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Abstract: While organophosphorus chemistry is gaining attention in a variety of fields, the synthe-
sis of the phosphorus derivatives of amino acids remains a challenging task. Previously reported
methods require the deprotonation of the nucleophile, complex reagents or hydrolysis of the phos-
phonate ester. In this paper, we demonstrate how to avoid these issues by employing phosphony-
laminium salts for the synthesis of novel mixed n-alkylphosphonate diesters or amino acid-derived
n-alkylphosphonamidates. We successfully applied this methodology for the synthesis of novel
N-acyl homoserine lactone analogues with varying alkyl chains and ester groups in the phosphorus
moiety. Finally, we developed a rapid, quantitative and high-throughput bioassay to screen a selection
of these compounds for their herbicidal activity. Together, these results will aid future research in
phosphorus chemistry, agrochemistry and the synthesis of bioactive targets.

Keywords: phosphorus chemistry; phosphonamidates; amino acids; AHLs; herbicides

1. Introduction

The synthesis of phosphorus derivatives comprising amino acid moieties in targeted
bioactive molecules can be a challenging task. In the case of Staudinger-phosphonite syn-
thesis, the necessary phosphonite and/or azide reagents need to be synthesized in advance,
which comes with inherent safety risks and/or synthetic difficulties. Alternatives, such as
the Atherton–Todd reaction, usually share these disadvantages [1]. Therefore, examples
of the synthesis of amino acid-based phosphonamidates in the literature are mostly based
on the so-called ‘classical’ approach, consisting of the monochlorination of a phosphonate
ester, which is available through a Michaelis–Arbuzov reaction or Hirao coupling, followed
by substitution with the desired nucleophile. To achieve the monochlorination of the
phosphorus centre, almost all reports first convert the symmetrical diester to the monoester,
which is then chlorinated and substituted with the desired moiety (Scheme 1A) [2–7]
or coupled with the target amino acid by the use of more complex coupling reagents
(Scheme 1B) [8–12]. The only exception in terms of the use of amino acids is a procedure
reported by the Maulide group, which achieves this transformation directly from diethyl
phosphonates. However, this method requires the deprotonation of the used nucleophiles
and is only demonstrated on N-tosyl or secondary amino acid esters (Scheme 1C) [13].
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Scheme 1. The scheme shows an overview of the published methodologies for the synthesis of 
amino acid-based phosphonamidates. These moieties can be synthesized via (A) the classical ap-
proach [2–7], (B) a direct coupling method [8–12], (C) triflic anhydride activation [13] or our meth-
odology [14]. 

In a recent paper [14], we have demonstrated the use of phosphonylaminium salts for 
the synthesis of phosphonamidates without the need for harsh or expensive reagents while 
still ensuring that the protocol remains widely applicable. In this paper, we expand the ap-
plication scope of these salts to reactions with phenols and amino acids, leading to a series 
of mixed n-alkylphosphonate diesters or n-alkylphosphonamidates, respectively (Scheme 
1d, only shown for phosphonamidates). To the best of our knowledge, this is the first report 
of amino acid-based n-alkylphosphonamidates being directly synthesized from symmet-
rical phosphonate diesters without deprotonation of the targeted nucleophiles. 

To demonstrate the potential of our methodology, we synthesized a library of phos-
phonamidate analogues of N-acyl homoserine lactones (AHLs) that had not been described 
in the literature before. These novel compounds may prove useful for the study of quorum 
sensing activation and inhibition. We were also intrigued by a patent describing n-al-
kylphosphonamidates as possible herbicides [15]. This patent describes the synthesis of a 
variety of n-alkylphosphonamidates, mainly based on dialkylamines, of which several–par-
ticularly di-n-propylamine derivatives–show significant herbicidal activity. 

We wanted to use our library of phosphonamidates to further explore this herbicidal 
effect by testing the influence of different residues on this bioactivity. In order to under-
take this rapidly, quantitatively and with minimal amounts of compound (to reduce the 
environmental impact of our experiments), a high-throughput bioassay based on chloro-
phyll fluorescence as a proxy for plant health in tomato (Solanum lycopersicum L.) leaf disks 
was developed. We used this bioassay to evaluate the herbicidal properties of the obtained 
compounds. A wide range of activity levels was observed, which confirms the utility of 
these functionalized phosphonamidates and provides a promising foundation for con-
ducting more comprehensive structure–activity relationship studies. 

