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Abstract: Plexiform lesions are a hallmark of pulmonary arterial hypertension (PAH) in humans
and are proposed to stem from dysfunctional angioblasts. Broiler chickens (Gallus gallus) are highly
susceptible to PAH, with plexiform-like lesions observed in newly hatched individuals. Here, we
reported the emergence of plexiform-like lesions in the embryonic lungs of broiler chickens. Lung
samples were collected from broiler chickens at embryonic day 20 (E20), hatch, and one-day-old,
with PAH-resistant layer chickens as controls. Plexiform lesions consisting of CD133+/vascular
endothelial growth factor receptor type-2 (VEGFR-2)+ angioblasts were exclusively observed in
broiler embryos and sporadically in layer embryos. Distinct gene profiles of angiogenic factors were
observed between the two strains, with impaired VEGF-A/VEGFR-2 signaling correlating with
lesion development and reduced arteriogenesis. Pharmaceutical inhibition of VEGFR-2 resulted
in enhanced lesion development in layer embryos. Moreover, broiler embryonic lungs displayed
increased activation of HIF-1α and nuclear factor erythroid 2-related factor 2 (Nrf2), indicating
a hypoxic state. Remarkably, we found a negative correlation between lung Nrf2 activation and
VEGF-A and VEGFR-2 expression. In vitro studies indicated that Nrf2 overactivation restricted VEGF
signaling in endothelial progenitor cells. The findings from broiler embryos suggest an association
between plexiform lesion development and impaired VEGF system due to aberrant activation of Nrf2.

Keywords: chicken embryo; plexiform lesion; pulmonary arterial hypertension; oxidative stress;
HIF-1α; Nrf2; VEGF-A; VEGFR-2

1. Introduction

Pulmonary arterial hypertension (PAH) in humans is a disease of the lung vascular
system that is characterized by pathologic remodeling of distal arterioles that leads to pro-
gressive narrowing of the blood vessels, resulting in a progressive elevation in pulmonary
artery pressure and a decrease in distal perfusion [1,2]. The clinical manifestations of PAH
may include symptoms such as dyspnea, fatigue, chest discomfort, cyanosis, and lower
extremity swelling. At the histological level, severe PAH is marked by the presence of
the so-called plexiform lesions, occlusive, glomeruloid-like vascular structures typically
occurring distal to branch points of small pulmonary arteries [3,4]. These structures have
been identified in individuals across various age groups [3,5], and the earliest occurrence
of the lesions has been documented during in utero stages, exemplified by a case involv-
ing a 31-week stillborn fetus with premature closure of the ductus arteriosus and lung
hypoplasia [6]. Although the role of these lesions in the pathogenesis/progression of PAH
is still unclear, patients with plexogenic arteriopathy tend to be unresponsive to vasodilator
therapy and have a poor prognosis for survival [7].
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It has long been considered that the formation of plexiform lesions is a result of dis-
ordered angiogenesis since several angiogenesis-related molecules, including vascular
endothelial growth factor (VEGF), VEGF receptor type 2 (VEGFR-2, KDR/Flk-1), angiopoi-
etin (Ang)-1, Ang receptor Tie-2, hepatocyte growth factor (HGF), and transforming growth
factor (TGF)-β1, are highly expressed within the lesions [3,8,9]. Consistent with this con-
ception, it has been found that pulmonary artery endothelial cells in adult PAH patients
have an apoptosis-resistant and hyperproliferative phenotype in cell culture [10]. A cur-
rent concept is that plexiform lesions arise from progenitor endothelia cells (EPCs) [11],
as is evident by the accumulation of CD133+/VEGFR-2+ progenitor cells in remodeled
pulmonary arteries and plexiform lesions [12,13]. However, whether the EPCs in diseased
pulmonary arteries originate from bone marrow or from vascular wall-resident EPCs re-
mains controversial [14,15]. On a more basal level, whether and how EPCs contribute to
the lesion development remains largely unknown.

Various rodent models of PAH have been established over the years [16]. However,
only limited multiple-pathological-insult rat models of PAH have been shown to develop
complex plexiform-like lesions, such as monocrotaline (MCT) combined with pneumonec-
tomy [17] or chronic hypoxia [18], or SU5416 (a tyrosine-kinase inhibitor of VEGFR-2)
with chronic hypoxia [19] or pneumonectomy [20], providing evidence that severe hy-
poxia and VEGF/VEGFR-2 signaling dysregulation are required for the development of
plexiform lesions. Despite these insights, there is still debate about the relevance of these
models in accurately replicating the natural course of plexiform-like lesions and PAH in
diseased patients.

