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Abstract: Altered metabolism of lipids is a key factor in many diseases including cancer. Therefore,
investigations into the impact of unsaturated and saturated fatty acids (FAs) on human body home-
ostasis are crucial for understanding the development of lifestyle diseases. In this paper, we focus on
the impact of palmitic (PA), linoleic (LA), and eicosapentaenoic (EPA) acids on human colon normal
(CCD-18 Co) and cancer (Caco-2) single cells using Raman imaging and spectroscopy. The label-free
nature of Raman imaging allowed us to evaluate FAs dynamics without modifying endogenous
cellular metabolism. Thanks to the ability of Raman imaging to visualize single-cell substructures,
we have analyzed the changes in chemical composition of endoplasmic reticulum (ER), mitochondria,
lipid droplets (LDs), and nucleus upon FA supplementation. Analysis of Raman band intensity
ratios typical for lipids, proteins, and nucleic acids (I1656/I1444, I1444/I1256, I1444/I750, I1304/I1256)
proved that, using Raman mapping, we can observe the metabolic pathways of FAs in ER, which is
responsible for the uptake of exogenous FAs, de novo synthesis, elongation, and desaturation of FAs,
in mitochondria responsible for energy production via FA oxidation, in LDs specialized in cellular fat
storage, and in the nucleus, where FAs are transported via fatty-acid-binding proteins, biomarkers
of human colon cancerogenesis. Analysis for membranes showed that the uptake of FAs effectively
changed the chemical composition of this organelle, and the strongest effect was noticed for LA.
The spectroscopy studies have been completed using XTT tests, which showed that the addition of
LA or EPA for Caco-2 cells decreases their viability with a stronger effect observed for LA and the
opposite effect observed for PA. For normal cells, CCD-18 Co supplementation using LA or EPA
stimulated cells for growing, while PA had the opposite impact.

Keywords: Raman spectroscopy; Raman imaging; fatty acids; colon cancer; metabolism;
cancer biomarkers

1. Introduction

Altered lipid metabolism is a key indicator of many diseases including cancer [1,2].
Therefore, this class of compounds is attracting growing interest as biomarkers in clinical
applications, highlighting the role of lipidomics in cancer studies.

In this paper, we focus on lipid metabolism with special emphasis on fatty acids
(FAs)—saturated (palmitic acid (PA, 16:0)) and unsaturated (linoleic acid (LA, 18:2) and
eicosapentaenoic acid (EPA, 20:5))—and their potential in diagnostics and therapies of
colorectal cancer (CRC).

Most often, CRCs are adenocarcinomas arising from pathological changes in the mu-
cosa’s epithelial cells [3]. Approximately 30% of CRCs are associated with hereditary gene
mutations. Disfunctions of repair genes are responsible for around 15% of CRCs; the other
80–85% is associated with mutations in adenomatous polyposis coli gene (APC). Further-
more, CRCs may develop as a consequence of inflammatory bowel disease (IBD) [4]. Two of
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the most common genetic defects found in CRCs are KRAS and p53 mutations. More-
over, it has been shown that these mutations are associated with enhanced proliferation of
cancerous cells [5,6].

Evidence of lipid reprogramming metabolism in cancer cells was first reported in the
1920s, when the Warburg effect was described the first time [7]. However, nowadays, a shift
towards the reversed Warburg effect is popular, since researchers proved that each type
of cancer cell has unique metabolic features and some may synthesize ATP by means of
oxidative phosphorylation [8]. The metabolic pathways of lipids that have been affected in
CRC cells include, among others, the synthesis, desaturation, elongation, and mitochondrial
oxidation of FAs.

Generally, lipids can be described as a diverse group of compounds. LIPID MAPS [9]
classified them (based on the presence of isoprene and ketoacyl groups) as follows: FAs, sph-
ingolipids, sterol lipids, glycerolipids, glycerophospholipids, prenol lipids, saccharolipids,
and polyketides [10].

However, for the proper functioning of organisms, polyunsaturated fatty acids (PUFAs)
are required. These acids are formed from palmitic acid (PA) as a result of the action
of desaturases causing the introduction of a double bond into the structure of the acid
molecule. From PA, palmitoleic acid (C16:1 ω-7) is formed, and from stearic acid, and oleic
acid (OA, C18:1 ω-9) is formed. As a result of the action of ∆12-desaturase, oleic acid is
converted to linoleic acid (LA, C18:2 ω-6), which is further converted by ∆15-desaturase to
α–linolenic acid (ALA, C18:3 ω-3).