Scheme 1. The scheme shows an overview of the published methodologies for the synthesis of amino
acid-based phosphonamidates. These moieties can be synthesized via (A) the classical approach [2–7],
(B) a direct coupling method [8–12], (C) triflic anhydride activation [13] or (D) our methodology [14].

In a recent paper [14], we have demonstrated the use of phosphonylaminium salts
for the synthesis of phosphonamidates without the need for harsh or expensive reagents
while still ensuring that the protocol remains widely applicable. In this paper, we expand
the application scope of these salts to reactions with phenols and amino acids, leading to
a series of mixed n-alkylphosphonate diesters or n-alkylphosphonamidates, respectively
(Scheme 1D, only shown for phosphonamidates). To the best of our knowledge, this is the
first report of amino acid-based n-alkylphosphonamidates being directly synthesized from
symmetrical phosphonate diesters without deprotonation of the targeted nucleophiles.

To demonstrate the potential of our methodology, we synthesized a library of phos-
phonamidate analogues of N-acyl homoserine lactones (AHLs) that had not been described
in the literature before. These novel compounds may prove useful for the study of quo-
rum sensing activation and inhibition. We were also intrigued by a patent describing
n-alkylphosphonamidates as possible herbicides [15]. This patent describes the synthe-
sis of a variety of n-alkylphosphonamidates, mainly based on dialkylamines, of which
several–particularly di-n-propylamine derivatives–show significant herbicidal activity.

We wanted to use our library of phosphonamidates to further explore this herbicidal
effect by testing the influence of different residues on this bioactivity. In order to undertake
this rapidly, quantitatively and with minimal amounts of compound (to reduce the envi-
ronmental impact of our experiments), a high-throughput bioassay based on chlorophyll
fluorescence as a proxy for plant health in tomato (Solanum lycopersicum L.) leaf disks was
developed. We used this bioassay to evaluate the herbicidal properties of the obtained com-
pounds. A wide range of activity levels was observed, which confirms the utility of these
functionalized phosphonamidates and provides a promising foundation for conducting
more comprehensive structure–activity relationship studies.
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2. Results and Discussion
2.1. Synthesis of Novel Phosphonyl Moieties

Recently, we described the use of phosphonylaminium salts as phosphonylating
agents with good results in combination with amines and anilines [14]. An interesting
expansion of this work would be in the direction of phenols and toward the formation of
mixed n-alkylphosphonate diesters. The inclusion of arylesters (e.g., in the well-known
tenofovir alafenamide) on a phosphorus moiety rarely happens directly [16], as phenolic
phosphonate esters cannot be chlorinated with oxalyl chloride-type chlorinations nor can
these arylesters be included via the Michaelis–Arbuzov reaction [17]. Therefore, expanding
our reactivity to phenolic substrates would be very complimentary to our method.

In contrast to the phosphonylation of anilines, which could only be achieved at higher
temperatures, phenol could be coupled at room temperature with both diethyl pentylphos-
phonate 1a and diethyl undecylphosphonate 1b, yielding the desired mixed phosphonate
diesters 2a and 2b in 74% yield (Scheme 2). Interestingly, a chemoselectivity test on tyrosol
showed almost exclusive phosphonylation of the phenolic OH, and the corresponding
product 2c could be isolated with a 72% yield. Electron donating or withdrawing groups
on the phenolic substrate were tolerated, with products 2d and 2e being isolated in 65%
and 61% yield, respectively. Lastly, a similar reaction with thiophenol afforded the target
phosphonothioate 3 in a final yield of 63%. Applying this method for the synthesis of ethyl
phenyl pentylphosphonate 2a on a tenfold larger scale of 36.8 mmol led to the isolation of
5.2 g (55%) of phosphonate 2a, indicating that our method can also be scaled up for the
synthesis of larger amounts of products.
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desired product 2f could be isolated in a 68% yield, whereas the reaction with phenethyl 
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3). Since this last product required two chromatographic separations and a large excess of 
target alcohol, we decided not to further investigate the use of alcohols as substrates. 