While laboratory rodents do not develop plexiform-like lesions without inducing
factors, fast-growing broilers are highly susceptible to PAH and can develop plexiform-like
lesions spontaneously [21–25]. The lesions in the lung of broiler chickens exhibit anatomical
distribution and histological features closely resembling that of human PAH [25–29]. In
addition, our group have recently identified CD133+/VEGFR-2+ EPCs in the lesions
and proposed a concept that the formation of plexiform lesions is associated with the
phenotypical change of EPCs to macrophages [30,31]. Furthermore, studies have shown
that the incidence and density of plexiform-like lesions in broilers tend to increase with
elevated pulmonary pressure [22,32]. Unexpectedly, our previous studies have shown that
the development of plexiform lesions in post-hatch broilers is not associated with any of
the major angiogenic pathways [32].

Indeed, several studies, including our own, have documented the presence of plexi-
form lesions in newly hatched broilers [29,32], suggesting that these lesions may originate
during embryonic development and persist post-hatch. This may provide an explanation
for the absence of an association between angiogenic factors and plexiform lesion develop-
ment in post-hatch birds. However, direct evidence of plexiform lesions in chicken embryos
is currently unavailable.

Formation of blood vessels during embryonic development is through two major cellu-
lar processes: vasculogenesis and angiogenesis [33]. The early development is initiated by
the differentiation of the mesodermally derived endothelial precursor cells (“angioblasts”
in embryos and “EPCs” in adults) into endothelial cells and coalesce to form a primitive
vascular network. New blood vessels are then formed from pre-existing blood vessels
either through sprouting or intussusception [34], followed by a process of maturation
termed arteriogenesis through the recruitment of mural cells, e.g., pericytes and vascular
smooth muscle cells (SMCs) [33]. It is well known that the signaling of VEGF and VEGFR-2
plays an indispensable role in vascular development [35], and that the expression of VEGF
is chiefly, positively regulated by transcription factor hypoxia-inducible factor (HIF)-1α
under hypoxia [36,37]. However, there is also evidence that chronic hypoxia compromises
the angiogenic potential of EPCs [38,39]. Given that oxygen consumption of broiler em-
bryos is higher than that of layers (a strain of chickens bred for egg production known to
be genetically resistant to PAH) [40], we hypothesized that broiler embryo can develop
plexiform lesions reflecting abnormal VEGF signaling and oxidative stress.
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2. Results
2.1. Plexiform Lesion Incidence and Density in Broilers and Layers

Plexiform-like lesions were observed consistently in both broiler and layer strains across
all ages sampled, with no apparent morphological differences between the two strains
(Figure 1A). The lesions were primarily composed of angioblast-like cells arranged periph-
erally, with scattered endothelial progenitor-like cells located in the core. The lesions in
both chicken strains were located at either arterial branch points or the origin of supernu-
merary arteries. However, while the lesions were exclusively observed in all lung sections
from broiler embryos, only a sporadic occurrence of lesions was observed in the embryonic
lungs of layers (Figure 1B). Furthermore, the lesion density, as calculated in terms of lesions
observed per square centimeter of the histological section evaluated, was significantly higher
in broilers than in layer chicks at E20 (Figure 1C). These findings suggest that broilers are
more susceptible to developing plexiform-like lesions during the embryonic development
and provide evidence that the lesions may persist into post-hatch life. In addition to plexiform
lesions, we frequently observed medial fibromuscular dysplasia (FMD) in the embryonic
lungs of broilers, characterized by the formation of a cellular plug obstructing the vessel
lumen (Supplementary Figure S1). In contrast, FMD was rarely observed in layer chicks.
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Figure 1. Incidence and density of plexiform lesions in lungs of boilers and layers at different stages of
development. (A) Histological cross-sections (H&E staining) of lung samples showing morphological
characteristics of plexiform lesion in broilers (A1–A3) and layers (A4–A6). Plexiform lesions are
primarily composed of angioblast-like cells (asterisk) surrounding a core of more differentiated
endothelial progenitor cell-like cells (arrowhead). Typically, lesions are located at branching point
of artery (A2–A5) or origin of a supernumerary artery (A1,A6). (B) Plexiform lesion incidence,
** p < 0.01. (C) Plexiform lesion density. Data are expressed as means ± SEM of 8 birds, *** p < 0.001.
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2.2. Phenotypic Characteristics of Cells in Plexiform Lesions

