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Abstract: IQGAP3 (IQ Motif Containing GTPase Activating Protein 3) is member of the IQGAP
family of scaffold proteins, which are essential for assembling multiprotein complexes that coordinate
various intracellular signaling pathways. Previous research has shown that IQGAP3 is overexpressed
in psoriatic skin lesions. Given its involvement in processes like cell proliferation and chemokine
signaling, we sought to explore its molecular role in driving the psoriatic phenotype of keratinocytes.
By conducting transcriptome profiling of HaCaT keratinocytes, we identified numerous psoriasis-
associated pathways that were affected when IQGAP3 was knocked down. These included alterations
in NFkB signaling, EGFR signaling, activation of p38/MAPK and ERK1/ERK2, lipid metabolism,
cytokine production, and the response to inflammatory cytokine stimulation. Real-time analysis
further revealed changes in cell growth dynamics, including proliferation and wound healing. The
balance between cell proliferation and apoptosis was altered, as were skin barrier functions and
the production of IL-6 and IFNγ. Despite these significant findings, the diversity of the alterations
observed in the knockdown cells led us to conclude that IQGAP3 may not be the best target for the
therapeutic inhibition to normalize the phenotype of keratinocytes in psoriasis.
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1. Introduction

Psoriasis is a common inflammatory skin condition involving complex interactions
between immune and skin cells. In psoriatic skin, abnormal proliferation of keratinocytes
and production of inflammatory cytokines attract activated lymphocytes, leading to the
development of characteristic hyperkeratotic lesions called psoriatic plaques. Keratinocytes
in plaques produce antimicrobial peptides, cytokines, and chemokines, which can promote
their own proliferation and attract additional immune cells. These cytokines, including IL-
17, IL-12, IL-22, IL-23, TNFα, and IFNγ, play a key role in the development and maintenance
of psoriatic plaques [1]. Over 80 psoriasis susceptibility loci have been identified, indicating
a complex genetic basis for the disease [2]. Understanding the inflammatory pathways
involved in psoriasis has led to the development of targeted therapies, such as monoclonal
antibodies and small molecules, which can inhibit specific immune cell activation or
inflammatory pathways. However, the varied response to treatment among patients
highlights the need for further investigation into these pathways for the development of
personalized treatment approaches [3].

In general, the main target classes of marketed drugs include G protein-coupled
receptors (GPCRs), ion channels, kinases and nuclear receptors [4]. Binding of a ligand to a
receptor initiates a cascade of reactions mediated by kinases and scaffold proteins, leading
to the activation of transcription factors and the expression of the effector target genes.
Many of the inflammatory pathways active in psoriasis and triggered by different ligands
are mediated by the same kinases or scaffold proteins. For instance, more than 50 cytokines
signal via the JAK/STAT pathway to orchestrate inflammation and control the immune
response [5] Targeting these key molecules connecting different molecular pathways may
offer potential therapeutic strategies to normalize the abnormal characteristics of psoriatic
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skin cells. Scaffold proteins, although less studied than kinases, seem to be promising
candidates for solving this issue. Scaffold proteins play crucial roles in coordinating
cellular signaling by facilitating the interactions between signaling proteins or regulating
their localization within a cell. In some cases, scaffold proteins can be directly regulated
themselves, influencing the activation or inhibition of signaling pathways. Altering the
activity of scaffold proteins through the changes in their conformation or localization as
well as using small interfering peptides have been shown to be a promising therapeutic
strategy in a number of studies [6].

The IQGAP family of scaffold proteins mediate various signaling pathways, includ-
ing EGFR and WNT pathways, CXCR2 and CXCR4 signaling, IFN and NFkB signaling,
the cascades of cytoskeletal organization, cell adhesion and migration [7,8] Most of the
aforementioned pathways play roles in the development of psoriatic plaques. Addition-
ally, a hallmark of psoriasis is hyperkeratosis arising due to the hyperproliferation of
keratinocytes, and different researchers have shown partial knockdown of IQGAP proteins
to decrease the growth and proliferation rates and migration capacity of various types of
cells—skin cells [9], liver cells [10], mammary gland cells [11], neurons [12] and other types.
Previously, we have found IQGAP3 to be the only member of this family overexpressed
in lesional psoriatic skin [13], and Monteleon and colleagues have found IQGAP3 to be a
promising target for skin cancer. This suggests that IQGAP3 knockdown in the skin can be
a promising strategy for correcting the excessive proliferation of keratinocytes in psoriasis.

This research aims to investigate the role of IQGAP3 in the development of the pso-
riatic phenotype in keratinocytes and to explore its potential as a therapeutic target for
psoriasis treatment.

2. Results
2.1. IQGAP3 Knockdown in Keratinocytes

To knock down IQGAP3 in keratinocytes, we developed a keratinocyte cell line called
HaCaT_sh by lentivirally transducing with an shRNA-coding vector, pEZ_Tet_pLKO_puro.
Initially, we tested several shRNAs from the literature via transient transfection to en-
sure they did not exhibit off-target activity. Through transient transfection experiments
(Figure S1 in the Supplementary File S1), we identified the most effective shRNA for
knockdown. Subsequently, we designed corresponding shRNA oligos, cloned into the
pEZ_Tet_pLKO_puro_sh vector, and generated lentiviral particles. These particles were
then used to transduce HaCaT keratinocytes, and stable clones were selected using
puromycin. The expression of the target gene was evaluated in these stable clones. In
comparison to control cells (HaCaT_ctrl), which were transduced with a scrambled shRNA
vector, IQGAP3-depleted cells showed only approximately 35% of the IQGAP3 mRNA level
(Figure 1a). Western blot analysis confirmed the knockdown (Figure 1b). Additionally,
considering the high homology between IQGAP1 and IQGAP3, we also examined the ex-
pression of IQGAP1. qPCR analysis indicated no significant change in IQGAP1 expression
in the knockdown cells (Figure 1a).

