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Abstract: The COVID-19 pandemic caused by SARS-CoV-2 highlighted the importance of reliable
detection methods for disease control and surveillance. Optimizing detection antibodies by rational
screening antigens would improve the sensitivity and specificity of antibody-based detection methods
such as colloidal gold immunochromatography. In this study, we screened three peptide antigens
with conserved sequences in the N protein of SARS-CoV-2 using bioinformatical and structural
biological analyses. Antibodies that specifically recognize these peptides were prepared. The epitope
of the peptide that had the highest binding affinity with its antibody was located on the surface
of the N protein, which was favorable for antibody binding. Using the optimal antibody that can
recognize this epitope, we developed colloidal gold immunochromatography, which can detect the N
protein at 10 pg/mL. Importantly, this antibody could effectively recognize both the natural peptide
antigen and mutated peptide antigen in the N protein, showing the feasibility of being applied in
the large-scale population testing of SARS-CoV-2. Our study provides a platform with reference
significance for the rational screening of detection antibodies with high sensitivity, specificity, and
reliability for SARS-CoV-2 and other pathogens.

Keywords: SARS-CoV-2; N protein; antibody; linear epitope; conserved sequence

1. Introduction

The coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) [1]. According to the World Health Organiza-
tion (WHO), more than 770 million COVID-19 cases have been reported and more than
6.9 million people have died from COVID-19 worldwide.

SARS-CoV-2 is a single-stranded RNA virus [2]. The structural proteins of SARS-CoV-2
are composed of nucleocapsid (N), membrane (M), envelope (E), and spike (S) proteins [3].
The N protein of SARS-CoV-2 is relatively stable and conserved [4,5]. Therefore, the N
protein is often selected as the target of detecting SARS-CoV-2 [6–10]. The N protein is
also used as the therapeutic target of SARS-CoV-2. N protein-targeting drugs including an
antibody and some small molecules have been developed [11–14]. The N protein may also
serve as a potential target for vaccine development [2,14].

SARS-CoV-2 is still a highly transmissible pathogen nowadays and it continues to
evolve [15]. Rapid, accurate, and reliable detection of SARS-CoV-2 is critical in preventing
the transmission of SARS-CoV-2. Nucleic acid tests and lateral flow immunoassays (LFIAs)
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are the mainstays of detecting SARS-CoV-2. Nucleic acid tests (e.g., RT-PCR) provide
accurate and sensitive detections. Performing these tests, however, often takes a long time,
and commercial RT-PCR systems usually take hours to complete these tests [16]. Nucleic
acid tests also require specialized instruments and trained personnel. In contrast, LFIAs
(e.g., colloidal gold immunochromatography) provide fast and easy-to-operate detections
at a relatively low cost [10], which is advantageous in the home-based use and large-scale
population testing of SARS-CoV-2, particularly in underdeveloped areas. In addition
to nucleic acid tests and LFIAs, multiple PCR-free detection strategies such as using
electrochemical and electrical sensors have been developed to detect SARS-CoV-2 [17].

The sensitivity and specificity of LFIAs depend highly on the characteristics of antibod-
ies, which can be greatly influenced by the type of antigen. Using high-molecular-weight
recombinant proteins or pathogens such as inactivated viruses that have multiple epitopes
as antigens could produce antibodies that recognize several conformational and/or linear
epitopes. These antibodies bind to epitopes randomly. In contrast, using linear peptides
with conserved sequences as antigens could produce antibodies that recognize a single
conserved epitope with high specificity and sensitivity, avoiding potential interferences
from mutations. Therefore, these antibodies are suitable for application in detection across
variants. Importantly, antibodies that bind to a specific peptide can be obtained by screen-
ing the dominant linear epitopes with bioinformatical and structural biological methods
when the target is clear. This solves the long-standing problem that detection antibodies
can only be prepared with random screening, but not with precise design.