However, in animal tissues, double bonds can only be introduced between the already
existing double bond and the carboxyl group due to the lack of suitable desaturases.
Therefore, the synthesis of LA and ALA does not take place in animal tissues, and they
must be supplied in the diet [11].

The detailed description of FA biosynthesis and schematic presentation of FA biosyn-
thesis is shown in Figure S1 provided in the Supplementary Materials (SM). Please see
Figure S1 in the Supplementary Materials.

Figure 1 shows the correlation between the structure of FAs and formation of eicosanoids.
PA is a fatty acid with a 16-carbon chain. It is the most common saturated FA found

in animals, plants, and microorganisms. In the human body, PA may participate in the
regulation of hormone secretion as well as in the transmission of signals between body
cells. PA may also support the proper functioning of the immune system [12]. However, it
must be emphasized that the positive effect of this compound can be observed only for
small doses of PA [13–15]. Contrarily, a high consumption of PA in the daily diet may have
a negative impact on the human body, contributing to an increase in the concentration of
total cholesterol in the blood serum and an increase in its LDL (low-density lipoprotein)
fraction [16–19]. This, in turn, may increase the risk of atherosclerosis and cardiovascular
diseases. Additionally, excessive consumption of saturated fatty acids (SFAs), including PA,
may increase the risk of obesity and digestive disorders [20–22]. Many research groups have
also proven the correlation between PA overconsumption and cancer development [23].
Through lipidomics analysis, Lin et al. demonstrated that PA can impact the aggressiveness
of cancer cells. The authors highlighted the changes in cell membrane fluidity and glucose
metabolism regulation [24]. Sun et al. demonstrated that PA may regulate the expression of
genes involved in the metabolism of FAs, such as fatty acid synthase gene (FASN), stearoyl-
CoA desaturase-1 (SCD1), and elongation of long-chain FA family member 6 (ELOVL6),
which are directly associated with gastric cancer [25]. Zhang et al. investigated the impact of
PA on the genes pyruvate dehydrogenase kinase 4 (PDK4) and ACSL5, which stimulate the
proliferation of lung cancer cells [26]. Metastasis of cancer cells upon FA supplementation
was also investigated by Pascual et al. [27]. Researchers conducted experiments on human
oral squamous cell carcinoma (OSCC). They supplemented OSCC with PA, OA, and LA
before injecting them into mice. The study revealed that pretreatment with PA, in contrast
to OA or LA, significantly increased the formation of metastases. Notably, cells treated with
PA showed metastatic properties even after PA removal for 2 weeks or treatment with OA.
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Figure 1. Schematic representation of formation of eicosanoids by ω-3 and ω-6 FAs.

Therefore, nutrition experts and medical doctors recommend replacing SFAs with
essential unsaturated fatty acids (UFAs), the consumption of which can have beneficial
effect on human health and positively affect the functioning of the body [28–31].

LA is a fatty acid with an 18-carbon chain, 2 double bonds and typically occurs
as a triglyceride in nature rather than as a free FA. LA is one of two essential FAs for
humans, and serves also as a precursor to arachidonic acid, which is a parent molecule for
prostaglandins, leukotrienes, thromboxane, endocannabinoids and eicosanoids [32]. Large
scale human epidemiological studies indicated that high intakes of LA protect against
cancer development [33]. The first beneficial effect of CLA (conjugated LA) as anti-cancer
agent was discovered by M. Pariza [34]. Synthetically prepared CLA isomers were applied
by researchers to mice prior to the initiation of epidermal carcinomas. Mice that received
CLAs developed only half the number of papillomas [35]. Subsequent studies have proved
also that other murine carcinoma models show an improvement with CLA supplementation,
including mammary [36], colon [37], stomach [38] and prostate cancers [39].

EPA is a fatty acid with a 16-carbon chain and 5 double bonds, and is a precursor
for prostaglandin-3, thromboxane-3, and leukotriene-5 eicosanoids. EPA is also both a
precursor and a hydrolytic breakdown product of eicosapentaenoyl ethanolamide [40].
Bie et al. have shown that EPA attenuates ovarian cancer by improving immunomodulation.
The immunomodulatory effects of EPA were associated with PI3K/Akt, ERK1/2 and NF-
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κB P65 expression [41]. Moreover, Ando et al. proved that EPA suppresses angiogenesis
by reducing the secretion of IL-6 and VEGF from colon-cancer-associated fibroblasts [42].
It has also been shown that EPA deceases systemic inflammation caused by IL-6 [43] and
decreases inflammation caused by cancers [44].