To investigate the cellular components of the lesions in our chicken embryo model,
we performed immunochemical analysis to detect EPC markers. Our results from broiler
embryos, present in Figure 2A, demonstrated that the lesions were primarily composed
of CD133+/VEGFR-2+ cells, consistent with the characteristics of angioblasts/EPCs. In-
triguingly, these cells were also positive for α-smooth muscle actin (α-SMA) (Figure 2B),
indicative of the phenotype of a myofibroblasts. In addition, cells in the lesions exhibited
weak or absent immunoreactivity for the proliferation marker PCNA (Figure 2C), suggest-
ing limited proliferative ability. Additionally, almost no apoptotic cells were determined
within the lesions by TUNEL assay (Figure 2D).
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Figure 2. Characterization of angioblast phenotype, proliferation, and apoptosis of cells within plex-
iform lesions. (A) Adjacent sections of lung tissue from a broiler chicken at E20 showing immuno-
histochemical staining of CD133 and VEGFR-2. Arrow indicates plexiform lesion. (B) Lung tissue 
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Figure 2. Characterization of angioblast phenotype, proliferation, and apoptosis of cells within
plexiform lesions. (A) Adjacent sections of lung tissue from a broiler chicken at E20 showing
immunohistochemical staining of CD133 and VEGFR-2. Arrow indicates plexiform lesion. (B) Lung
tissue from broiler chicken at E20 showing immunohistochemical staining of α-smooth muscle actin
(α-SMA) of plexiform lesion (arrow) adjacent to pulmonary vessel (arrowhead). (C) Lung tissue
from a broiler chicken at E20 showing immunohistochemical staining of proliferating cell nuclear
antigen (PCNA). Note the weak positive reaction of PCNA in plexiform lesion. (D) Lung tissue
from a broiler chicken at E20 showing apoptotic cells determined by TUNEL staining (green). Cell
nuclei were labeled by DAPI (blue). The dotted lines represent the edge of the lesion. Note the
lack of TUNEL-positive cell in plexiform lesion (arrow). For all the experiments, hematoxylin and
eosin (H&E) staining was performed to show the histopathologic features of the plexiform lesions.
Photographs are from one representative experiment.
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2.3. Broilers Have Decreased Arteriogenesis in Their Lung Compared to Layers

The α-SMA immunostained sections (Figure 3A) were also used to measure arteriole
density, percent medial thickness as well as percent muscularization of blood vessels [37,41].
As shown in Figure 3B, there were no age-related trends of arteriole densities within each
strain across all sampling ages; however, broilers consistently demonstrated lower arteriole
densities than layers. Although no differences in thickness of the medial layer in small
pulmonary arteries (20–100 µm) were detected between the strains (Figure 3C), the broilers
showed a lower percentage of fully muscularized vessels and a higher percentage of
partially muscularized vessels compared to layers (Figure 3D).
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Figure 3. Decreased vasculogenesis in lungs of broilers. (A) α-Smooth muscle actin (α-SMA) im-
munostaining was performed on lung sections to visualize small pulmonary arteries. Representative
light microphotographs are shown. (B) Pulmonary arterial density. α-SMA-positive vessels were
counted under a light microscope. At least three high power fields (HPF) (at ×100 magnification)
analyzed in each section. Data are expressed as means ± SEM of 4 birds from each group. * p < 0.05.
(C) Percentage of medial thickness. Data are expressed as means ± SEM of 4 birds from each group.
At least four arteries in each section were randomly selected for analysis. (D) Muscularization of
small pulmonary arteries. Total of 50 α-SMA-positive blood vessels were analyzed in each section to
determine percentage of non-muscular (NM), partially muscularized (PM) and fully muscularized
(FM) arterioles. Data are expressed as means ± SEM of 4 birds from each group. * p < 0.05.