In this study, we rationally screened linear peptide antigens with conserved sequences
in the N protein of SARS-CoV-2 using bioinformatical and structural biological analyses.
We prepared monoclonal antibodies (mAbs) that specifically recognize these antigens using
hybridoma technology, aiming to develop a sensitive LFIA for SARS-CoV-2 detection
(Figure 1). We clarified the epitope of the optimal linear peptide and prepared colloidal
gold immunochromatographic strips with the antibody targeting this epitope, which
demonstrated an ultra-high sensitivity for the N protein of SARS-CoV-2.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 2 of 12 
 

 

the transmission of SARS-CoV-2. Nucleic acid tests and lateral flow immunoassays 
(LFIAs) are the mainstays of detecting SARS-CoV-2. Nucleic acid tests (e.g., RT-PCR) pro-
vide accurate and sensitive detections. Performing these tests, however, often takes a long 
time, and commercial RT-PCR systems usually take hours to complete these tests [16]. 
Nucleic acid tests also require specialized instruments and trained personnel. In contrast, 
LFIAs (e.g., colloidal gold immunochromatography) provide fast and easy-to-operate de-
tections at a relatively low cost [10], which is advantageous in the home-based use and 
large-scale population testing of SARS-CoV-2, particularly in underdeveloped areas. In 
addition to nucleic acid tests and LFIAs, multiple PCR-free detection strategies such as 
using electrochemical and electrical sensors have been developed to detect SARS-CoV-2 
[17]. 

The sensitivity and specificity of LFIAs depend highly on the characteristics of anti-
bodies, which can be greatly influenced by the type of antigen. Using high-molecular-
weight recombinant proteins or pathogens such as inactivated viruses that have multiple 
epitopes as antigens could produce antibodies that recognize several conformational 
and/or linear epitopes. These antibodies bind to epitopes randomly. In contrast, using lin-
ear peptides with conserved sequences as antigens could produce antibodies that recog-
nize a single conserved epitope with high specificity and sensitivity, avoiding potential 
interferences from mutations. Therefore, these antibodies are suitable for application in 
detection across variants. Importantly, antibodies that bind to a specific peptide can be 
obtained by screening the dominant linear epitopes with bioinformatical and structural 
biological methods when the target is clear. This solves the long-standing problem that 
detection antibodies can only be prepared with random screening, but not with precise 
design. 

In this study, we rationally screened linear peptide antigens with conserved se-
quences in the N protein of SARS-CoV-2 using bioinformatical and structural biological 
analyses. We prepared monoclonal antibodies (mAbs) that specifically recognize these an-
tigens using hybridoma technology, aiming to develop a sensitive LFIA for SARS-CoV-2 
detection (Figure 1). We clarified the epitope of the optimal linear peptide and prepared 
colloidal gold immunochromatographic strips with the antibody targeting this epitope, 
which demonstrated an ultra-high sensitivity for the N protein of SARS-CoV-2. 

 
Figure 1. Scheme of the overall process of this research. 

  

Figure 1. Scheme of the overall process of this research.

2. Results
2.1. Preparation of Antibodies Targeting Peptide Antigens with Conserved Sequences

We identified three linear peptides (CoV-NP1, CoV-NP2, and CoV-NP3) with con-
served sequences in the N protein as the antigens of SARS-CoV-2. The structures of these
peptides in the N protein are shown in Figure 2.
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Figure 2. The structures of the linear peptides in the N protein of SARS-CoV-2. CoV-NP1, CoV-NP2,
and CoV-NP3 are labeled in red, green, and blue, respectively.

Immunizing mice with these peptide antigens followed by hybridoma screening
yielded four positive clones for CoV-NP1, three positive clones for CoV-NP2, and two
positive clones for CoV-NP3 that could recognize the N protein of SARS-CoV-2.