Visualizing the presence and distribution of fatty acids within cells, both in their free
and esterified forms, is crucial for comprehending how these molecules are integrated,
stored, and processed. However, existing techniques for imaging multiple intracellular
fatty acids have been hindered by their minute size, posing challenges in labeling and
tracking without altering their essential biological and biophysical properties. Here, we
introduce a novel approach for visualizing intracellular fatty acids and their accumulation
within specific cell organelles. Leveraging distinct Raman spectra associated with different
labeling patterns, our Raman imaging technique enables the identification and tracking
of fatty acids within cells. Our findings reveal that fatty acids with a higher double bond
content tend to accumulate more prominently within endoplasmic reticulum and lipid
droplets. This innovative methodology not only sheds light on the spatial dynamics of
fatty acids but also holds promise for elucidating the behavior of various other metabolites
within cells. Research into the detection of fatty acids, their storage sites or the tracking of
fat metabolism products has been successfully carried out by various research groups from
around the world. Lipid metabolism and its mechanism have been the subject of research
by scientists from all over the world; however, Raman spectroscopy is a unique method in
this aspect as it gives very precise, unambiguous results, allowing the registration of even
the smallest changes occurring in the cell as a result of fatty acid supplementation [45–53].

In summary, an increased incidence of cancers (including CRCs) is typical among
people consuming a larger amount of animal saturated fats, with a diet rich in myristic,
lauric, and palmitic acids. In contrast, a reduction in morbidity under the influence of ALA,
DHA, and EPA was observed in relation to stomach [54], pancreas [55,56], colon [57,58],
lung [59], breast [60,61], and prostate cancer [62]. Figure 2 shows the simplified metabolic
pathways in normal and excess dietary fat with an increased or balanced SFA/PUFA ratio.

Figure 2. Metabolic pathways in normal and excess dietary fat with increased or balanced SFA/PUFA ratio.

All of the aforementioned factors confirm the crucial role of FAs in human body home-
ostasis and provide compelling topics for new investigations. In this paper, we focus on the
impact of PA, LA, and EPA on human colon single cells using Raman imaging and spec-
troscopy. The spectroscopy studies were completed with XTT tests analyzing the viability
of normal CCD-18 Co and cancer Caco-2 human colon cells upon FA supplementation.



Int. J. Mol. Sci. 2024, 25, 4508 5 of 20

2. Results

The uncontrolled cellular growth typical of cancer development requires a constant
supply of nutrients. The most crucial role in an unbalanced diet stimulating tumors
growth is played by sugars and fats. Since the 1970s, numerous studies proved the adverse
impact of sugars and fats on human health including increased cancer risk [63]. There is
convincing evidence that excess body weight is associated with an increased risk for many
cancers including endometrial, esophageal, hepatocellular carcinoma; renal and pancreatic
adenocarcinomas; gastric cardia cancer; meningioma; multiple myeloma; and colorectal,
postmenopausal breast, ovarian, gallbladder and thyroid cancers [64].

To identify the impact of FAs on human colon cells, we established a single-cell analysis
approach, which, in the first step, couples the analysis of Raman maps and mean single
Raman spectra. To properly address biochemical changes, with the main focus on the
metabolism of FAs in human normal and cancer colon cells upon FA supplementation in
comparison to not supplemented types, we systematically investigated how the Raman
method responds to in vitro samples. We used spontaneous Raman spectroscopy to record
vibrational spectra and Raman maps at the single-cell level for human colon cell lines: CCD-
18 Co (normal) and Caco-2 (cancer) over the molecular spectral range of 500–1800 cm−1

(the fingerprint region).
Figure 3 shows the Raman data obtained for human colon normal cells (CCD-18

Co) including cells upon EPA supplementation (for transparency of data presentation,
we show the data for one cell). The data for Caco-2 human colon cancer cells including
the EPA-supplemented type are presented in Figure 4. Data for LA supplementation are
presented in Figure S3 (for CCD-18 Co line) and Figure S4 (for Caco-2 line), and data for
PA supplementation are shown in Figure S5 (for CCD-18 Co line). Each figure contains
panels presenting intensity spectra with an interpretation of individual components and
assignment to individual cellular organelles, which we explain in the Section 3.

Figure 3. The mean Raman spectra for cells as a whole (A), the mean Raman spectra typical for all
clusters identified by using cluster analysis (CA) (B), Raman images constructed based on CA (C), and
the single clusters wherein blue and orange correspond to lipid rich regions, magenta corresponds
to mitochondria, red corresponds to nucleus, and gray corresponds to cell membrane identified
by using CA for human normal colon cells CCD-18 Co without any supplementation and upon
EPA supplementation for 24 h, for 10 µM and 50 µM. All cells were measured in PBS. The scale bar
represents 10 µm. Colors of the spectra correspond to the colors of clusters.