Scheme 2. The scheme shows the synthesis of mixed phosphonate diesters (2a–2e and 3) with various
phenols, starting from symmetrical diethyl n-alkylphosphonates 1. * Reaction performed at 36.8 mmol
scale, instead of 3.7 mmol. ** Synthesis performed with 2.64 equiv. oxalyl chloride.

As exemplified by the experiment with tyrosol, extending this phosphonylation
methodology to alcoholic nucleophiles is not straightforward. A five-fold increase in
the desired alcohol was necessary to mitigate competitive hydrolysis reactions. For benzyl
alcohol, the desired product 2f could be isolated in a 68% yield, whereas the reaction with
phenethyl alcohol took much longer to complete and only yielded product 2g in a 34%
yield (Scheme 3). Since this last product required two chromatographic separations and
a large excess of target alcohol, we decided not to further investigate the use of alcohols
as substrates.
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Scheme 3. The scheme shows the synthesis of mixed phosphonate diesters 2f–2g, starting from
symmetrical diethyl pentylphosphonate 1a.

To enable similar transformations toward novel amino acid-based n-alkylphosphonami
dates, a slight adaptation of the aforementioned procedure is necessary. Free amino acids
are virtually insoluble in organic solvents, so we opted to use the widely available methyl
ester hydrochlorides instead. As such, these hydrochloride salts are not much better in
terms of solubility, but after neutralization with an organic base, such as triethylamine, the
free amino ester readily dissolves. These amino esters are either commercially available or
they can be synthesized from the native amino acid via a simple one-pot reaction in the
desired alcoholic solvent [18]. Starting with the simplest amino acid derivative, glycine
methyl ester was swiftly converted to the corresponding products 4a and 4b in 75% and
76% yields, respectively (Scheme 4A). Secondary amino acid derivatives and different
ester groups on the phosphonate starting product were also tolerated with final yields
of 75% (4c) and 55% (4d), respectively. Similar reactions with L-aspartic dimethyl ester
and methyl azetidine-3-carboxylate also led to the isolation of the corresponding products
(4e and 4f, respectively) in moderate to good yields. Selectivity experiments on L-serine
and L-tyrosine methyl ester revealed an almost exclusive reaction of the amino group,
with the final products being isolated in 59% (4g) and 61% (4h) yields, respectively. Lastly,
the L-thiaproline methyl ester was also evaluated, but the final reaction mixture was too
complex for the target product 4i to be purified (Scheme 4B).

Trying to summarize the work in this paper as well as the work from our previous
paper [14], parallels can be drawn to the work of Mayr on the nucleophilicity parameters
of organic compounds. In the same solvent, the difference in nucleophilicity between
triethylamine (nucleophilicity parameter: 17.30 in CH2Cl2) and pyridine (nucleophilicity
parameter: 12.9 in CH2Cl2) is almost five units. This makes it more understandable that
triethylamine would play the role of a reaction mediator, whereas pyridine will likely act
more as a base and thus fails to yield similar results to phosphonylaminium salts [19,20].
The fact that the choice of modulator makes a great difference is further supported by a
comparative formation of glycine methyl ester phosphonamidate 4b with either triethy-
lamine or pyridine (Scheme 5). These data show that switching from triethylamine to
pyridine drops the conversion to product 4b entirely.