We investigated the binding of antibodies produced by these positive clones to the
recombinant N protein. As shown in Figure 3A, four antibodies (2C11, 4D2, 4F10, and 5G2)
that were specific to CoV-NP1 had the highest affinities for the N protein. The EC50 values
were 1.41, 0.71, 1, and 1.08 ng/mL, with antibody 4D2 having the smallest EC50 value.
Three antibodies (1D4, 2E7, and 4B12) that were specific to CoV-NP2 had lower affinities
for the N protein, with EC50 values of 60.93, 20.36, and 26.64 ng/mL, respectively. Two
antibodies (1A6 and 1B11) that were specific to CoV-NP3 had similar affinities to 2E7 and
4B12 for the N protein, with the EC50 values being 25.51 and 29.66 ng/mL, respectively.
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We also characterized the binding of 4D2, 1D4, and 1B11 to their corresponding peptide
antigens (Figure 3B), where the EC50 values were 23.1, 26.8, and 24.8 ng/mL, respectively,
suggesting that these antibodies had similar affinities with their peptide antigens. The
low absorbance of 4D2 binding to CoV-NP1 was because of the low coating efficiency of
CoV-NP1 on the ELISA plate.

2.2. Investigation of the Epitope in CoV-NP1

We investigated the epitope that could be recognized by the CoV-NP1-targeting an-
tibodies, which had high affinities with the N protein. Based on the original sequence of
CoV-NP1 PQNQRNAPRITFGGPSDST (PT19), we designed six truncated peptides (i.e.,
RNAPRITFGGPSDST (RT15), RITFGGPSDST (RT11), GGPSDST (GT7), PQNQRNAPRIT-
FGGP (PP15), PQNQRNAPRIT (PT11), and RNAPRITFGGP (RP11)) (Figure 4A). We used



Int. J. Mol. Sci. 2024, 25, 4436 4 of 12

these six truncated peptides together with PT19 (CoV-NP1) to compete with the N protein
for binding with the CoV-NP1-targeting antibodies. A peptide that binds strongly with the
antibody can inhibit the binding between the N protein and the antibody. The competition
results shown in Figure 4B indicate that the antibodies strongly bonded with peptides
PT19, RT15, and RT11. The shared sequence of these three peptides was RITFGGPSDST,
meaning that this 11-mer peptide was the epitope of CoV-NP1. This peptide is located
on the surface of the N protein (Figure 5), which is favorable for the binding of the Fab
fragment of the antibodies. According to Peng et al., peptide RITFGGPSDST is located at
the disordered region of the N protein [18]. Its binding with the antibody was therefore less
influenced by steric hindrance, which also accounted for the high binding affinity between
the CoV-NP1-targeting antibodies and the N protein (Figure 3A).
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(A) Sequences of truncated peptides for studying the epitope and sequence of the mutated CoV-NP1.
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(B) Competition between different peptides and the N protein for binding with CoV-NP1-targeting
antibodies. PBS was used as the control.
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Figure 5. Location of the epitope in the N protein of SARS-CoV-2. The red region is the linear epitope
RITFGGPSDST. The blue region is the rest residues of peptide PT19 (i.e., PQNQRNAP).

A recently published work reported four dominant epitopes in the N protein of
SARS-CoV-2 using HLA peptidomics [19]. One of these epitopes, APRITFGGP, had a
similar sequence to our epitope RITFGGPSDST, suggesting that our epitope is a dominant
linear epitope in the N protein that can produce antibodies with a higher affinity than
other epitopes.
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2.3. Recognition of Mutated Peptide Antigen by CoV-NP1-Targeting Antibodies

Although the sequence of CoV-NP1 was conserved, mutation P13L or G18V did occur.
We prepared a mutated peptide containing these two mutations (i.e., mutated PT19 with the
sequence of PQNQRNALRITFVGPSDST) (Figure 4A). The competition results indicated
that all four CoV-NP1-targeting antibodies still effectively recognized this mutated peptide
(Figure 4B).

We further quantitatively characterized the abilities of the original peptide PT19, the
truncated peptides RT15 and RT11, and the mutated PT19 on suppressing the binding
between CoV-NP1-targeting antibody 4D2 and the N protein (Figure 6). The IC50 values
for RT15, RT11, PT19, and mutated PT19 were 19.1 ng/mL, 16.6 ng/mL, 10.2 ng/mL, and
2.1 ng/mL, respectively.
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Figure 6. Inhibition of the binding between 4D2 and the N protein by different peptides.