2.4. Correlations between Lung Angiogenic Factors and Morphometric Parameters Measured

We conducted qPCR analysis to measure the mRNA levels of six angiogenic factors in
the lung, including VEGFR-2, VEGF-A, angiopoietin (Ang)-1, angiopoietin receptor Tie-2,
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transforming growth factor (TGF)-β1 and hepatocyte growth factor (HGF) (Figure 4A–F).
Distinct expression patterns of VEGFR-2, VEGF-A, Ang-1 and Tie-2 were found between
the broiler and layer strains. To investigate the significance of these factors in relation to
the formation of plexiform lesions, partial correlation analysis was performed using the
plexiform density as the objective variable after adjustment of age and strain. The factors
that were identified to be significantly correlated with the plexiform density, in order of the
degree of correlation (co-efficient of standard partial correlation), were VEGF-A and Ang-1,
with both factors showing a negative correlation with the plexiform density (Figure 4G).
In addition, a positive correlation was found between VEGFR-2 expression and arterial
density (Figure 4H), and between VEGFR-2 and vascular muscularization (Figure 4I). No
correlation between other angiogenic factors and the morphometric parameters was noted.
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Figure 4. Identification of pro-angiogenic genes related to plexiform lesion formation and arteriolo-
genesis. (A–F) mRNA levels of lung angiopoietin (Ang)-1 (A), vascular endothelial growth factor
receptor (VEGFR)-2 (B), VEGF-A (C), angiopoietin receptor Tie-2 (D), transforming growth factor
(TGF)-β1 (E), and hepatocyte growth factor (HGF) (F) were quantified by qPCR. Data are expressed
as mean ± SEM of seven broilers and six layers at different stages of development. * p < 0.05,
** p < 0.01. (G–I) Partial correlation analysis. The log-transformed mRNA levels of pro-angiogenic
genes investigated were plot against plexiform lesion density (G), arterial density (H), and the per-
centage of muscularized artery (partially muscularized artery + fully muscularized artery) (I) (broiler,
n = 12; layer, n = 12). Correlation coefficient (r) and p value are given. A p-value < 0.05 indicates
significant correlation.
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2.5. Pharmaceutical Inhibition of VEGFR-2 Promotes the Development of Plexiform Lesions in the
Embryonic Lung of Layers

To verify the role of VEGF-A/VEGFR-2 system in the development of plexiform
lesions, we administrated a single dose of vandetanib, a potent inhibitor of the tyrosine
kinase activity of VEGFR-2, to layer embryonic eggs at E13. This was conducted because
the capillary plexus in the avian lung undergoes rapid expansion from E15 [41], and we
wanted to ensure that the treatment was given during this critical developmental period. All
embryos survived the treatment. At E20, vandetanib-treated embryos exhibited impaired
alveolarization (Figure 5A) and reduced pulmonary arterial density (Figure 5B) compared
to the Mock controls, confirming the effectiveness of the inhibitor. As expected, plexiform
lesion density in the embryonic lung was significant elevated when VEGF-A/VEGFR-2
pathway was blocked by vandetanib (Figure 5C). We did not evaluate the role of Ang-1 in
the development of plexiform lesions.
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Figure 5. Effect of VEGFR-2 inhibition on alveolarization (A), arteriogenesis (B), and plexiform
lesion formation (C). Layer embryonic eggs were treated with VEGFR-2 inhibitor vandetanib or PBS
at embryonic day 13 (E13) and lungs were collected at E20. Representative microphotographs are
shown. Data are expressed as means ± SEM of 6 birds from each group (vandetanib treatment and
PBS treatment). * p < 0.05, ** p < 0.01.

2.6. Nrf2 Is Hyperactivated in Broiler Embryonic Lung and Overexpression of Nrf2 Suppresses
VEGF and VEGFR-2 Transcription

As our data indicated reduced VEGF-A and VEGFR-2 mRNA levels in the embryonic
lung of broilers compared to that of layers, we sought to analyze whether this was due to
reduced HIF-1α response. However, Western blot analysis demonstrated an increase of
nuclear HIF-1α level in the broiler embryonic lung (Figure 6A). To further understand the
molecular mechanisms behind the impaired transcription of VEGF-A and VEGFR-2 in the
broiler embryonic lung, we turned our attention to Nrf2, a redox-sensitive transcription fac-
tor that is known to regulate the expression of multiple genes involved in cellular stress and
antioxidant defense [42,43]. Aberrant activation of Nrf2 has been previously linked to EPC
dysfunction and plexiform lesion development [30]. In good agreement with the HIF-1α
stabilization and activation, broiler embryonic lungs demonstrated increased nuclear Nrf2
level as compared to that of layers (Figure 6B). Additionally, strong immunostaining for
Nrf2 was observed within the lesions (Figure 6C).
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We also investigated the nuclear Nrf2 levels in the post-hatch lungs of both broilers
and layers. Our analysis did not reveal any statistically significant difference between the
two strains, although broilers exhibited comparatively lower Nrf2 levels in their lungs as
compared to layers at the age of 1-day-old (Figure S2). Partial correlation analysis indicated
that higher nuclear Nrf2 protein levels were associated with reduced levels of VEGF-A
and VEGFR-2 mRNA when considering both broilers and layers across all age groups
together and after adjusting for age and strain differences (Figure 7A). To confirm that Nrf2
overactivation could downregulate the transcription of these proangiogenic factors, we
conducted a dual luciferase reporter assay in HEK-293T cells, which showed that Nrf2
enhanced the VEGF-A promoter activity at low dose while decreased the activity at higher
dose (Figure S3). Similar effects of Nrf2 on VEGFR-2 promoter activity were observed
(Figure S3).

