reaction of quinazolinone-2-carbaldehyde 7 with hydroxylamine hydrochloride
(1.1 equiv), in the presence of K2CO3 (1 equiv), in EtOH, at ca. 60 ◦C led after 3 h to
complete consumption of the starting aldehyde and on work-up isolation of oxime 8 in
58% yield (Scheme 3).

Product 8 was isolated as colorless needles, mp 237–238 ◦C (from EtOH/H2O). FTIR
spectroscopy showed an oxime ν(O-H) stretch at 3280 cm−1 along with an amide ν(N-H)
stretch at 3173 cm−1, an oxime ν(C-H) stretch at 2876 cm−1 and a broad ν(C=O) stretch at
1678 cm−1. Meanwhile, mass spectrometry revealed a molecular ion (MH+) peak of m/z 190,
agreeing with the addition of NH2OH and loss of H2O from the starting aldehyde 7. 13C
NMR spectroscopy showed the presence of five CH resonances and four quaternary carbon
resonances (see Supplementary Materials for the complete spectra). At the same time, a correct
elemental analysis (CHN) was obtained for the molecular formula C9H7N3O2, agreeing with
the structure shown above. Structural support was also provided by single-crystal X-ray
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diffraction studies (Figure 2). To the best of our knowledge, compound 8 has not been reported
in the literature and could have many potential uses. Importantly, the structurally similar
isomer quinoxalin-2(1H)-one-3-carbaldoxime (11) (Scheme 3) has been used as a scaffold for
the preparation of benzimidazoles [10]. At the same time, other analogs were investigated as
neurologically active compounds for the treatment of Alzheimer’s disease [11] or as ligands
to ruthenium and osmium complexes with anticancer properties [12].
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Figure 2. Geometry of (E)-4-oxo-3,4-dihydroquinazoline-2-carbaldehyde oxime (8) in the crystal;
crystallographic atom numbering. Thermal ellipsoids at 50% probability.

X-ray crystallography indicated that quinazoline 8 is planar in the crystalline state
and forms sheets (intersheet distance is 4.03 Å) of off-set dimers held together by hydrogen
bond interactions [d(O-H . . . O) ~2.60 Å, Θ(O-H . . . O) 173.41◦] (Figure 3). Notable intramolec-
ular bond lengths include the C7-O1 and N2-C8 bond lengths typical of double bonds;
d(C7=O1) = 1.23 Å and d(C8=N2) = 1.29 Å, respectively.

After the synthesis of oxime 8, the addition of cyanide was attempted, but unfortu-
nately, no reaction occurred with KCN (10 equiv), in dry DMF at ca. 20 ◦C for 2 d, as well
as, with 18-crown-6 (1 equiv) at ca. 100 ◦C for 3 d. This reaction will be further investigated
in the future.
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3. Materials and Methods

The reaction mixture was monitored by TLC using commercial glass-backed thin layer
chromatography (TLC) plates (Merck Kieselgel 60 F254, Darmstadt, Germany). The plates
were observed under UV light at 254 and 365 nm. The melting point was determined
using a PolyTherm-A, Wagner & Munz, Kofler–Hotstage Microscope apparatus (Wagner
& Munz, Munich, Germany). The solvent used for recrystallization is indicated after the
melting point. The UV-vis spectrum was obtained using a Perkin-Elmer Lambda-25 UV-vis
spectrophotometer (Perkin-Elmer, Waltham, MA, USA) and inflections are identified by
the abbreviation “inf”. The IR spectrum was recorded on a Shimadzu FTIR-NIR Prestige-21
spectrometer (Shimadzu, Kyoto, Japan) with Pike Miracle Ge ATR accessory (Pike Miracle,
Madison, WI, USA), and strong, medium, and weak peaks were represented by s, m, and
w, respectively. 1H and 13C NMR spectra were recorded on a Bruker Avance 500 machine
[at 500 and 125 MHz, respectively, (Bruker, Billerica, MA, USA)]. Deuterated solvents were
used for homonuclear lock, and the signals are referenced to the deuterated solvent peaks.
Attached proton test (APT) NMR studies were used to assign the 13C peaks as CH3, CH2,
CH, and Cq (quaternary). The Matrix-Assisted Laser Desorption/Ionization-Time Of Flight
(MALDI-TOF) mass spectrum (+ve mode) was recorded on a Bruker Autoflex III Smart-
beam instrument (Bruker). The elemental analysis was run by the London Metropolitan
University Elemental Analysis Service. 4-Oxo-3,4-dihydroquinazoline-2-carbaldehyde (7)
was prepared according to the literature procedure [6].