The IC50 value for mutated PT19 was the lowest, suggesting that antibody 4D2 had
the strongest binding with mutated PT19. The proline (P)-to-leucine (L) mutation in PT19
occurred outside the sequence of the epitope, and thus had a negligible effect on the binding
with antibody 4D2. The valine (V)-to-glycine (G) mutation in the peptide also did not
affect its binding with the antibody even though it occurred within the epitope sequence
since this was a non-disruptive mutation. Glycine has similar physicochemical properties
to valine. They are nonpolar hydrophobic amino acids with similar structures. Hence,
this mutation does not affect the recognition by the antibody. Additionally, two methyl
groups on valine may increase the contact area between the antibody and antigen and thus
strengthen their binding.

2.4. Detection of the SARS-CoV-2 N Protein Using Colloidal Gold Immunochromatography

The antibodies targeting CoV-NP1, CoV-NP2, or CoV-NP3 could detect relatively
high concentrations of the N protein when they were mutually paired in colloidal gold
immunochromatography, most likely due to steric hindrance, which impeded the binding
between the antigen and antibodies. In contrast, these CoV-NP1-, CoV-NP2-, and CoV-NP3-
targeting antibodies could be well-matched by some of the N protein-targeting antibodies
that we previously developed [6]. As shown in Figure 7, the CoV-NP1-targeting antibody
4D2 could be matched by several antibodies, with 1C3 displaying the most intense color.
1D4 and 1B11 could also be matched by some antibodies, but the color was relatively lighter
when testing the N protein.
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as the positive control. N is PBS as the negative control.

2.5. Sensitivity and Specificity of the Colloidal Gold Immunochromatographic Strips

We further investigated the detection sensitivity for the N protein when antibody 4D2
was paired with 1C3. As shown in Figure 8, immobilized 4D2 and colloidal gold-conjugated
1C3, and vice versa, showed a clear N protein concentration-dependent color gradient. The
limits of detection (LOD) of both methods could reach 10 pg/mL.

We then characterized the specificity of the colloidal gold immunochromatographic
strips composed of immobilized 1C3 and colloidal gold-conjugated 4D2 since these strips
had relatively stronger signals (more intense test lines) at low concentrations of N protein
(Figure 8). A series of respiratory pathogens were examined. As shown in Figure 9, in
addition to the N proteins of SARS-CoV-2, the strip could only cross-react with the N
protein of SARS-CoV due to its high similarity to the SARS-CoV-2 N protein [18]. This
phenomenon is often reported in the literature [10]. The strips did not cross-react with
other pathogens (Figure 9).
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3. Discussion

Detecting antigens with immunoassays is recommended by the WHO, Centers for
Disease Control and Prevention (CDC), and the European Center for Disease Prevention and
Control (ECDC) for the diagnosis of COVID-19 [20]. The N protein is an important antigen
that is often used in the detection of SARS-CoV-2 [10]. Although the N protein is relatively
stable and conserved, mutations in N protein still occur [21], and disruptive mutations
in the N protein may lead to a failure in detecting SARS-CoV-2 in large-scale population
testing and transmission of the virus [22–25]. Therefore, the antibodies used for detecting
the SARS-CoV-2 N protein should be reliable and not easily influenced by mutations.
Antibodies targeting linear peptide antigens with conserved sequences are advantageous
in this regard. On the one hand, mutations are less likely to occur in the conserved regions.
On the other hand, even if mutations occur in the conserved epitope, it can efficiently verify
whether the antibody can recognize the mutated antigen via synthesizing the mutated
peptide. For unrecognizable mutated sequences, new antibodies can be rapidly prepared
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to avoid the potential failure of detection. Our study well-illustrated these advantages.
Antibodies targeting the conserved peptide CoV-NP1 could effectively recognize both the
natural antigen in the N protein and the mutated antigen.