We then used an early EPC (eEPC) model to investigate the impact of Nrf2 hyperactiva-
tion on the VEGF system. We treated the cells with 2-cyano-3,12-dioxooleana-1,9(11)-dien-
28-oic acid–methyl ester (CDDO-Me), a potent activator of the Nrf2 signaling pathway, to
stabilize intracellular Nrf2. CDDO-Me induced a strong accumulation of intracellular Nrf2
as compared to unstimulated cells (Figure 7B), accompanied by a significant upregulation
in VEGF-A mRNA expression (Figure 7C). Notably, the expression of VEGF-A mRNA
in CDDO-Me-treated cells was further upregulated when Nrf2 pathway was blocked by
Nrf2 inhibitor Brusatol (Figure 7B,C), confirming that excessive activation of Nrf2 restricts
VEGF-A expression. In contrast to VEGF-A, VEGFR-2 mRNA level was undetectable in the
cultured eEPCs, and CDDO-Me treatment showed only limited effect on the expression
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of this gene. Thus, we could not definitively conclude the role of Nrf2 in the regulation
of VEGFR-2 expression in our eEPC model. In addition, we did not determine significant
effects of CDDO-Me or CDDO-Me combined with Brusatol on cell viability (Figure 7D).
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Nrf2 levels with VEGF-A and VEGFR-2 mRNA expression. Quantitative Western blot-based lung
Nrf2 levels were plotted against log-transformed mRNA levels of VEGF-A (left panel) and VEGFR-2
(right panel) (broiler, n = 12; layer, n= 12). Correlation coefficient (r) and p value are given. A
p-value < 0.05 indicates significant correlation. (B–D) Evaluation of Nrf2 hyperactivation on VEGF-A
mRNA expression and cell viability in early endothelial progenitor cells (EPCs). Cells exposed
to CDDO-me (300 nM) for 24 h with or without the addition of Brusatol (40 nM) to the culture
medium 4 h prior to the experimental endpoint and proceeded to immunoblot (B), qPCR (C) and
cell proliferation analyses (D). Data are means ± SEM of triplicates and are representative of two
independent experiments. * p < 0.05, ** p < 0.01 and *** p < 0.001 (one-way ANOVA with Fisher’s
LSD post-hoc test).

In context, our findings suggest a likelihood that aberrant activation of Nrf2 contributes
to the development of plexiform lesions by interfering with the VEGF system.

3. Discussion

In this study, we report for the first time the presence of plexiform lesions in the
embryonic lung of avian species, which appears to persist into post-hatch life. The lesions
were found at either arterial branch points or the origin of supernumerary arteries, re-
sembling that observed in human PAH patients [19,44]. Our results support the notion
that VEGF-A/VEGFR-2 signaling impairment contributes to the development of plexiform
lesions and suggest that aberrant activation of Nrf2 serves as a driving force behind the
pathological process.

The cellular origin of plexiform lesions in human PAH remains a conundrum. How-
ever, the current concept posits that the development of plexiform lesions is associated
with dysfunction in endothelia precursor cells [13,14], which is highlighted by the presence
of EPCs within the lesions. In line with these observations, CD133+/VEGFR-2+ angioblasts
were found to constitute the predominant cellular component in the plexiform-like struc-
tures in our avian embryo model, regardless of the strains. Interestingly, these angioblasts in
the lesions also exhibited characteristics reminiscent of myofibroblasts, implying a potential
differentiation of angioblasts to myofibroblasts in the progression of lesion development.
While further investigations are necessary to validate this hypothesis, there is evidence
supporting the involvement of myofibroblast differentiation of EPCs in intimal remodeling
in PAH patient [45]. In addition, we found almost no detectable apoptosis in the structures.
This concurs with the findings describing the absence of apoptotic cells in the plexiform
lesions in the lung of PAH patients [46]. In context, findings from the very-early-stage
plexiform-like lesions as observed in our avian embryo model are in consistent with the
notion that plexiform lesions originate from angioblasts.