Int. J. Mol. Sci. 2024, 25, 4508 6 of 20

Figure 4. The mean Raman spectra for cells as a whole (A), the mean Raman spectra typical for
all clusters identified by using cluster analysis (CA) (B), Raman images constructed based on CA
(C), and the single clusters wherein blue and orange corresponds to lipid rich regions, magenta
corresponds to mitochondria, red corresponds to nucleus, and gray corresponds to cell membrane
identified by using CA for human colon cancer cells Caco-2 without any supplementation and upon
EPA supplementation for 24 h, for 10 µM and 50 µM. All cells were measured in PBS. The scale bar
represents 10 µm. Colors of the spectra correspond to the colors of clusters.

The results for LA and PA are presented in Figures S3–S5 in the Supplementary Materials.
One can see from Figures 3, 4 and S3–S5 that Raman imaging (RI) can be used to obtain

detailed information regarding the subcellular structure of each type of human colon cell:
normal, cancer, and normal or cancer upon FA supplementation. Based on CA, which is a
well-established method for RI data elaboration [65], we have identified, for each cell: the
endoplasmic reticulum (ER, blue), the lipid droplets (LDs, orange), the cytoplasm (green),
the nucleus (red), the mitochondria (magenta), and the cell membrane (gray). Moreover,
Raman spectroscopy allowed us to obtain well-resolved vibrational spectra based on which
one can identify the main chemical compounds: nucleic acids, lipids, proteins, saccharides,
etc.

The usefulness of RI for single-cell analysis at the level of individual organelles has
been proven in our previous papers [66–69]. Moreover, fluorescence staining confirmed
the effectiveness of RI for individual structure visualization and correctness of Raman data
interpretation [70–75]. Scheme S1 in the Supplementary Materials shows the simplified
illustration of the RI experiment idea and the comparison of RI and fluorescence data for
one cell chosen from our database.

Lipidomics studies are so important because altered lipid metabolism has been ob-
served for drug resistance; e.g., increased de novo lipogenesis mediated by FAS facilitated
gemcitabine resistance in pancreatic cancer [76]. Moreover, it has been shown that the
cancer-associated adipose tissue promoted resistance to anti-angiogenic factors by sup-
plying FAs to cancer cells in regions where the glucose demand was insufficient [77].
Additionally, it has been shown that LD production mediated by lysophosphatidylcholine
acyltransferase2 increased the resistance of CRC cells to 5-fluorouracil and oxaliplatin [78].

3. Discussion

All facts mentioned above justify the additional studies on the metabolism of FAs at
the subcellular level.
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When analyzing the pathways of the metabolism of FAs in the human colon, one has
to remember that FAs gain entrance into the intestine through enterocytes, which are placed
on the inner surface of the colon. FAs and monoglycerides (MGs) are able to cross the apical
membrane of the intestinal absorptive cells via passive diffusion or high-specialized fatty
acid transport protein 4 (FATP4), or CD36 may be involved in this process. Subsequently,
FA molecules are bound to intestinal fatty-acid-binding proteins (I-FABP), which transport
them to the ER. Scheme 1 shows the simplified pathways of dietary lipid metabolism in
human colon cells.

Scheme 1. Schematic representation of FA synthesis and metabolism in human colon cells. Expla-
nation of the abbreviations from scheme: DG: diacylglycerol, FA: fatty acid, LPA: lysophosphatidic
acid, MAG: monoacylglycerol, TG: triacylglycerol, ACC: acetyl-CoA carboxylase, ACS: acetyl-CoA
synthetase, FASN: fatty acid synthase, FA-CoA: fatty acid-coenzyme A, MAGL: monoacylglycerol
lipase, MCD: malonyl-CoA decarboxylase, CPT1: carnitine palmitoyltransferase I, PA: phosphatidic
acid, PLs: polar lipids.

The ER is a major hub for the metabolism of FAs, being implicated in uptake of
exogenous FAs, de novo synthesis, elongation, and desaturation. The ER is in contact with
many other organelles, such as mitochondria, the nucleus, LDs, and peroxisome, via their
membranes, which allows efficient transfer of FA substrates and enzymes. The excess
FAs present in the ER are used by cells for triacylglycerol (TAG) and cholesterol ester
(ChE) synthesis. Subsequently, TAGs and ChEs are stored in LDs or exported through the
organism by lipoproteins (many FAs act as specific platforms with high protein affinity
and are used as a substrate for protein acylation, affecting their activity and localization).
The primary lipoproteins synthesized at the ER in enterocytes are the chylomicrons (CM),
also known as ultra-low-density lipoproteins (ULDLs). ULDLs enable fats to move within
the water-based solution of the bloodstream (ApoB48 is a protein specific to CM).