Secondly, as our transformations on amines, anilines and amino acid esters all proceed
nicely, it is not surprising that these compounds have similar nucleophilicity parameters
(13.77 for tert-butylamine, 15.7 for morpholine, 12.64 for aniline, and 14.75 for proline
methyl ester, all in acetonitrile) [20–22]. In comparison, only a few alcohols were evaluated
in the study conducted by Mishima and coworkers, albeit simple and different from those
used in this study. Even then, these alcohols yield significantly lower values than the
other discussed nucleophiles (nucleophilicity parameters: 7.13 for ethanol and 6.82 for
isopropanol, both in acetonitrile), thus explaining why a larger excess of the nucleophilic
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alcohol is needed to ensure the formation of the target product [23]. The only group of
nucleophiles missing from this library are phenols, which have not been studied so far.
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2.2. Application for the Synthesis of N-acyl Homoserine Lactone Analogues

As an illustration of potentially bioactive target compounds that can be accessed with
this methodology and because of previous research of our group in the field of quorum
sensing signalling molecules [24], these conditions were applied to the synthesis of a library
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of N-acyl homoserine lactone (AHL) analogues. Several AHL analogues with amide bond
bioisosteres had already been described in the literature, such as sulfonamides [25], ureas [26],
sulfonylureas [27], hydrazines [28] and even inverted amides [29]. However, corresponding
phosphonamidates have not been reported previously. Therefore, different alkyl chains were
targeted, accounting for the fact that the phosphorus moiety acts as a bio-isostere for the
carbonyl moiety in the natural AHLs (5, Figure 1). Similarly, we wanted to include different
phosphonester groups, expanding our scope from the ethyl and isopropyl esters (6 and 7,
respectively) toward the less obvious methyl and phenyl esters (8 and 9).
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Figure 1. The figure shows an overview with naturally occurring N-acyl homoserine lactones 5 and
the target phosphonamidate AHL analogues 6–9.

The most straightforward analogues are those that can be synthesized via our method
directly from diethyl or diisopropyl alkylphosphonates. These dialkyl n-alkylphosphonates
need to be synthesized via the Michaelis–Arbuzov reaction from the corresponding alkyl
halides (for details, see the Supplementary Materials). L-homoserine lactone hydrobromide,
in turn, was prepared from L-methionine and bromoacetic acid via a modified version of
a procedure presented in the literature [30]. The corresponding phosphonamidates with
pentyl, heptyl, nonyl and undecyl chains and an ethyl ester group (Scheme 6, 6a to 6d)
were isolated with variable yields, mainly due to the chromatographic purifications of the
products. For the isopropyl analogues, we selected the shortest and longest chain lengths,
with the yields showing a similar trend (7a and 7b).
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Scheme 6. The scheme shows the synthesis of the targeted phosphonamidate AHL analogues (6 and
7) via the procedure in this paper.

Due to their higher reactivity, the preparation of the corresponding methyl phosphon-
esters typically proves more challenging. This was already observed in the synthesis of the
desired dimethyl n-alkylphosphonates, which had to be synthesized via a Michaelis–Becker
reaction since no pure product could be obtained via the equivalent Michaelis–Arbuzov
reaction (11a and 11b, Scheme 7A). Continuing these observations, the reaction mixture
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had to be cooled down for the chlorination step to avoid side products in the process. This
way, both novel targeted products 8a and 8b could be prepared in 15% and 41% yield,
respectively (Scheme 7B). However, as reflected in the final yield, the chromatographic
purification of product 8a was not straightforward and led to the loss of product.
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Scheme 7. The scheme shows the (A) synthesis of the dimethyl n-alkylphosphonates 11 via the
Michaelis-Becker reaction. (B) Synthesis of the targeted phosphonamidate AHL analogues 8 via a
slightly adapted version of our procedure.

The analogues with phenyl ester moieties proved to be the most difficult since the
phenyl ester usually needs to be introduced separately. This is the case because a hypo-
thetical diphenyl n-alkylphosphonate can be made but cannot be chlorinated directly by
oxalyl chloride or similar reagents. As in the mechanism, similar to the mechanism of the
Michaelis–Arbuzov reaction, the chloride anion must be able to restore the P-O double
bond by the elimination of the residual alkyl group, which is not possible with aryl residues.
Therefore, we chose to start with mixed phosphonate 2a (see above in Scheme 1). An
attempt at direct chlorination of the ethoxy moiety of this mixed phosphonate proved to
be slow, taking nine days for complete conversion, and the purity of this resulting chlo-
ridate 12 was insufficient to attempt the phosphonamidate coupling to target product 9a
(Scheme 8A). To ensure swift chlorination, we opted for a McKenna dealkylation of sub-
strates 2a and 2b, which readily yielded the desired phosphonic acids 13a and 13b. These
phosphonic acids were then directly used for the phosphonamidate coupling, yielding
products 9a and 9b in yields of 24% and 33%, respectively, over two steps (Scheme 8B).