2.2. The Knockdown of IQGAP3 Significantly Alters the Growth Dynamics of Cells

To assess the impact of the knockdown on the proliferative characteristics and migra-
tory capacity of HaCaT keratinocytes, we employed a real-time evaluation system called
xCelligence by Agilent. This technology relies on measuring the electrical impedance
resulting from the interaction of a cell’s plasma membrane with a golden electrode at the
bottom of the well. Consequently, it enables the dynamic assessment of cell behavior in
response to various stimuli or physical influences.

Initially, we focused on evaluating the early stages of cell cultivation, including adhe-
sion, spreading, and proliferation. Our analysis over a 60-h period revealed that adhesion
and spreading (observed within the first 5 h, as depicted in Figure 2a) did not exhibit signif-
icant differences between the two cell lines. However, HaCaT_ctrl cells displayed notably
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faster proliferation and expansion across the culture surface compared to HaCaT_sh cells
during the initial stages of culture (Figure 2a).

 

 

 

(a) (b) 

Figure 1. (a) qPCR evaluation of the expression levels of IQGAP3 and IQGAP1 in HaCaT_sh vs. 
HaCaT_ctrl, (n = 3, mean ± S.D.); (b) Western blot evaluation of the expression levels of IQGAP3 in 
HaCaT_sh vs. HaCaT_ctrl. Anti-IQGAP3 antibodies, H00128239-M01 NovusBio; anti-β-Actin an-
tibodies #4970 Cell Signaling. 2−ddCt  

Figure 1. (a) qPCR evaluation of the expression levels of IQGAP3 and IQGAP1 in HaCaT_sh vs.
HaCaT_ctrl, (n = 3, mean ± S.D.); (b) Western blot evaluation of the expression levels of IQGAP3
in HaCaT_sh vs. HaCaT_ctrl. Anti-IQGAP3 antibodies, H00128239-M01 NovusBio; anti-β-Actin
antibodies #4970 Cell Signaling.
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Figure 2. The impact of the IQGAP3 knockdown on the growth dynamics of HaCaT keratinocytes 
was assessed at different stages of cultivation: (a) Initial stages of cultivation (0–60 h): The curves 
represent the average cell density of three replicates with standard deviation (±sd). (b) Prolonged 
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at 25 ng/mL, and IFNγ at 20 ng/mL) stimulated their proliferation, resulting in a denser 
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graph, with the peak density occurring at 155 h (60 h post-scratching). Conversely, in 
HaCaT_sh cells, cytokine treatment failed to elicit a similar stimulatory effect. This sug-

Figure 2. The impact of the IQGAP3 knockdown on the growth dynamics of HaCaT keratinocytes
was assessed at different stages of cultivation: (a) Initial stages of cultivation (0–60 h): The curves
represent the average cell density of three replicates with standard deviation (±sd). (b) Prolonged
cultivation until plateau (0–70 h) plus wound healing and cell culture aging (95–210 h): similarly, the
curves depict the average cell density of three replicates with standard deviation (±sd).
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Extended cell cultivation (Figure 2b) revealed that inhibiting IQGAP3 led to slower
rates of cell proliferation. This was evidenced by a delayed and lower plateau on the
growth curve, with the plateau occurring at 75 h compared to 70 h for the control cells.

To evaluate the impact of IQGAP3 knockdown on wound healing, we conducted a
monolayer wound assay at the 95-h time point. The growth curve showed no significant
differences in the speed of wound healing or in the dynamics of cell culture aging (Figure 2b,
time point 100 h and later).

2.3. Knocking down IQGAP3 Reduces the Effect of Pro-Inflammatory Cytokine Stimulation

Subsequent analysis (Figure 3) revealed the impact of the IQGAP3 knockdown on cellu-
lar response to cytokine treatment. The suppression of IQGAP3 under the pro-inflammatory
milieu notably altered the growth dynamics of cells. In control cells, wound healing was
accelerated, and the addition of cytokines (IL-17 at 100 ng/mL, TNFα at 25 ng/mL, and
IFNγ at 20 ng/mL) stimulated their proliferation, resulting in a denser monolayer. This
stimulation was depicted as a bell-shaped curve on the cell density graph, with the peak
density occurring at 155 h (60 h post-scratching). Conversely, in HaCaT_sh cells, cytokine
treatment failed to elicit a similar stimulatory effect. This suggests that IQGAP3 knockdown
nearly completely inhibited the stimulatory effect induced by the inflammatory cytokines
TNFα, IFNγ, and IL-17.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 5 of 17 
 

 

gests that IQGAP3 knockdown nearly completely inhibited the stimulatory effect in-
duced by the inflammatory cytokines TNFα, IFNγ, and IL-17. 