Figures 3, 4 and S3–S5 present the analysis of cells using Raman spectroscopy and the
analysis of areas corresponding to lipid-rich regions, mitochondria, the nucleus, and the
cell membrane. Based on the obtained spectra and Raman images, a spectral analysis of
characteristic bands was performed, and in further considerations, based on the identified
bands, we analyzed the cellular metabolism of fatty acids, as shown in the Figures 5–10
using the Raman band intensity ratios.
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Figure 5. Raman band intensities ratios based on peaks typical for lipids (1304, 1444 cm−1), pro-
teins/nucleic acids (750 cm−1), and proteins (1256, 1656 cm−1) calculated based on the mean Raman
spectra obtained for the ER (blue cluster in RI data). Data are presented as mean ± SD. The statistically
significant results, based on ANOVA analysis, have been marked with asterisks (confidence level = 0.05).

The increased number of lipoproteins synthesized at the ER upon FA supplementation
can be observed by using Rama spectra. Figure 5 shows the ratios of Raman band intensity
characteristic for proteins/nucleic acids (750 cm−1), proteins (1256, 1656 cm−1), and lipids
(1304, 1444 cm−1) upon LA and EPA supplementation. The increasing synthesis of proteins
specialized in FA transport after the addition of acids, for the ER, is confirmed by the
tendency observed for I1656/I1444, I1444/I1256, I1304/I1256, and I1444/I750 ratios (decreasing
for I1656/I1444 and I1444/I750 and increasing for I1444/I1256 and I1304/I1256).

Moreover, the concentration effect is observed, and all regularities are noticed for both
types of human colon cells: normal CCD-18 Co and cancer Caco-2.

Lipoproteins synthetized in the ER are then moved to LDs, which are specialized in lipid
storage. LDs consist of the core built by neutral lipids, mainly TGAs, ChEs, and a monolayer
mainly formed by phospholipids (phosphatidylcholine, phosphatidylethanolamine, and phos-
phatidylinositol [79]). The surface of LDs is decorated by proteins that are specialized in lipid
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metabolism regulation. The first and best-characterized coat protein family is the perilipin pro-
tein family, consisting of five proteins: perilipin 1 (PLIN1), perilipin 2 (PLIN2/ADRP), perilipin
3 (PLIN3/TIP47), perilipin 4 (PLIN4/S3-12), and perilipin 5 (PLIN5/OXPAT/LSDP5/MLDP) [80–
82]. Figure 6 shows the ratios of Raman band intensities characteristic for proteins/nucleic
acids (750 cm−1), proteins (1256, 1656 cm−1), and lipids (1304, 1444 cm−1) in LDs.

The tendency observed for Raman peak intensity ratios in Figure 6 is the expected
result for cells faced with the task of intensive transfer of excess FAs to LDs. Moreover, the
concentration effect is observed, and all regularities are noticed for both types of human
colon cells: normal CCD-18 Co and cancer Caco-2, even if for normal cells the stronger
effect is noticed.

Figure 6. Raman band intensity ratios based on peaks typical for lipids (1304, 1444 cm−1), pro-
teins/nucleic acids (750 cm−1), and proteins (1256, 1656 cm−1) calculated based on the mean Raman
spectra obtained for LDs (orange cluster in RI data). Data are presented as mean ± SD. The statisti-
cally significant results, based on ANOVA analysis, have been marked with asterisks (confidence
level = 0.05).
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Figure 7. Raman band intensity ratios based on peaks typical for lipids (1304, 1444 cm−1), nucleic acids
(750 cm−1), and proteins (1256, 1656 cm−1) calculated based on the mean Raman spectra obtained for
mitochondria (magenta cluster in RI data). Data are presented as mean ± SD. The statistically significant
results, based on ANOVA analysis, have been marked with asterisks (confidence level = 0.05).