2.3. Application for the Use of Phosphoryl Chlorides

Similar to our previous work, we also wanted to extend our methodology to com-
mercially available phosphoryl chlorides [14]. However, to our surprise, symmetric
N-phosphorylated glycine or proline methyl esters have not yet been described in the
literature. Nevertheless, N-phosphorylations of amino acid residues in the literature
have been reported in mediocre to good yields [31–34]. These novel products can be
accessed from commercially available diethyl phosphorochloridate 14a, with the corre-
sponding N-phosphonylated glycine methyl ester (15a, 95% yield), L-homoserine lactone
(15b, 89% yield) and L-proline methyl ester (15c, 88% yield) being isolated in excellent
yields (Scheme 9A). A similar reaction with diphenyl phosphorochloridate 14b also pro-
ceeded nicely (15d, 91%). Finally, a comparable experiment with glycine as free acid did
not yield any detectable target product (15e, Scheme 9B).
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2.4. Screening for Herbicidal Activity

Based on the aforementioned patent [15], we wanted to test a selection of compounds
to evaluate and expand on those results. As derivatives of di-n-propylamine showed the
best activity, we used the procedure from our previous paper to synthesize N,N-dipropyl-
phosphonamidates 4j and 4k in 62% and 51% yield, respectively (Scheme 10). In addition to
these compounds, the isopropylamine and morpholine phosphonamidates (4l–4n, Figure 2)
from our previous work were evaluated to increase the diversity in amine groups [14].
Similarly, glycine and L-proline phosphonamidates 4a–4c (Scheme 4) were included as
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examples of amino acid-based products. Finally, the effect of the alkyl chain was also
explored with the synthesized AHL analogues 6 (Scheme 5).
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Figure 2. The figure shows an overview of the compounds selected for the herbicidal testing [14].

To enable rapid, quantitative herbicidal screening with small amounts of compound, a
multispectral imaging-based in vitro assay was implemented in which tomato leaf disks
in 96-well plates were exposed to the test compound by applying a 10 µL droplet at the
center of each disk and monitoring changes in chlorophyll fluorescence (Fv/Fm), a proxy
variable for the health of leaf tissue [35]. As a positive control, a high (10 mM) dose of the
potent photosystem II-inhibiting herbicide diuron (DCMU) was used. IC50 values were
determined by calculating the theoretical dose needed to achieve a 50% Fv/Fm reduction
induced by diuron (i.e., the Fv/Fm value corresponding to dead tissue). Similar approaches
have previously been used successfully to rapidly screen for resistance to existing herbicides
in natural weed populations [36].

As shown in Figure 3, a wide range of activity was observed in our library of test
compounds—ranging from no activity in 4a to IC50 after 72 h of around 7 mM for com-
pounds 4m, 6c and 6d. The amine moiety clearly plays a critical role in determining
herbicidal activity, with di-n-propylamine product 4j showing an amplified activity as
compared to the almost inactive 4l and 4n (IC50 after 72 h: >50 mM for both compounds)
to an IC50 value of 8.8 mM. Similar effects on bioactivity can be seen for the amino acid
moieties, where proline- and homoserine lactone-derived products 4c and 6a show de-
tectable activity, but glycine derivative 4a remains inactive or where AHL analogue 6d
shows an IC50 value of 6.7 mM, whereas the corresponding glycine phosphonamidate 4b
exhibits a much weaker activity with an IC50 value of 17.2 mM. There is a clear tendency for
longer phosphonyl side chains to significantly increase herbicidal activity (4a–4b, 4l–4m,
and 6a–6d), although 4j–4k were an exception to this pattern as their IC50 values do not
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differ significantly (p = 0.52). However, for these last compounds, it can be said that the
amine moiety is already very apolar, in contrast to the other tested amines or amino acid
derivatives. This trend can be observed most clearly in the series of AHL analogues 6,
where the activity increases with longer phosphonyl chain lengths, reaching the lowest
IC50 value in this study for 6d with an IC50 value of 6.7 mM.
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of the test compounds. Points with error bars show mean ± SEM, logistic regression curves superim-
posed in blue. The yellow dotted line is the residual Fv/Fm displayed by dead leaf disks, i.e., leaf
disks treated with a 10 mM diuron solution. IC50 values are the theoretical compound concentration
required to achieve 50% of the Fv/Fm reduction caused by diuron; p-values indicate the significance
of the dose–effect relationship for each compound. No IC50 estimates were calculated where the
dose–response relationship was not significant (N.D.), and IC50 values greater than the highest tested
concentration were reported simply as ‘>50 mM’. N ≥ 4.