In this work, we present several findings supporting the idea that the impairment
in VEGF-A/VEGFR-2 signaling contributes to the development of plexiform lesions, as
previously described in the SU5416/hypoxia rat model [19]. Firstly, we observed reduced
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expression of VEGF-A and VEGFR-2 in the embryonic lung of broilers, which coincided
with an increase in the incidence and density of plexiform lesions and reduction in pul-
monary arterial density when compared to layers. Furthermore, pharmacological inhibition
of VEGFR-2 was sufficient to promote the formation of plexiform lesions in layer embryos,
which normally only occur sporadically under normal conditions. Consistent with the find-
ings in infant rats [47], VEGFR-2 inhibition was also associated with decreased pulmonary
arterial density and alveolarization in layer embryos. Thus, our results indicate a similar
role of VEGF signaling in regulating pulmonary circulation development and the plexiform
lesion formation between mammalian and avian species.

Naturally occurring hypoxia is essential for the functional pulmonary vascular sys-
tem development in the lung [48]. This involves the activation of HIF-1α, which regu-
lates the transcription of a large number of proangiogenic factors including VEGF and
VEGFR-2 [49]. However, mounting evidence suggests that pathological HIF-1α activation
contributes to vascular lesions in human patients with idiopathic PAH [50] and in exper-
imental PAH [51,52]. Similarly, our findings revealed increased activation of HIF-1α in
broiler embryonic lungs as compared to layers, which is not surprising given the higher oxy-
gen consumption rates in broiler embryos [40]. In this regard, broiler embryos could serve
as an effective model for investigating the molecular mechanisms underlying dysregulated
hypoxia-induced angiogenesis.

Apart from HIF-1α pathway, hypoxia also leads to the stabilization and activation
of Nrf2, a master regulator of antioxidant defense [43]. Although accumulating evidence
suggests that Nrf2 plays a critical role in normal angiogenic processes [53,54], Nrf2 over-
activation has been shown to suppress angiogenesis in a preeclampsia mouse model by
decreasing the expression of angiogenic chemokines and cytokines [55]. Similarly, systemic
Nrf2 deletion has been shown to augment angiogenesis after hindlimb ischemia [56]. Our
previous findings have demonstrated robust Nrf2 activation in plexiform lesions, with
evidence suggesting that persistent hyperactivation of Nrf2 promotes lesion development
by inducing the differentiation of eEPCs into macrophage lineage, thereby impeding their
angiogenic potential [30]. Consistent with the observations in broiler chickens at 4 weeks of
age [30], we observed elevated level of Nrf2 protein in broiler embryonic lungs and robust
Nrf2 immunoreactivity within the plexiform lesions. Furthermore, we identified a negative
correlation between Nrf2 protein level and the expression of angiogenic factors VEGF-A
and VEGFR-2 in the lung. Additionally, we observed that hyperactivation of Nrf2 restricted
VEGF-A expression in eEPCs. Taken together, our results support the idea that abnormal
Nrf2 activation plays a role in the formation of plexiform lesions in our chicken model.

In light of these findings, targeting the Nrf2 pathway could offer potential oppor-
tunities for interventions in plexiform lesions. Unfortunately, our attempts to test this
hypothesis with broiler embryos were unsuccessful due to the extremely high mortality
following pharmacological inhibition of Nrf2 signaling. For future studies, alternative
approaches, such as the lung-tissue specific genetic ablation of Nrf2, may be considered.

It appears unlikely that the development of plexiform lesions in the embryonic chicken
lung is associated with prolonged and severe haemodynamic stress as observed in hu-
man PAH, when taking into account that cardiac output is only directed through avian
lungs shortly before hatching [29]. In contrast, we observed a sudden reduction in both
the incidence and density of plexiform lesions in our broiler chicken model immediately
after hatching. It is more likely that this decline represents a result of rapid regression of
these structures during the post-hatch vascular remodeling, as poorly perfused vessels
are predisposing to vasculature pruning [57]. Nevertheless, findings from the current
study, coupled with previous investigations [29,32], provide evidence that certain plexi-
form lesions originated during embryonic stages can endure and persist into post-hatch
life. The lesions present in post-hatch broilers appear to undergo an age-related remodeling
process, transitioning from an early, cellular morphology to a late, less cellular and more
fibrotic morphology [25]. Similarly, chronological evolution of plexiform lesions has been
implicated in human patients with congenital heart disease [58]. Thus, additional investiga-
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tions focusing the molecular mechanisms underlying the evolution process of plexogenic
arteriopathy in broiler chickens could potentially unveil therapeutic strategies applicable
to human arteriopathy.