FAs are also used in mitochondria to produce energy. Mitochondria are responsible
for energy production in the form of ATP, which is crucial for the proper functioning of
cells. In mitochondria, FAs undergo β-oxidation, which generates acetyl-coenzyme-A,
flavin adenine dinucleotide (FADH2), and nicotinamide adenine dinucleotide (NADH).
Mitochondria play a crucial role in the β-oxidation of FAs as they are the site of acetyl-CoA
production and the citric acid cycle. However, mitochondrial stress can be observed as a
concrescence of elevated β-oxidation; increased ROS production may result in cell damage
or cell death. Moreover, it should be noted that lipid overload of the mitochondria is
directly connected to insulin resistance, which is crucial for type 2 diabetes during obesity.
One can see from Figure 7 that all ratios combining the intensity of Raman peaks for
proteins/nucleic acids (750 cm−1), proteins (1256, 1656 cm−1), and lipids (1304, 1444 cm−1)
confirm the increasing activity of mitochondria in cancer Caco-2 cells; for the normal cells,
CCD-18 Co, the correlation is opposite, even if the concentration effect is observed in both
types of cells.
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Figure 8. Raman band intensity ratios based on peaks typical for lipids (1304, 1444 cm−1), nucleic acids
(750 cm−1), and proteins (1256, 1656 cm−1) calculated based on the mean Raman spectra obtained
for the nucleus (red cluster in Raman imaging data). Data are presented as means value ± SD.
The statistically significant results, based on ANOVA analysis, have been marked with asterisks
(confidence level = 0.05).

FAs can be also transported to the nucleus. The special role in such a transport is
played by the fatty-acid-binding proteins (FABPs), which have the ability to transport FAs
not only to the nucleus but also to the mitochondria and ER. FABPs also participate in
the uptake of FAs from the extracellular environment. By transporting FAs to the nucleus,
FABPs can modulate the activity of nuclear receptors involved in transcriptional regulation.
Altered expression of certain FABPs has been observed in various cancers [83]; therefore,
FABP levels may serve as cancer development biomarkers. I-FABPs have been investigated
as potential biomarkers for IBD [84]. High levels of I-FABPs in serum may indicate intestinal
mucosal damage [85]. One can see from Figure 8 that all ratios combining the intensity of
Raman peaks for proteins (1256, 1656 cm−1), lipids (1304, 1444 cm−1), and nucleic acids
(750 cm−1) confirm the increasing activity of lipoproteins for both types of cells in nucleus.
Moreover, the dose effect for EPA and LA is observed.

As we discussed above, the excess consumption of PA, in contrast to UFAs (LA and
EPA), can have a negative impact on the human body. To check the correlation between
the human colon cell biochemistry and the supplementation type using PUFAs or SFAs,
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we have conducted experiments using CCD-18 Co cells and PA. Figure 9 shows the data
obtained for CCD-18 Co cells upon the addition of PA.

Figure 9. Raman band intensity ratios based on peaks typical for lipids (1304, 1444 cm−1), pro-
teins/nucleic acids (750 cm−1), and proteins (1256, 1656 cm−1) calculated based on the mean Raman
spectra obtained for ER (panel (A), blue cluster in RI data), LDs (panel (B), orange cluster in RI
data), mitochondria (panel (C), magenta cluster in RI data), and nucleus (panel (D), red cluster in RI
data). Data are presented as means value ± SD. The statistically significant results, based on ANOVA
analysis, have been marked with asterisks (confidence level = 0.05).

One can see from Figure 9 that after the addition of PA (magenta (10 µM, 24 h)
and violet (50 µM, 24 h) bars), Raman band intensity ratios calculated based on peaks
typical for lipids (1304, 1444 cm−1) and proteins (1256, 1656 cm−1) for ER, LDs, and
mitochondria typical for normal cells become more similar to the ratios typical for cancer
cells, excluding dependences observed for the nucleus (which confirm the stability of the
chemical composition of this organelle). This observation correlates well with the thesis of
the adverse impact of PFAs on human cells.

Because the properties of human cells, membranes depend on the UFA/SFA ratio;
Raman data analysis has also been performed for this organelle. Figure 10 presents the
results of the studies.
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Firstly, one can see from Figure 10 that FAs are effectively built into the cell membranes
and, secondly, the strongest effect can be observed for LA.

Figure 10. Raman band intensity ratios based on peaks typical for lipids (1304, 1444 cm−1), pro-
teins/nucleic acids (750 cm−1), and proteins (1256, 1656 cm−1) calculated based on the mean Raman
spectra obtained for membrane (gray cluster in RI data) for normal colon cells—CCD-18 Co (blue),
CCD-18 Co upon PA supplementation (10 µM—yellow, 50 µM—orange), CCD-18 Co upon LA supple-
mentation (10 µM—lime, 50 µM—green), CCD-18 Co upon EPA supplementation (10 µM—turquoise,
50 µM—violet), and cancer colon cells—Caco-2 (red). Data are presented as means value ± SD.
The statistically significant results, based on ANOVA analysis, have been marked with asterisks
(confidence level = 0.05).