 
Figure 3. The effect of the IQGAP3 knockdown on the growth dynamics of HaCaT keratinocytes 
under inflammatory environment: the cells were cultivated until plateau (0–75 h); the culture was 
wounded at the time point 115 h and stimulated with inflammatory cytokines (IL-17, TNFa, IFNg) and 
cultivated for the next 95 h. The curves represent the average cell density of three replicates ± sd. 

In summary, the inhibition of IQGAP3 resulted in a notable reduction in the rate of 
cell proliferation. Furthermore, it nearly completely suppressed the growth-stimulating 
effects induced by the pro-inflammatory cytokines. 

2.4. RNA Sequencing Analysis Unveils the Pathways Affected by IQGAP3 Knockdown 
We conducted RNA sequencing (RNAseq) of both HaCaT_sh and HaCaT_ctrl cell 

lines, with and without cytokine stimulation, to elucidate the molecular mechanisms 
underlying the observed growth alterations and response to cytokines (see Figure 4, the 
complete list of differentially expressed genes (DEGs) can be found in the Supplementary 
File S2). The knockdown of IQGAP3 resulted in significant differential expression (fold 
change ≥ 2, FDR < 0.01) of 1231 genes, with 529 upregulated and 702 downregulated 
genes (Sh vs. Ctrl). 

Gene ontology enrichment analysis (FDR < 0.05, the full list of gene ontology terms 
can be found in the Supplementary File S2) revealed that IQGAP3 knockdown affected 
various biological pathways, including skin development, epithelial cell differentiation, 
cell adhesion, migration, and kinase signaling. Downregulated genes were enriched in 
pathways related to proliferation, keratinocyte differentiation, epidermis development, 
cell adhesion, inflammation, immune response cascades, and MAPK, JNK, and 
ERK-kinase signaling. These genes were associated with molecular functions such as 
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lipid metabolism. Their proteins were found to bind metal ions, particularly calcium, 
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Figure 3. The effect of the IQGAP3 knockdown on the growth dynamics of HaCaT keratinocytes
under inflammatory environment: the cells were cultivated until plateau (0–75 h); the culture was
wounded at the time point 115 h and stimulated with inflammatory cytokines (IL-17, TNFa, IFNg)
and cultivated for the next 95 h. The curves represent the average cell density of three replicates ± sd.

In summary, the inhibition of IQGAP3 resulted in a notable reduction in the rate of
cell proliferation. Furthermore, it nearly completely suppressed the growth-stimulating
effects induced by the pro-inflammatory cytokines.

2.4. RNA Sequencing Analysis Unveils the Pathways Affected by IQGAP3 Knockdown

We conducted RNA sequencing (RNAseq) of both HaCaT_sh and HaCaT_ctrl cell lines,
with and without cytokine stimulation, to elucidate the molecular mechanisms underlying
the observed growth alterations and response to cytokines (see Figure 4, the complete list
of differentially expressed genes (DEGs) can be found in the Supplementary File S2). The
knockdown of IQGAP3 resulted in significant differential expression (fold change ≥ 2,
FDR < 0.01) of 1231 genes, with 529 upregulated and 702 downregulated genes (Sh vs. Ctrl).
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Figure 4. Transcriptomic changes in keratinocytes with IQGAP3 knockdown. (a)—MA plots visualiz-
ing log2 fold-change for all of the transcripts detected in each comparison. (b)—Venn diagram show-
ing the extent of overlap among the differentially expressed genes with ≥2-fold increase/decrease
from each comparison (FDR < 0.01).

Gene ontology enrichment analysis (FDR < 0.05, the full list of gene ontology terms
can be found in the Supplementary File S2) revealed that IQGAP3 knockdown affected
various biological pathways, including skin development, epithelial cell differentiation,
cell adhesion, migration, and kinase signaling. Downregulated genes were enriched in
pathways related to proliferation, keratinocyte differentiation, epidermis development, cell
adhesion, inflammation, immune response cascades, and MAPK, JNK, and ERK-kinase
signaling. These genes were associated with molecular functions such as calcium ion
binding, heparin and cadherin binding, MHC class II signaling, signal transduction from
pattern recognition and RAGE receptors, and regulation of calcium channels. On the
other hand, genes overexpressed under IQGAP3 knockdown were involved in IkB/NF-kB
signaling, pro-inflammatory activation, biosynthesis of IL-6 and NO, activation of calcium
transport, cell adhesion, extracellular matrix organization, and lipid metabolism. Their
proteins were found to bind metal ions, particularly calcium, lipopolysaccharides, proteases,
and actin, and to regulate the activity of serine-threonine peptidases and to bind ligands to
the IL1 receptor, participating in transcriptional regulation.
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2.5. IQGAP3-Mediated Pathways under Inflammatory Stimulation

Under cytokine stimulation, HaCaT_ctrl exhibited differential expression of 4968 genes
(2038 upregulated and 2930 downregulated), while HaCaT_sh showed differential expres-
sion of 5206 genes (2108 upregulated and 3098 downregulated). Notably, 4110 of the
differentially expressed genes (DEGs) were common to both cell lines (see Figure 4b),
and the full list of gene ontology (GO) enrichment for all groups can be found in the
Supplementary File S2.