4. Materials and Methods
4.1. Animal Ethics

The animal experiments followed the National Guidelines for the Ethical Review of
Laboratory Animal Welfare and were reviewed and approved by the Ethics Committee of
the Zhejiang University (ZJU20170554).

4.2. Embryo and Chick Preparation

Eggs from the breeders of a Hy-Line white layer strain and an Arbor Acres (AA)
broiler strain were incubated in standard thermally manipulated conditions in an automatic
incubator until hatch. After hatching, the chickens were kept at a container maintained at
37 ◦C until use. Chicks at different developmental stages including embryonic day 20 (E20),
hatch, and 1-day post-hatch were used. Sex determination was not performed.

4.3. Vandetanib Inoculation

At E13, the eggs in the incubator were candled to remove unfertilized eggs and
dead embryos. Embryonic eggs from the layer lineage were randomly selected for intra-
ovo injection. Briefly, a small hole was drilled at the wide end of the egg after cleaning
the eggshell with 75% alcohol. Vandetanib (Beyotime Biotechnology, Shanghai, China)
diluted in PBS (75 µg/mL) was injected into the air chamber through the hole without
passing through the chamber, with a dose equivalent to 15 µg per egg. PBS-injected eggs
were used as control. After the inoculations were completed, the hole was sealed with
paraffin solution and the eggs were placed back into the same incubator to allow them to
continue developing.

4.4. Lung Sampling

The embryos were humanely killed by cooling and the chicks killed by cervical
dislocation. The whole left lungs were collected and cut in the transverse plane at the major
rib indentations (costal sulci). For histological study, one inter-rib division from the middle
of each lung was fixed in 4% paraformaldehyde, and the remaining lungs were deep-frozen
immediately after collection and stored in liquid nitrogen until use.

4.5. Histological and Immunohistochemical Staining

The paraffin-embedded lung samples were serially cut in the transverse plane at
4–5 µm thickness. One slide was stained with haematoxylin and eosin (H&E) for histologi-
cal analysis. Immunohistochemistry analyses were performed as previously described [30].
Primary antibodies against CD133 (self-prepared), VEGFR-2 (Boster Biotechnology Tech-
nology, Wuhan, China), proliferating cell nuclear antigen (PCNA, Abcam, Cambridge, UK),
α-SMA (Boster Biological Technology, Wuhan, China), and Nrf2 (Proteintech, Wuhan,
China) were used. Signals were developed using 3,3′-diaminobenzidine (DAB). Sections
were counterstained with hematoxylin. Images were acquired by using an optical micro-
scope (Nikon, Eclipse Ci, Tokyo, Japan).

4.6. TUNEL Assay

TUNEL assay was performed using the TUNEL BrightGreen Apoptosis Detection Kit
(Vazyme, Nanjing, China). Sections were counterstained with 4′,6-diamidino-2-phenylindole
(DAPI, Beyotime Technology, Shanghai, China) and examined under a fluorescence micro-
scope (Eclipse Ti, Nikon, Japan).
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4.7. Quantitative Real-Time RT–PCR (qPCR)

Total RNA was extracted from frozen lung tissue using MolPure® TRIeasy™ Plus
Total RNA Kit (Yeasen Biotechnology, Shanghai, China). For cDNA synthesis, 2 µg of total
RNA was reverse-transcribed into cDNA using TOROIVD® qRT Master Mix (Toroivd,
Shanghai, China) according to the supplier’s instruction. For real-time PCR, reactions
were performed on the Roche LightCycler 480 II system (Roche Diagnostics GmbH,
Mannheim, Germany) using SYBR Green PCR Master Mix Plus (Vazyme, Nanjing, China),
according to the manufacturer’s instructions. Amplification of ACTB and GAPDH mRNA
was performed on each sample as a control for normalization. The relative expression of
the target genes was also corrected to ACTB and GAPDH using 2−∆CT method. The primer
sets used were described previously [32].