To confirm the effect of the FA dose and FA type on vibrational properties of human
colon cells, we performed a statistical analysis of the data and calculated the Pearson
correlation coefficients for all analyzed samples. The Pearson coefficient represents the ratio
between the covariance of two variables and their standard deviations and is essentially
a normalized measurement of the covariance. Table 1 shows the results of the statistical
analysis performed.
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Table 1. Pearson correlation coefficients calculated based on mean Raman spectra typical for normal
human colon cells (CCD-18 Co) and cancer human colon cells (Caco-2) and cells upon FA supple-
mentation. Data for EPA supplementation for 10 µM, 24 h, and 50 µM, 24 h; LA supplementation for
10 µM, 24 h, and 50 µM, 24 h; and PA supplementation for 10 µM, 24 h, and 50 µM, 24 h.

Pearson Correlation
Coefficient p-Value

Mean Raman spectrum of CCD-18 Co cells

CCD-18 Co + EPA 10 µM, 24 h 0.98592 <0.05

CCD-18 Co + EPA 50 µM, 24 h 0.98073 <0.05

CCD-18 Co + LA 10 µM, 24 h 0.97283 <0.05

CCD-18 Co + LA 50 µM, 24 h 0.97381 <0.05

CCD-18 Co + PA 10 µM, 24 h 0.98524 <0.05

CCD-18 Co + PA 50 µM, 24 h 0.98133 <0.05

Caco-2 cells

Caco-2 + EPA 10 µM, 24 h 0.99138 <0.05

Caco-2 + EPA 50 µM, 24 h 0.95889 <0.05

Caco-2 + LA 10 µM, 24 h 0.96872 <0.05

Caco-2 + LA 50 µM, 24 h 0.96572 <0.05

CCD-18 Co + PA 10 µM, 24 h 0.96862 <0.05

CCD-18 Co + PA 50 µM, 24 h 0.98119 <0.05

4. Materials and Methods
4.1. Cell Lines and Cell Culture

The CCD-18 Co cell line (ATCC® CRL-1459™) was purchased from ATCC: The Global
Bioresource Center (10801 University Blvd. Manassas, VA 20110, USA). The CCD-18 Co
cell line was cultured using ATCC-formulated Eagle’s Minimum Essential Medium with
L-glutamine (catalog No. 30-2003). To make the complete growth medium, fetal bovine
serum was added to a final concentration of 10%. Every 2–3 days, a new medium was used.
The cells obtained from the patient were normal myofibroblasts in the colon. The biological
safety of the CCD-18 Co cell line has been classified by the American Biosafety Association
(ABSA) as level 1 (BSL-1). The Caco-2 cell line was also purchased from ATCC and cultured
according to the ATCC protocols. The Caco-2 cell line was obtained from a patient—a
72-year-old Caucasian male diagnosed with colon adenocarcinoma. The biological safety of
the obtained material is classified as level 1 (BSL-1). To complete the medium, it was based
on Eagle’s Minimum Essential Medium with L-glutamine, with the addition of fetal bovine
serum to a final concentration of 20%. The medium was renewed once or twice a week.

4.2. Cultivation Conditions

The cell lines (CCD-18 Co and Caco-2) used in the experiments in this study were
grown in flat-bottom culture flasks made of polystyrene with a cell growth surface of 75 cm2.
Flasks containing cells were stored in an incubator providing the following environmental
conditions: 37 ◦C, 5% CO2, and 95% air.

Cells used for research were seeded onto CaF2 windows (25 × 1 mm) at a low density
of 104 cells/cm2. After 24 h incubation on the CaF2, the standard growth medium was
removed, and fatty acid solution diluted in medium in concentrations 10 µM and 50 µM was
added for 24 h. After this time, the cells were rinsed with PBS (phosphate-buffered saline,
Gibco, 10010023, pH 7.4 at 25 ◦C, 0.01 M) and then cells were fixed with formaldehyde
(4% buffered formalin) for 10 min and washed once more with PBS. The Raman confocal
measurements were made immediately after the fixation of the samples. All the fatty acid
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solutions used for the supplementation procedure in the investigation were prepared by
diluting the compound in the pure culture medium.