Overall, many cascades of inflammation, cell proliferation, and migration were simi-
larly enriched in both cell lines. However, on average, the level of gene expression alter-
ations under cytokine stimulation appeared to be less prominent in the knockdown cells,
while the number of differentially expressed genes was slightly higher in the knockdown
cells. To further understand the impact of IQGAP3 knockdown on pathway enrichment,
we performed pathway analysis using the Reactome pathway database and compared the
lists of the enriched pathways (Figure 5) and ontologies (Figures S2 and S3) as well as the
possible transcription factor regulators of the DEGs (Figure 6).
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Figure 5. Pathway enrichment analysis of DEGs in HaCaT_sh+cyto vs. HaCaT_ctrl+cyto. The
enrichment was performed with complete DEG lists (upper panel) or separately upregulated (red,
lower panel) and downregulated (blue, lower panel) DEGs. The size of the bar illustrates number of
DEGs in the pathway, while the color indicates p-value of the enrichment.
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Figure 6. Enrichment bars listing top 25 transcription factors regulating DEGs in HaCaT_ctrl+cyto (a)
and HaCaT_sh+cyto (b) according to the ENCODE project.

To identify the cytokine-induced pathways affected by IQGAP3 knockdown and
relevant to psoriasis, we conducted a manual analysis. We identified the gene ontologies
(GO) enriched in the control cells but not in the knockdown cells, and vice versa. Table 1
presents a selection of GO terms considered important for psoriasis.
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Table 1. Gene ontologies enriched solely in either HaCaT_ctrl or HaCaT_sh under cytokine stimulation.

GO Enriched Only in HaCaT_Ctrl + Cyto GO Enriched Only in HaCaT_sh + Cyto

GO ID Term % of DEGs FDR GO ID Term % of DEGs FDR

GO:0070373 negative regulation of ERK1 and ERK2 cascade 0.78 0.000178 GO:0050679 positive regulation of epithelial cell proliferation 1.45 0.010

GO:0051781 positive regulation of cell division 0.74 0.012 GO:0031099 regeneration 1.26 0.024

GO:0008625 extrinsic apoptotic signaling pathway via
death domain receptors 0.67 0.006 GO:0010634 positive regulation of epithelial cell migration 1.22 0.006

GO:0006692 prostanoid metabolic process 0.47 0.013 GO:0051092 positive regulation of NF-kappa B transcription factor activity 1.15 0.005

GO:1900744 regulation of p38MAPK cascade 0.43 0.022 GO:1904019 epithelial cell apoptotic process 0.98 0.018

GO:1900745 positive regulation of p38MAPK cascade 0.34 0.020 GO:0002821 positive regulation of adaptive immune response 0.94 0.013

GO:0038134 ERBB2-EGFR signaling pathway 0.16 0.016 GO:0032649 regulation of interferon-gamma production 0.85 0.022

GO:0007229 integrin-mediated signaling pathway 0.85 0.036

GO:0002224 toll-like receptor signaling pathway 0.83 0.040

GO:0032755 positive regulation of interleukin-6 production 0.72 0.038

GO:0031424 keratinization 0.70 0.043

GO:0032088 negative regulation of NF-kappa B transcription factor activity 0.66 0.048

GO:0032689 negative regulation of interferon-gamma production 0.41 0.024

GO:0010837 regulation of keratinocyte proliferation 0.41 0.038

GO:0033561 regulation of water loss via skin 0.38 0.384

GO:0061436 establishment of skin barrier 0.36 0.001

GO:0043276 anoikis 0.34 0.025

GO:0070268 cornification 0.28 0.001
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In order to verify our findings, we performed Western blot analysis on several targets
important for psoriatic inflammation. Figure 7 shows that IQGAP3 knockdown itself led
to the activation of p38 MAPK and NFkB signaling and inhibition of ERK1/2. However,
cytokine stimulation on the knockdown background led to less accumulation of phospho-
p65 and pI3K.
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Figure 7. WB analysis of the IQGAP3 knockdown effects in HaCaT cells following cytokine stim-
ulation (IL-17, TNFa, IFNg). Antibodies: anti-IQGAP3, H00128239-M01 NovusBio; Cell Signaling
anti-β-Actin, #4970; anti-NFkB p65, #6956; anti-phospho-NFkB p65, #3033; anti-phospho-p44/42
MAPK (Erk1/2), #4370; anti-phospho-p38 MAPK, #4511; anti-PI3K p110α.

3. Discussion

IQGAP proteins play crucial roles in regulating cell morphology, motility and signal
transduction by interacting with signaling molecules, cell adhesion proteins, and compo-
nents of the cytoskeleton [12,14,15]. In most cases, IQGAP3 is associated with increased
cell proliferation and was found to be overexpressed in various types of cancers [16–19]. In
cancer cells, IQGAP3 promotes cell migration, epithelial to mesenchymal transition (EMT),
invasion and metastasis by activating TGF-β signaling [15]. Silencing IQGAP3 in breast
cancer cells inhibits proliferation and metastasis. The effect is associated with p53, MMP9,
Snail, CDC42, p-ERK1/2, KIF2C, KIF4A, PCNA and Twist [20]. Co-immunoprecipitation
analysis revealed that IQGAP3 promotes cell proliferation through its interaction with
PKCδ [21]. Moreover, deletion of IQGAP3 was found to inhibit cell growth in a 3D Ma-
trigel [22]. Iqgap3 was recognized as a marker for homeostatic stem cells situated in the
isthmus of the stomach epithelium. Utilizing lineage tracing in a mouse model, it was
shown that Iqgap3-expressing cells possess stem cell activity [23].