Compared to nucleic acid tests, detecting the N protein with LFIAs is generally faster
(usually within 30 min) [26]. However, the sensitivity of LFIAs (usually several hundreds of
pg/mL) is relatively lower than nucleic acid tests, which is another challenge in detecting
SARS-CoV-2. It has been reported that some commercially available rapid antigen detection
kits are 102–105 times less sensitive than RT-PCR [27–29]. Great efforts have been made
to enhance the sensitivity of LFIA for detecting SARS-CoV-2 [30]. For example, Ruantip
et al. incorporated an enhancement pad to a conventional LFIA and achieved a 10-fold
improvement in sensitivity (i.e., 0.5 ng/mL N protein) [31]. Kim et al. developed a
non-powered preconcentrator for enriching the N protein for LFIA, which consequently
improved the LOD by up to 10-fold [32]. Oh et al. applied gold nanoparticle clusters that
were interconnected by the biotinylated antibody-streptavidin linkers to LFIA, which had
an LOD of 38 pg/mL N protein, 23.8 and 5.9 times lower than LFIAs composed of 15 nm
and 40 nm gold nanoparticles, respectively [33]. Hong et al. lowered the LOD of LFIA by
two orders of magnitude to 0.24 pg/mL N protein by using SiO2@Au core core-satellite
nanoparticles [34]. Peng et al. achieved a 1000-fold enhancement in LOD, from 10 ng/mL to
10 pg/mL N protein, of LFIA through copper deposition-induced signal amplification [35].
Ding et al. developed the upconversion nanoparticle-based immunochromatographic assay
by replacing colloidal gold with upconversion nanoparticles. The LOD of this system was
3.59 pg/mL N protein, 100 times more sensitive than a commercially available colloidal
gold LFIA [36]. With the help of the surface-enhanced Raman scattering (SERS) technique,
Liu et al. greatly lowered the LOD of LFIA to 0.5 pg/mL for N protein by replacing
traditional colloidal gold nanoparticles with Ag/black phosphorus nanosheets [37]. Our
system, only through the rational selection of antigens and antibodies, achieved ultra-high
sensitivity to the N protein, superior to the sensitivities of many analogous detection
systems reported in the literature [6,31,38–41] and many commercially available detection
products [42], manifesting the superiority of antibodies obtained by rational screening
antigens with bioinformatical and structural biological means. We believe that by delicately
designing the components of the LFIA, like the examples above-mentioned, we can further
enhance the sensitivity of our LFIA system.

4. Materials and Methods
4.1. Screening of Peptides with Conserved Sequences as Antigens

The sequences of the N protein of SARS-CoV-2 variants were downloaded from the
National Center for Biotechnology Information (NCBI). Sequence alignment was performed
with the BioEdit software (version 7.0.9.0). The conserved sequences were obtained using
our previously reported method [43].

The conformation of the N protein was predicted with Phyre2 [44]. The conserved
sequences were labeled on the 3D structure of the N protein. Those located on the surface
of the N protein, particularly located near the N terminus, were selected as the antigens
for the following studies. The sequences of the selected peptides CoV-NP1, CoV-NP2, and
CoV-NP3 are listed in Table 1. These peptides were synthesized and functionalized with
cysteine at the N-terminus for conjugation with BSA or OVA.

Table 1. Sequences of peptides for preparing the antibodies.

Peptide Sequence

CoV-NP1 PQNQRNAPRITFGGPSDST
CoV-NP2 SWFTALTQHGKEDLKFPRGQGVPINT
CoV-NP3 TRRIRGGDGKMKDLSP
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4.2. Preparation of Monoclonal Antibodies

Six- to eight-week-old Balb/C mice were immunized intramuscularly on the leg with
50 µg BSA-conjugated peptide antigens, which were mixed with 10% Montanide Gel 01 PR
as the adjuvant. A booster with the same dosage was given on day 14. Blood was collected
from the tail on day 21 to evaluate the titer of antibodies using indirect ELISA with the
immobilized N protein and HRP-conjugated goat anti-mouse IgG secondary antibody.