(E)-4-Oxo-3,4-dihydroquinazoline-2-carbaldehyde oxime (8). To a stirred mixture of 4-oxo-
3,4-dihydroquinazoline-2-carbaldehyde (7) (87 mg, 0.50 mmol) in EtOH (2 mL) at ca. 20 ◦C
was added NH2OH·HCl (38 mg, 0.55 mmol) followed by K2CO3 (69 mg, 0.50 mmol) and
the mixture was then warmed to ca. 60 ◦C and stirred at this temperature until complete
consumption of the starting material (TLC, 3 h). The mixture was then cooled to ca. 20 ◦C
and then H2O (5 mL) was added. The red precipitate formed was filtered, washed with H2O
(5 mL) and dried in vacuo to give the title compound 8 (55 mg, 58%) as colorless needles, mp
237–238 ◦C (from EtOH/H2O); Rf 0.25 (DCM/t-BuOMe 90:10); (found: C, 57.21; H, 3.69; N,
22.21. C9H7N3O2 requires C, 57.14; H, 3.73; N, 22.21%); λmax(THF)/nm 306 inf (log ε 3.98), 316
(4.04), 346 (3.80), 364 inf (3,50); vmax/cm−1 3281 w (O-H), 3173 w (N-H), 3065 w and 3003 w
(C-H arom), 2876 w and 2799 w (oxime C-H), 1678 s (C=O), 1599 m, 1564 w, 1510 w, 1470 m,
1344 m, 1275 w, 1260 w, 1142 w, 1038 m, 1020 m, 1003 m, 922 w, 878 m, 808 m, 781 m, 748 m,
733 m; δH(500 MHz; DMSO-d6) 12.43 (1H, br. s, OH), 12.01 (1H, br. s, NH), 8.13 (1H, d, J = 7.6,
Ar CH), 7.87 (1H, s, NCH), 7.83 (1H, dd, J = 7.4, 7.4, Ar CH), 7.69 (1H, d, J = 8.2, Ar CH),
7.54 (1H, dd, J = 7.4, 7.4, Ar CH); δC(125 MHz; DMSO-d6) 160.9 (Cq), 148.2 (Cq), 148.1 (Cq),
143.4 (CH), 134.7 (CH), 127.4 (CH), 127.3 (CH), 126.0 (CH), 122.0 (Cq); m/z (MALDI-TOF) 228
(M + K+, 100%), 212 (M + Na+, 82), 190 (MH+, 93), 113 (35).
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X-ray crystallographic studies on (E)-4-oxo-3,4-dihydroquinazoline-2-carbaldehyde oxime
(8). Data were collected on an Oxford-Diffraction Supernova diffractometer, equipped
with a CCD area detector utilizing Cu-Kα radiation (λ = 1.5418 Å). A suitable crystal was
attached to glass fibers using paratone-N oil and transferred to a goniostat, where they
were cooled for data collection. Unit cell dimensions were determined and refined using
6738 (4.485◦ ≤ θ ≤ 77.063◦) reflections. Empirical absorption corrections (multi-scan based
on symmetry-related measurements) were applied using CrysAlis RED software.17 The
structures were solved by direct method and refined on F2 using full-matrix least-squares
using SHELXL97.18 Software packages used: CrysAlis CCD17 for data collection, CrysAlis
RED17 for cell refinement and data reduction, WINGX for geometric calculations,19 and
DIAMOND20 for molecular graphics. The non-H atoms were treated anisotropically. The
hydrogen atoms were placed in calculated, ideal positions and refined as riding on their
respective carbon atoms.

Crystal refinement data for (E)-4-oxo-3,4-dihydroquinazoline-2-carbaldehyde oxime (8): iso-
lated as colorless needles (from EtOH/H2O vapor diffusion), C9H7N3O2, M = 189.18,
Monoclinic, space group P21/c, a = 10.0944(12) Å, b = 9.8586(8) Å, c = 9.2424(10) Å, α = 90◦,
β = 11.696 (13)◦, γ = 90◦, V = 854.61(17) Å3, Z = 4, T = 100(2) K, ρcalcd = 0.908 g·cm−3,
θmax = 77.063◦. Refinement of 128 parameters on 1780 independent reflections out of
6738 measured reflections (Rint = 0.0789) led to R1 = 0.1182 [I > 2σ(I)], wR2 = 0.3004 (all
data), and S = 1.087 with the largest difference peak and hole of 0.581 and −0.326 e·Å−3,
respectively. (CCDC: 2083591).

Supplementary Materials: Supplementary materials are available online. Mol file, 1H and 13C NMR
spectra, and IR spectrum.
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