Psoriasis is a skin pathology with excessive proliferation and activation of keratinocytes
that partly resembles EMT [24]. Keratinocytes play crucial roles not only in structural and
barrier functions of skin, but also as immunocompetent cells involved in the immune re-
sponse. In psoriatic plaques, keratinocytes exhibit elevated production of pro-inflammatory
cytokines and chemotactic factors, along with increased proliferation and decreased differ-
entiation rates [25]. Previous research has shown that IQGAP3 is overexpressed in the skin
of patients with psoriasis [13].

To assess whether IQGAP3 plays a role in the hyperproliferative phenotype of psoriatic
keratinocytes, we developed a keratinocyte cell line called HaCaT_sh, which expresses
small hairpin RNA targeting IQGAP3. Analysis of the growth rate of HaCaT_sh cells
revealed slower growth compared to control cells, resulting in a later and lower plateau
on the growth curve (Figure 2b, time point 75 h). The wound healing dynamics of the
cells remained unchanged, as did the final cell density and the overall dynamics of cell
culture aging (Figure 2b, time points 95–220 h). However, the response to pro-inflammatory
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cytokine stimulation was altered: while control cells exhibited active proliferation and
elevated wound healing rates, the knockdown cells showed diminished proliferation upon
stimulation (Figure 3, time points 115–170 h). Following cytokine-stimulated overgrowth
of the control cells, the final cell density of the culture (Figure 3, time points 175–210 h) was
lower compared to the knockdown cells. This could be attributed to nutrient shortages
in the cell medium due to the higher cell number, as well as the activation of cell death-
associated pathways in the control cells following cytokine stimulation.

To gain deeper insights into the molecular mechanisms underlying the observed
growth alterations, we conducted RNA-seq analysis of the knockout and control cells
under pro-inflammatory stimulation. IQGAP3 knockdown itself led to the expression
alterations of 1231 genes, which, in line with the growth curve data, enriched the ontologies
mainly associated with cell migration and proliferation, innate immunity and inflammatory
responses, calcium signaling and lipid metabolism. Western blot analysis had shown that
the knockdown led to the background activation of MAPK and NFkB signaling but less
phosphorylation of ERK1/2 (Figure 5).

When we analyzed the differences in the cell response to cytokine stimulation (IL17,
IFNγ, TNFα—a cocktail mimicking the cytokine background in psoriasis), we observed
that the average level of gene expression alterations appeared to be less prominent in the
knockdown cells (Figure 4b, Supplementary Files S1 and S2). The analysis revealed that
most of the pathways were similarly enriched with differentially expressed genes in both
cell lines, and the lists of transcription factors regulating DEGs were not much different
(Figures 6, S2 and S3). Western blot analysis had shown that cytokine stimulation on the
knockdown background led to less accumulation of phospho-p65 and pI3K (Figure 7).
It seems that IQGAP3 knockdown itself leads to the activation of proinflammatory sig-
naling, but cytokine stimulation attenuates this effect, possibly due to the activation of
compensatory mechanisms.

Apparently, in our transcriptome analysis, we did not find any pathways to be com-
pletely knocked down. This could be because of the level of IQGAP3 knockdown as well as
due to the nature of IQGAP3 itself: it is neither a receptor nor a transcription factor but a
mediator and a coordinator of many signaling nodes in cells, so none of the pathways were
abolished, but many were affected. The most significant differences were observed in the
enrichment of certain pathway groups, including small GTPase-mediated pathways and
cell cycle pathways (Figure 5).

Small GTPases play an important role in the development of the multilayered epider-
mis and various skin appendages during embryogenesis. They are indispensable for cell
spreading and migration, as well as the establishment of epithelial cell–cell contacts, and
enhance IQGAP oligomerization [26,27]. Inhibition of GTPase activation leads to signifi-
cant delays in wound closure [28]. Moreover, the altered growth dynamics and changes in
cornification and barrier functions observed in IQGAP3-knockdown cells may be directly
influenced by dysregulated GTPase signaling pathways.

The differences in the enrichment of cell cycle-associated pathways following IQGAP3
knockdown may reflect alterations in cellular growth dynamics under inflammatory condi-
tions. Additionally, IQGAP3 has been identified as a crucial factor in stem cell regulation,
being expressed in rapidly proliferating stem cells and cancer cells alike [29,30].

In addition to the aforementioned pathways, IQGAP3 knockdown was observed to
impede several other pathways and ontologies pivotal for the development and progression
of psoriasis plaques (Table 1). IQGAP3 knockdown inhibited EGFR signaling, which plays
a crucial role in epidermal homeostasis and regulation of skin inflammatory responses
and has elevated expression in active epidermal lesions of psoriasis [31]. Like IQGAP1,
IQGAP3 augmented EGF-stimulated activation of EGFR and signaling to ERK, which has
been suggested to enhance IQGAP3-driven tumorigenesis [9,32].