3. Materials and Methods

Full details on the equipment, reagents used, synthesis of the starting products and
characterisation data of the final compounds can be found in the Supplementary Materials.
The Supplementary Materials contain the following references that are not mentioned
elsewhere [37–47].

3.1. General Procedure for the Synthesis of Phosphorus-Containing Products 2, 3, 4, 6 and 7

Under a nitrogen atmosphere, oxalyl chloride (1.32–2.64 equiv., 4.9–9.7 mmol) was
added dropwise to a stirred solution of the corresponding phosphonate 1 (1 equiv., 3.7 mmol)
in 20 mL dry DCM. This solution was stirred for 16 h at room temperature, and the con-
version was monitored via 31P NMR. After the completion of the reaction, the solvent
was evaporated under reduced pressure to yield a crude mixture of phosphonochloridate.
Due to the instability of the compound, the crude compound was immediately used in
subsequent reactions.

The corresponding phosphonochloridate and triethylamine (1.1 equiv., 4.0 mmol) were
dissolved in 30 mL dry THF under a nitrogen atmosphere and stirred for 30 min at room
temperature, after which the reaction mixture was analysed using 31P NMR. The desired
phenol (1.1 equiv., 4.0 mmol), alcohol (5.5 equiv., 20.2 mmol), amine (1.5 equiv., 5.5 mmol)
or amino acid hydrochloride (1.5 equiv., 5.5 mmol and 1.6 equiv., 5.9 mmol extra Et3N)
was dissolved in 30 mL of dry ACN under nitrogen atmosphere while stirring at room
temperature. The solution containing the phosphonochloridate was added dropwise to
the solution of nucleophiles at room temperature and stirred for 1 h or until completion
(monitored with 31P NMR). Subsequently, the solids were removed via filtration after the
addition of 60 mL diethyl ether, and the solvent was evaporated under reduced pressure.
The remaining mixture was purified via normal phase automatic flash chromatography.

3.2. Chlorophyll Fluorescence (Fv/Fm) Measurement

Fv/Fm of leaf disks was measured using the PathoViewer multispectral imaging
system, as described in previous work [37,38], and images were processed using the
CropReporter software (v. 5.4.6-64b, PhenoVation). The herbicidal activity was assessed
by measuring Fv/Fm, the maximum quantum efficiency of photosystem II (PSII) [35].
This parameter is a reliable quantitative proxy for stress in leaf tissues due to its robust
correlation to the severity of biotic and abiotic stresses [35], including herbicide damage [36].
Fv/Fm was measured after a fifteen-minute dark adaptation period at 24, 48, 72 and 96 h
after treatment. In between treatments, leaf disks were incubated in a growth chamber
(21 ◦C, 14/10 h light/day, 120 µmol m−2 s−1 at canopy level).