Mice NS1 myeloma cells were fused with activated B lymphocytes from the spleen to
form hybridoma cells, which were cultured in the HAT medium. The positive single-cell
clones that could produce N protein-targeting antibodies were screened using ELISA, and
antibodies were purified by protein A affinity chromatography.

4.3. Evaluation of Binding Affinities

The antibodies were diluted with PBS and added to a 96-well plate that was pre-
coated with 5 µg/mL recombinant N protein or 5 µg/mL OVA-conjugated peptide. After
1 h incubation and carrying out a washing procedure three times, the HRP-conjugated
goat anti-mouse IgG was added and incubated for another hour followed by the washing
procedure three times. Next, the absorption was measured at 490 nm in the presence of
o-phenylenediamine dihydrochloride (OPD). The experiments were triplicated.

4.4. Investigation of the Inhibition of Binding between Antibody and N Protein by
Different Peptides

The peptides were diluted with PBS and mixed with 100 ng/mL antibody. The mixture
was added to a 96-well plate that was pre-coated with 5 µg/mL recombinant N protein and
incubated for 1 h. After washing and incubation with the HRP-conjugated goat anti-mouse
IgG, the absorption was measured at 490 nm in the presence of OPD. The experiments
were triplicated.

4.5. Preparation of Colloidal Gold Immunochromatographic Strips

The N protein-specific antibody and goat anti-mouse IgG were immobilized at the
test line and control line, respectively, on nitrocellulose membranes. The sample pads
were prepared by treating glass fiber membranes with 1% BSA and 0.5% CaseiNBlock.
The colloid gold-conjugated antibody that was prepared using our previously reported
method [6] was deposited on conjugate pads. The colloidal gold immunochromatographic
strips were prepared by mounting the nitrocellulose membrane, sample pad, conjugate
pad, and absorbent pad onto the backing card and cutting it into 3 mm-width strips.

4.6. Screening of Matched Antibody Pairs

The N protein-specific antibodies that we previously developed [6] were conjugated
with colloidal gold and deposited on conjugate pads of the colloidal gold immunochro-
matographic strips that were pre-coated with 4D2, 1D4, or 1B11 on the test lines. A matched
antibody pair was determined when both test and control lines appeared in the presence of
the N protein, while only the control line appeared in the absence of the N protein.

4.7. Evaluation of the Sensitivity and Specificity of Colloidal Gold Immunochromatographic Strips

To determine the sensitivity, 0–106 pg/mL recombinant N protein was applied to
the colloidal gold immunochromatographic strips and the test lines were examined after
10 min.

To determine the specificity, N proteins of SARS-CoV-2 B.1.1.7 (Alpha), SARS-CoV-2
B.1.1.529 (Omicron), SARS-CoV, and MERS-CoV, and different respiratory pathogens includ-
ing HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1, influenza A (H1N1), influenza
B (Yamagata strain), respiratory syncytial virus, human parainfluenza viruses, human
bocavirus, human metapneumovirus, Staphylococcus aureus, and Pseudomonas aeruginosa
were examined using the colloidal gold immunochromatographic strips.
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5. Conclusions

In this study, we screened three linear peptides containing conserved sequences in the
N protein of SARS-CoV-2 and successfully prepared mAbs targeting these three peptides.
The epitope of CoV-NP1 was completely exposed to the surface of the N protein, as a
result, antibodies targeting CoV-NP1 had the highest affinities for the N protein. The
CoV-NP1-targeting antibody 4D2 could detect the N protein of SARS-CoV-2 with ultra-high
sensitivity. Our study suggests that the bioinformatical analysis of conserved sequences
combined with structural biological analysis provides a precise way to identify linear
peptide antigens and the dominant epitopes, which is promising to solve the randomness
and uncertainty of antibody discovery, thereby enhancing the sensitivity of LFIAs. This
method could also potentially guide the rational design of peptide vaccines.
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