Phosphorylation of p38 MAPK is elevated in the affected areas of psoriatic skin,
leading to the production of the proinflammatory cytokines like TNFα and antimicrobial
peptides such as cathelicidin, β-defensins 2 and 3, S100A7 and S100A8 [33]. In our study,
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IQGAP3 inhibition led to the accumulation of phospho-p38 that may contribute to the
elevated levels of inflammatory cytokine production.

Similarly to p38, ERK1/2 is activated in psoriatic epidermis, and inhibition of ERK
via a specific inhibitor, JSI287, or a negative regulator of the MAPK pathway, DUSP1,
significantly inhibited keratinocyte proliferation and promoted apoptosis and reduced
IMQ-induced psoriasiform lesion formation [34]. TNFα, IL-17, and IL-22 stimulate ERK
phosphorylation, leading to the increased expression of crucial psoriasis mediators such as
IL-36α and IL-36γ [35]. In IQGAP3 knockdown cells, the levels of phospho-ERK decrease
significantly [9,36], and our research has shown less phospho-ERK1/2 accumulation both
without or with cytokine stimulation.

In summary, the knockdown of IQGAP3 exhibited a significant anti-psoriatic effect,
manifesting in the activation of the pathways of cell adhesion and tight junction develop-
ment, stimulated cornification, improved skin barrier functions, activated lipid metabolism,
and facilitated apoptosis of epithelial cells, crucial for cornified envelope development.
Moreover, knockdown influenced immune response pathways, negatively impacted chemo-
taxis, and suppressed activation of the ERK1 and ERK2 signaling cascades.

Despite the observed decrease in proliferation rates via growth curve analysis, at
the molecular level, IQGAP3 knockdown did not fully abolish the stimulating effect of
inflammatory cytokines in cultured keratinocytes. Notably, several pathways, including the
positive regulation of interleukin-6 production, epithelial cell migration, MAPK activation
and NFkB transcription factor activity, were more prominently activated in the knockout
cells compared to the control cells. Given the multitude and diversity of pathways regulated
by IQGAP3 in keratinocytes, targeting this protein for therapeutic inhibition may not be
the most effective strategy to normalize the phenotype of keratinocytes is psoriasis. More
research is needed to evaluate the possibility to target this protein as a part of combination
therapy, for example, together with the TNFα blockers or IL-17 inhibitors. Their use may
lead to chronic NFkB inhibition, which could result in immunodeficiencies and, in this case,
NFkB activation due to IQGAP3 inhibition may be favorable for the overall homeostasis of
skin. Moreover, as research has shown that IQGAP3 inhibition led to genome instability
and aneuploidy [30], in the case of therapeutic inhibition, the absence of such negative
effects should be carefully verified.

4. Materials and Methods
4.1. Cell Culture

Immortalized human keratinocyte cell line HaCaT was generously provided by Dr.
Vorotelyak, Russia and human embryonic kidney cells HEK293T were generously provided
by Dr. M. Lagarkova, Russia. Cells were cultured in Dulbecco’s Modified Eagle Medium
(DMEM) (ThermoFisher Scientific, Waltham, MA, USA) supplemented with 10% fetal
bovine serum (FBS) (Thermo Fisher Scientific, Waltham, MA, USA), 4 mM of L-Glutamine
(Paneco, Moscow, Russia), and 10 U/mL of anti-anti (Gibco, ThermoFisher Scientific,
Waltham, MA, USA) at 37 ◦C and 5% CO2, and routinely tested for mycoplasma contamina-
tion using MycoReport (Evrogen, Moscow, Russia). The inducible vectors were stimulated
by supplementation of the medium with 1000 ng/mL doxycycline (Sigma-Aldrich, Merck
KGaA, Darmstadt, Germany) or with a mix of pro-inflammatory cytokines IL17A, TNFα,
and IFNγ (Peprotech, ThermoFisher Scientific, Waltham, MA, USA) (IL-17 100 ng/mL;
TNFα 25 ng/mL, IFNγ 20 ng/mL).

4.2. Oligos

All of the sequences of primers and constructs are listed in the Supplementary Materials
Tables S1 and S2.

4.3. Lentiviral Transduction

EZ-Tet-pLKO-Puro vector (#85966 Addgene, Watertown, MA, USA) was a gift from
Dr. Cindy Miranti’s lab [37]. The shRNA-coding duplex was cloned into EZ-Tet-pLKO-
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Puro using NheI and EcoRI. The 3rd-generation lentiviral vector system consisting of
pMDLG/RRE, pCMV_VSV_G, pRSV/Rev vectors was a gift from Didier Trono (#12251,
#8454, #2253, Addgene, Watertown, MA, USA) [38]. Lentiviral particle production was
performed in HEK293T. The supernatant containing lentiviral particles was filtered, concen-
trated using LentiX (Clontech, Takara Bio Inc., Shiga, Japan) and used for MOI evaluation.
HaCaT cells in FBS-free medium were transduced in MOI 2:1 and selected on puromycin
(Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) for stable clones.