3.3. Plant Materials and Chemical Treatments

Compounds were applied to tomato leaf disks (Solanum lycopersicum ‘Moneymaker’).
Tomato seeds were bought from Vreeken’s Zaden (Dordrecht, the Netherlands) and germi-
nated in standard potting soil (Structural Type 1, Snebbout) at 21 ◦C. After germination,
tomato seedlings were transplanted into individual 200 mL pots filled with the same pot-
ting substrate. All of the plants were kept at 21 ◦C with 16 h of full-spectrum LED light and
were fertilized with tomato fertilizer weekly (NPK 19-8-16 + 4MgO + ME, Haifa Chemicals,
1 g L−1) and watered as needed. Plants were grown until the five-leaf stage, after which
fully developed third or fourth leaves were detached and used to produce leaf disks with
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a 0.6 cm diameter cork bore. Leaf disks were placed in 96-well plates containing 200 µL
of sterile distilled water per well and were left at room temperature for six hours before
treatment to allow leaf disks to de-stress and adapt.

Chemical compounds were formulated by first preparing a concentrate consisting
of 60% active ingredient, 35% DMSO and 5% Tween 20 by mass and then diluting this
concentrate with distilled water to the desired concentration and vortexing until a homo-
geneous suspension was achieved. In all experiments, a formulation control consisting of
Tween 20 and DMSO at the highest concentration used in the experiment was included.
All experiments included 10 mM diuron (DCMU, Sigma-Aldrich, St. Louis, MO, USA)
formulated in the same manner as the test compounds as a positive control. A single 10 µL
droplet was placed in the center of each leaf disk. At least five disks, randomly sampled
from different plants, were used per treatment. After exposure, leaf disks were kept at
21 ◦C under ambient lighting conditions.

3.4. Statistical Analysis

Fv/Fm values were normalized by dividing them by the mean Fv/Fm of negative
control disks within the same experiment at the same time point. This has the effect of
rescaling Fv/Fm to the (0,1) interval and facilitating comparisons between experiments by
removing the minor batch-to-batch variation in mean Fv/Fm between experiments.

Dose–response curves based on normalized Fv/Fm were fitted using four-parameter
log-logistic models using the drm function in the R drc package (R v. 4.3.0.; drc v. 3.0-1) [48].
The lower asymptote was the mean value of the DCMU-treated controls, as we observed
that even fully bleached, wilted and/or necrotic leaf tissues retain an appreciable normal-
ized Fv/Fm. In our assays, even 1 mM DCMU led to rapid and systemic tissue death, so
the Fv/Fm value of leaf disks treated with a 10 mM dose provides a reliable baseline for
the residual Fv/Fm of dead tissue. The significance of the dose–response relationship was
determined by comparing the fitted logistic regression curve to a horizontal line using the
noEffect function. IC50 values ± SEM were then calculated using the ED function in the drc
package [48].

4. Conclusions

To summarize, a novel set of mixed n-alkylphosphonate diesters was synthesized
in good yields for a wide library of phenolic substrates. The same reaction conditions
were also adopted for a tenfold increase in scale. Extending this methodology to alcohols
proved more difficult, but benzyl and phenethyl alcohol could be included, nevertheless.
Subsequently, this paper marks one of the only instances in the literature where amino
acid-based n-alkylphosphonamidates can be synthesized directly from symmetrical phos-
phonate diesters without the need for the deprotonation of the nucleophile or complex
reagents. These transformations were demonstrated for a wide range of amino acid deriva-
tives, indicating a clear preference for N-phosphonylation over O-phosphonylation for
both alcoholic hydroxyl groups as well as phenolic hydroxyl groups.

This phosphonylation protocol was then utilized for the synthesis of N-acyl homoser-
ine lactone (AHL) analogues, where ethyl, isopropyl and methyl analogues with varying
n-alkyl chains were readily synthesized. The targeted phenyl ester AHL analogues needed
more care, requiring a McKenna dealkylation before ensuring the isolation of the targeted
AHL analogues. Commercial chlorophosphates were, in turn, used to expand the chem-
istry towards the N-phosphorylation of amino acid esters and showed very nice yields
for all substrates. Finally, we showcase a multispectral imaging-based assay for a rapid
screening of herbicidal activity with minimal product use that was demonstrated on a
selection of phosphonamidates from our work. Our results indicate that there is clearly
potential for discovering herbicidal candidates in this class of phosphonamidates and that
our methodology can facilitate future research in this direction.
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