4.8. Western Blot Analysis

Nuclear extracts of the lung samples were prepared by using a Nuclear and Cytoplasmic
Protein Extraction Kit (Beyotime Technology, Shanghai, China). Western blot analysis was
performed using antibodies against Nrf2 (1:1000; cat# 16396-1-AP, Proteintech, Wuhan, China),
HIF-1α (1:1000; cat# sc-13515, Santa Cruz Biotechnology, Santa Cruz, CA, USA), GAPDH
(1:2000; cat# FD 0063, Fude Biological Technology, Hangzhou, China), Histone H3 (1:2000;
cat# sc-517576, Santa Cruz Biotechnology, CA, USA) and Tubulin (1:2000; cat# 30302E20,
Yeasen, Shanghai, China) and horseradish peroxidase (HRP)-conjugated secondary antibody
as described previously [30]. The levels of Nrf2 and HIF-1α were analysed by scanning
densitometry using ImageJ software (version 1.53c) from the NIH (Bethesda, MD, USA) and
were normalised to Histone H3.

4.9. Luciferase Assay

The pEGFP-chNrf2 plasmid was prepared as previously descried [30]. A predicted
regulatory region containing a 5′-flanking sequence of VEGF-A (from −729 to −1486) as
well as VEGFR-2 (from −176 to −980) was cloned into a pGL3-basic vector (Promega,
Madison, WI, USA) containing a firefly luciferase reporter gene. For Luciferase assay,
HEK293T cells were co-transfected with 1.5 µg of expression plasmid encoding chicken
Nrf2 (chNrf2), 500 ng of pGL3 and 100 ng of pRL-TK using the Lipo8000 (Beyotime
Technology, Shanghai, China), along with the appropriate amount of empty vectors. After
72 h of transfection and stimulation, luciferase activities were analyzed with the Dual-
Luciferase Assay kit (Vazyme, Nanjing, China) and the relative luciferase activities were
calculated as the ratio of firefly to Renilla luciferase activity. Luciferase activities were
measured in triplicate.

4.10. Ex Vivo Expansion of Endothelial Progenitor Cells and Treatments

Ex vivo expansion of early endothelial progenitor cells (eEPCs) was performed ex-
actly as described in our previous work. Briefly, mononuclear cell fraction of the periph-
eral blood (PBMC) from 4-week-old healthy broiler chickens was cultured in Endothelial
cell growth medium (EGM)-2 (Lonza, Walkersvil, MD, USA) containing 2% fetal bovine
serum (FBS), 100 U/mL penicillin, and 100 µg/mL streptomycin at 39 ◦C in 5% CO2.
Non-adherent cells were removed after 48 h. On day 6 of culture, cells were passaged
using 0.25% trypsin/EDTA (Invitrogen), plated on rat tail type 1 collagen-coated 6-well
plates at 1 × 107 cells/well, and treated with 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic
acid–methyl ester (CDDO-Me) (Merck Ltd., Beijing, China) at 300 nM for 24 h with or with-
out the addition of Brusatol (Merck Ltd., Beijing, China) at 40 nM to the culture medium
20 h after CDDO-Me exposure.

4.11. Cell Viability Assay

Cell viability was determined by using Cell Counting Kit-8 (CCK-8, FDbio Science,
Hangzhou, China) according to the manufacturer’ instructions on a plate reader at 450 nm.
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4.12. Statistical Analysis

Plexiform lesion incidences were defined as [(number of lung sections with plexiform
lesion)/(number of lung sections examined) × 100], and comparison between strains within
a sampling age was performed using Fisher’s exact test. Plexiform lesion density was
expressed as the number of lesions/cm2 per section, as described previously [32]. Arterial
density in each section was calculated as the number of α-SMA-positive blood vessels per
high-power filed (at ×100 magnification). Percent medial thickness of α-SMA-positive
blood vessels (<100 µm diameter) and the percent muscularization of vessels were calcu-
lated as previously described [59,60]. Difference between groups were analyzed by using
Student’s t-test or non-parametric Mann–Whitney U-test, as appropriate, unless otherwise
stated. Correlations were determined by using the partial correlation test following loga-
rithmic transformation of the relative amounts of the genes investigated. A p value < 0.05
was considered significant. The statistical analysis was performed using SPSS software
(version 22; IBM Corp., Armonk, NY, USA).

5. Conclusions

In summary, our study reveals that plexiform lesions can develop spontaneously in
the lungs of avian embryos, with broiler chickens being more susceptible to the lesion
development. These structures appear to persist into post-hatch life and are associated
with impaired VEGF/VEGFR-2 signaling. Additionally, our findings suggest that Nrf2
hyperactivation may play a role in the formation of these lesions. Given the striking
similarity between broiler embryonic lung and human PAH lung in terms of hypoxia and
loss of pulmonary arterioles, shared mechanisms may exist between this avian model and
human contexts in the initiation and progression of plexiogenic arteriopathy.
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