4.4. RNA Isolation, Reverse Transcription and Quantitative PCR

In order to quantify IQGAP3 knockdown, HaCaT_sh and HaCaT_ctrl cells were seeded
in 3 biological replicates in a complete medium and stimulated with doxycycline (Sigma-
Aldrich, Merck KGaA, Darmstadt, Germany) for 72 h. Next, the cells were lysed, and total
RNA was isolated using RNEasy mini kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. RNA concentration was quantified on a Qubit fluorimeter with
the RNA BR Assay Kit (Life Technologies, ThermoFisher Scientific, Waltham, MA, USA),
and 1 µg of RNA was transcribed into complementary DNA (cDNA) using SuperScript III
Reverse Transcriptase (Invitrogen, ThermoFisher Scientific, Waltham, MA, USA) following
the manufacturer’s instructions.

qPCR amplification was performed in a thermal cycler (Eco Real-Time PCR System,
Illumina, San Diego, CA, USA) using the two-step program (primary denaturation at 95 ◦C
for 4 min, then 45 cycles: denaturation at 94 ◦C for 15 s, annealing + elongation at 60 ◦C
for 1 min) in triple technical replicates. The PCR was performed using 5XqPCRmix-HS +
ROX (Evrogen, Moscow, Russia). The level of expression of target genes was normalized
to 3 housekeeping genes—GAPDH, GusB, and B2M—using the 2−∆∆Ct method. The
significance of the differences was evaluated using R software version 3.6.0 and Mann–
Whitney U test.

4.5. Western Blotting and Antibodies

Wild type HaCaT cells, HaCaT_ctrl, and HaCaT_sh cells were cultured in full DMEM
medium supplemented with 10% FBS. Cells were stimulated with 1000 ng/mL doxycy-
cline for 72 h. Subsequently, the cells were trypsinized and collected with RIPA buffer
supplemented with Protease Inhibitor Cocktail 4 MammCell/Tissue Plus (#A7757, Ap-
pliChem, Darmstadt, Germany). For the WB analysis of HaCaT_sh and HaCaT_ctrl under
cytokine stimulation, the cells were initially seeded in complete medium and 4 h later
stimulated with doxycycline (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) for
24 h. Subsequently, the medium was replaced with fresh medium containing both doxycy-
cline and pro-inflammatory psoriatic cytokines (IFNγ, TNFα, IL17) at concentrations of
20 ng/mL, 25 ng/mL, and 100 ng/mL, respectively. After 72 h of stimulation, the cells
were trypsinized and collected with RIPA buffer supplemented with Protease Inhibitor
Cocktail 4 MammCell/Tissue Plus (#A7757, AppliChem, Darmstadt, Germany). Western
blotting was performed following the manufacturer’s instructions with several modifica-
tions: the samples were loaded on a 4–12 Bis-Tris gel (40% bis-acrylamide, 1.5M Tris-HCL
pH8.8/0.5M tris-HCL pH 6.8, 10% w/v ammonium persulfate, 0.04% v/v TEMED, 10% v/v
SDS, and distilled water to reach the final volume) in equal amounts for each of the experi-
ments, typically between 5 and 10 µg protein per lane (depending on the antibody), and
separated by electrophoresis at 200 V until full separation as indicated by the protein ladder
(PageRuler Plus Prestained Protein Ladder, #26619 or #26616, (ThermoFisher Scientific,
Waltham, MA, USA). The proteins on the gel were transferred to a 0.45 µm PVDF Trans-
fer Membrane (#88518, ThermoFisher Scientific, Waltham, MA, USA) by electroblotting
(Criterion Blotter, Bio-Rad Laboratories, Hercules, CA, USA) at 20 V overnight. Blots were
blocked for 1 h at room temperature using 5% nonfat dried milk powder (#A0830,0500, Ap-
pliChem, Darmstadt, Germany) and incubated overnight at 4 ◦C with primary antibodies:
β-actin ((13E5) Rabbit mAb #4970, Cell Signaling Technology, Danvers, MA, USA), IQGAP3
(H00128239-M01 Novus Biologicals, Littleton, CO, USA), NFkB (NF-κB p65 (L8F6) Mouse
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mAb #6956, Cell Signaling Technology, Danvers, MA, USA), phospho-NFkB (Phospho-NF-
κB p65 (Ser536) (93H1) Rabbit mAb #3033), phospho ERK1/2 (Phospho-p44/42 MAPK
(Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb #4370 Cell Signaling Technology,
Danvers, MA, USA), phospho-p38 (Phospho-p38 MAPK (Thr180/Tyr182) (D3F9) XP® Rab-
bit mAb #4511, Cell Signaling Technology, Danvers, MA, USA), pI3K PI3 Kinase p110α
(C73F8) Rabbit mAb #4249, Cell Signaling Technology, Danvers, MA, USA), diluted in Tris-
buffered saline with 5% nonfat dry milk and 0.1% Tween 20. The blots were probed with
peroxidase-conjugated secondary antibodies goat-anti-rabbit or goat-anti-mouse AffiniPure
antibodies (#111-035-003 or #115-035-003, Jackson ImmunoResearch Laboratories, West
Grove, PA, USA)) and visualized using Clarity ECL Chemiluminescent Substrate (Bio-Rad
Laboratories, Hercules, CA, USA). The blots were visualized manually using UltraCruz
autoradiography film (#SC-201697, Santa Cruz Biotechnology, Santa Cruz, CA, USA) and
radiography developer and fixer Renmed plus (#10850 and #10854, VIPS-MED, Fryazino,
Russia), or they were visualized using a gel documentation system (ChemiScope 6000,
Clinx Science Instruments Co., Ltd., Shanghai, China).