4.3. Raman Imaging

All maps and Raman spectra presented and discussed in this paper were recorded
using the confocal microscope Alpha 300 RSA+ (WITec, Ulm, Germany) equipped with an
Olympus microscope integrated with an ultra-high-throughput spectrometer and a CCD
camera. The average excitation power of the 532 nm excitation laser during the experiments
was 10 mW (measured after the beam passed through the objective), with an integration
time of 0.5 s for the low-frequency region. The laser was focused on the sample through a
Nikon objective lens with magnification of 40×, intended for cell measurements performed
via immersion in PBS. Spectral images were collected with a sampling density of 0.5 µm
(the z-axis step size was equal to 1.5 µm). The obtained Raman spectra and all imaging data
were analyzed using cluster analysis (CA), which was executed using the WITec Project
Plus package (for the removal of cosmic rays and smoothing and background corrections).
More details about the equipment, settings, and parameters can be found in previous
works [66,67,86–88].

The normalization model, divided by norm (divide the spectrum by the dataset norm),
was performed using Origin 2021 software according to the following formula:

V′ =
V

∥ V ∥

∥ V ∥=
√

v2
1 + v2

2 + · · · v2
n

where vn is the nth V value.
The normalization was performed for all Raman spectra presented in the manuscript.

Origin software was also used to perform the ANOVA analysis, which was necessary to indicate
statistically significant results (means comparison: Tukey model; significance level: 0.05).

4.4. Determination of the Appropriate Concentration of FAs Using the XTT Test

For each cell type, XTT ((2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-
5-Carboxanilide) proliferation kit, catalogue number 20-300-1000, Biological Industries)
tests were performed 24 h after the addition of FAs to the cells immersed in the culture
medium. Preparation for the test included proper filling of the 96-well plate according to the
procedure developed at the Institute of Applied Radiation Chemistry in Lodz. The wells
were filled in such a way that each row contained a specific series of measurements.
For example, in one row, all plates were filled with the medium; in another, the plates
were filled with control samples containing only cells immersed in the medium; and in
subsequent rows, plates were filled with cells in the medium with the addition of a specific
concentration of FAs. Different concentrations of FAs were selected for the test:

1. For PA: 1 µM, 5 µM, 10 µM, 25 µM, 50 µM, and 100 µM.
2. For LA and EPA: 1 µM, 5 µM, 10 µM, 25 µM, 50 µM, and 100 µM.

After filling all of the 96-well plates, the samples were incubated at 37 ◦C. After 24 h
from the addition of FAs, the XTT test was performed using Varioscan LUX Multimode
Plate Reader from Thermo Fisher Scientific (Waltham, MA, USA). The measurement took
about 3 h. After the completion of the study, the obtained results were analyzed using a
spreadsheet, resulting in a bar graph showing the effect of the concentration of FAs on the
survival of the tested cell type, taking into account the time since the addition of FAs.

Figure S2 shows the XTT viability tests conducted on human normal colon cells and
human colon cancer cells supplemented with LA (Linoleic Acid, L1376, Merck Life Science
Sp. z o. o, Warsaw, Poland), EPA (cis-5,8,11,14,17-eicosapentaenoic Acid, E2011, Merck Life
Science Sp. z o. o, Warsaw, Poland), and PA (Palmitic Acid, (P0500), Merck Life Science Sp.
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z o. o, Warsaw, Poland). Please see Supplementary Materials for XTT viability test dates
and a detailed description of the obtained results.

5. Conclusions

Using Raman imaging, we have proved that mapping mode can be effectively used
to visualize single-cell substructures, which is helpful in the analysis of FA metabolic
pathways. Using the cluster analysis algorithm, we have visualized the endoplasmic
reticulum (ER), mitochondria, lipid droplets (LDs), and nucleus—the major organelles
involved in the metabolism of FAs. We have analyzed the chemical composition of these
organelles without and upon FA supplementation. Analysis of Raman band intensity
ratios typical for lipids, proteins, and nucleic acids (I1656/I1444, I1444/I1256 I1444/I750, and
I1304/I1256) proved that using Raman mapping, we can observe the metabolic pathways
of FAs in various cellular compartments, including in ER, which is responsible for the
uptake of exogenous FAs, de novo synthesis, elongation, and desaturation; in mitochondria,
responsible for energy production; in LDs, specialized in fat storage; and in the nucleus,
where fatty acids are transported via fatty-acid-binding proteins. These pathways serve as
biomarkers of human colon cancerogenesis. Moreover, Raman studies of cell membrane
composition showed the effective incorporation of FA molecules, with the strongest effect
for LA. The spectroscopy studies were completed with XTT tests, which showed that
the addition of LA or EPA for Caco-2 cells decreases their viability with a stronger effect
observed for LA; the opposite effect was observed for PA. For normal cells, CCD-18 Co
supplementation using LA or EPA stimulated cell growth, while PA had the opposite effect.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms25084508/s1.
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