4.6. RNAseq Library Preparation

HaCaT_sh and HaCaT_ctrl cells were initially seeded in complete medium and 4 h
later stimulated with doxycycline (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany)
for 24 h. Subsequently, the medium was replaced with fresh medium containing both
doxycycline and pro-inflammatory psoriatic cytokines (IFNγ, TNFα, IL17) at concentrations
of 20 ng/mL, 25 ng/mL, and 100 ng/mL, respectively. After 72 h of stimulation, the cells
were lysed, and RNA was isolated directly from the plates using the RNEasy mini kit
(Qiagen, Hilden, Germany) following the manufacturer’s instructions. The concentration of
RNA was quantified using a Qubit fluorimeter with the RNA BR Assay Kit (ThermoFisher
Scientific, Waltham, MA, USA). For transcriptome sequencing, libraries were prepared
using the NEBNext® Ultra™ II Directional kit (New England Biolabs, Ipswich, MA, USA)
according to the manufacturer’s instructions. The libraries were then mixed in equimolar
amounts, and their quality was assessed using a BioAnalyzer 2100 microfluidic analyzer
(Agilent Santa Clara, CA, USA) with the Agilent DNA High Sensitivity Kit (Agilent Santa
Clara, CA, USA).

4.7. RNA Sequencing and Data Analysis

The libraries were mixed and diluted to a concentration of 2 nM, and subsequently,
the sequencing of the resulting library (diluted to 12 pM) was conducted on a HiSeq
2500 instrument using a 2 × 250 bp paired-end reading set with the addition of 10%
Phix from PhiX Control v3 kit (Illumina, San Diego, CA, USA). The sequencing pro-
cedure utilized the HiSeq Rapid SBS Kit v2 (200) kit (Illumina, San Diego, CA, USA)
according to the manufacturer’s recommendations. To assess the quality of the reads
obtained through sequencing, the FastQC program was employed. Readings under-
went filtering and adapter trimming using the Cutadapt program with the following
parameters: —q 10.10—m 25—a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC—
A AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT—max—n 1. Adapters were re-
moved, and reads shorter than 25 nucleotides were discarded, ensuring an average Phred
score of at least 10 at each end of the read. Next, the quality reads that met the filtering
criteria were mapped to the hg19 human genome using the STAR program, utilizing the
annotation of the human genome version of Gencode Release 19 (GRCh37.p13). For the
comparison of the expression profiles and identification of differentially expressed genes,
the edgeR package was utilized. Genes with a minimum of 1 read per million in at least
half of the samples were considered for each differential expression analysis. Additionally,
qPCR analysis of three loci (ENSG00000183856, ENSG00000143546, ENSG00000175592) was
performed to verify the differential expression. qPCR showed expression changes similar to
those observed in RNAseq. Finally, pathway and gene ontology (GO) enrichment analysis
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were conducted using the DAVID web interface version v2023q4 [39], and transcription
factor target enrichment was conducted using the ChHEA3 web interface [40].

4.8. Real-Time Cell Proliferation Assay

HaCaT_sh and HaCaT_ctrl cells were seeded onto xCelligence RTCA (Agilent,
Santa Clara, CA, USA) 16-well plates at a density of 5000 cells per well in complete cul-
ture medium supplemented with doxycycline (1000 ng/mL). Real-time assessment of cell
growth was conducted for a duration of 60 h. For the wound healing assay, cells were
seeded at a density of 10,000 cells per well in complete medium containing doxycycline
(1000 ng/mL). Upon reaching confluence, a sterile disposable 200 µL tip was utilized to cre-
ate a scratch across the monolayer. Subsequently, debris was washed away three times with
PBS, and fresh medium with the inducer was added. The cell density index was monitored
dynamically over a period of 240 h (10 days), with medium replacement every 48–72 h. For
the wound healing assay under pro-inflammatory conditions, cells were seeded at a density
of 5000 cells per well in complete medium supplemented with doxycycline (1000 ng/mL).
Upon achieving confluence, a scratch was made, followed by washing away debris with
PBS. Subsequently, fresh nutrient medium containing the inducer and a mixture of pro-
inflammatory cytokines (IFNγ, TNFα, and IL17 at concentrations of 20, 25, and 100 ng/mL,
respectively) was added. The cell density index was evaluated dynamically over a total
duration of 240 h (10 days), with replacement of the medium containing the inducer every
48–72 h.

5. Conclusions

Our investigation revealed that IQGAP3 knockdown inhibits several key pathways
induced by cytokine stimulation, including EGFR signaling, ERK1/2 activation and death
receptor-mediated apoptotic signaling, such as TNFα-TNFR signaling. Moreover, IQGAP3
knockdown affects the production of IL-6 and IFNγ and disturbs the balance between cell
proliferation and apoptosis in skin cells, leading to changes in cornification and skin barrier
functions. Given the crucial role of tight cell-to-cell contacts in keratinocytes, alterations
in integrin-mediated signaling also contribute to the observed differences. However, the
background activation of MAPK and NFkB signaling suggests that IQGAP3 is not the
optimal target for therapeutic inhibition. This conclusion is also based on the diversity and
number of pathways mediated by IQGAP3, indicating that targeting this protein alone is
not sufficient to address the complex pathogenesis of psoriasis.
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