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Abstract: With genetic information gained from next-generation sequencing (NGS) and genome-wide
association studies (GWAS), it is now possible to select for genes that encode reporter molecules that
may be used to detect abnormalities such as alcohol-related liver disease (ARLD), cancer, cognitive
impairment, multiple sclerosis (MS), diabesity, and ischemic stroke (IS). This, however, requires a
thorough understanding of the gut–brain axis (GBA), the effect diets have on the selection of gut
microbiota, conditions that influence the expression of microbial genes, and human physiology.
Bacterial metabolites such as short-chain fatty acids (SCFAs) play a major role in gut homeostasis,
maintain intestinal epithelial cells (IECs), and regulate the immune system, neurological, and en-
docrine functions. Changes in butyrate levels may serve as an early warning of colon cancer. Other
cancer-reporting molecules are colibactin, a genotoxin produced by polyketide synthetase-positive
Escherichia coli strains, and spermine oxidase (SMO). Increased butyrate levels are also associated
with inflammation and impaired cognition. Dysbiosis may lead to increased production of oxidized
low-density lipoproteins (OX-LDLs), known to restrict blood vessels and cause hypertension. Sudden
changes in SCFA levels may also serve as a warning of IS. Early signs of ARLD may be detected by
an increase in regenerating islet-derived 3 gamma (REG3G), which is associated with changes in the
secretion of mucin-2 (Muc2). Pro-inflammatory molecules such as cytokines, interferons, and TNF
may serve as early reporters of MS. Other examples of microbial enzymes and metabolites that may
be used as reporters in the early detection of life-threatening diseases are reviewed.
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1. Introduction

The vast majority of human microbiota (97%) is found in the gastrointestinal tract (GIT),
largely in the colon [1,2], and includes bacteria, archaea, fungi, and viruses [3]. The more
than three million genes of gut microbiota (all phyla included) supersede the estimated
23,000 genes in the human genome, which emphasizes the role the gut microbiome plays
in human health [4]. Bacterial numbers, more or less equal to the number of human cells,
are the best studied [2,4], and approximately 90% are grouped into the phyla Firmicutes
(Gram-positive) and Bacteroidetes (Gram-negative), with the rest belonging to the phyla
Actinobacteria, Fusobacteria, Proteobacteria, and Verrucomicrobia [4–6]. An estimated
60–80% of gut bacteria have not been isolated and their phenotypic properties have not
been studied, mainly because they are unculturable [7,8]. This implies the role many species
play in the gastrointestinal tract (GIT), specifically regarding gut homeostasis, regulation of
the immune system, maintenance of intestinal epithelial cells (IECs), and the regulation of
neurological and endocrine functions are unknown [3].

With techniques such as 16SrRNA sequencing, next-generation sequencing (NGS), and
genome-wide association studies (GWAS), many of the unculturable microorganisms have
been identified and their function in the gastrointestinal tract (GIT) is deduced from gene
expressions. The genetic information allows for the design of genetic probes to determine
the presence of species in the GIT and select or design target molecules to detect the early
start of diseases such as alcohol-related liver disease (ARLD), cancer, cognitive impairment,
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multiple sclerosis (MS), diabesity, and ischemic stroke (IS). Common gastrointestinal dis-
eases directly linked to dysbiosis, e.g., irritable bowel syndrome (IBS) [9,10], delayed gastric
emptying in the absence of mechanical obstruction, referred to as gastroparesis (GP) [11],
and endometriosis (EM) [12] may also benefit from the development of reporter molecules.

Individuals suffering from IBS are often diagnosed with depression and anxiety [9].
A meta-analysis of 777 patients diagnosed with IBS has shown that these individuals
have higher levels of Firmicutes and lower levels of Bacteroidetes in their fecal microbiota
compared to non-IBS patients [13]. The authors also reported an increase in clostridia and
Clostridiales, but a decrease in Bacteroidia and Bacteroidales. A separate meta-analysis
performed on 1340 IBS patients revealed lower levels of Lactobacillus and Bifidobacterium,
and higher levels of Escherichia coli and Enterobacter in fecal samples compared to healthy
subjects [14]. The authors found no significant differences in the levels of fecal Bacteroides
and Enterococcus. Attempts to alleviate IBS with probiotic supplements and changes in diet
have not always been effective. Treatment with antibiotics such as rifaximin has alleviated
symptoms of IBS [15,16], but this was accompanied by a modest, largely transient effect
across a broad range of gut microbiota [17]. Fecal microbiota transplants (FMTs) also have
not provided prolonged relief from IBS [9].

Symptoms of GP are similar to those of other functional diseases, especially functional
dyspepsia (FD) [11]. The epidemiology of GP is thus difficult to ascertain. This is further
complicated by relatively few cases reported, e.g., approximately 24 per 100,000 individuals
in the USA and 14 per 100,000 in the UK [18,19]. GP and FD are associated not only with
an increase in bacterial overgrowth in the duodenum but also with alterations in microbial
composition. Analyses of the composition of duodenal mucosal-associated microbiota
(MAM) in FD patients have revealed a dominance of Streptococcus spp. but lower cell
numbers of anaerobic Prevotella, Veillonella, and Actinomyces [20].

Endometriosis is a chronic, estrogen-dependent inflammatory condition characterized
by the presence of endometrium-like tissue outside the uterus [21]. An estimated 10% of
women in their reproductive years are affected by EM, corresponding to approximately
190 million women worldwide [21]. As one study shows, individuals diagnosed with EM
had increased levels of Proteobacteria, Enterobacteriaceae, Streptococcus spp., and Escherichia
coli [22]. Conflicting results were reported by the authors for Firmicutes and Gardnerella
spp. Independent studies have found significant increases in Actinobacteria, Cyanobac-
teria, Saccharibacteria, Fusobacteria, Acidobacteria, and Patescibacteria in patients suffering
from EM [23–25]. Notable increases have been reported in cell numbers of Proteobacteria,
Bacteroidetes, and Negativicutes, particularly Shigella, E. coli, and Prevotella [26,27].

The development of reporter systems to diagnose early signs of bacterial-inflicted
diseases requires a thorough understanding of conditions that influence the expression of
genes and the production of bacterial metabolites (defined as small molecules released by
bacteria), short-chain fatty acids (SCFAs), tryptophan, hormones such as serotonin (5-HT),
cholecystokinin (CCK), and peptide tyrosine-tyrosine (PYY), as well as neurotransmitters
such as glutamate (Glu), γ-aminobutyric acid (GABA), dopamine (DA), norepinephrine
(NE), and histamine (His), in addition to the role all these compounds play in communica-
tion with the central nervous system (CNS) via the gut–brain axis (GBA), hypothalamic
pituitary adrenal axis (HPA), and autonomic sympathetic and parasympathetic nervous
systems [28–30]. Afferent signals generated by gut microbiota reach the CNS via the enteric
nervous system (ENS) which is in close contact with the gut wall of the circulatory system.
Efferent signals from the brain are communicated to gut microbiota via the ENS. The ENS is
often referred to as the “brain within the gut” or “second brain” [31] and is a dynamic and
ever-changing network of neurons, maintained by multiple apoptotic and neurogenetic
processes that are regulated by gut microbiota, especially those with the ability to produce
and metabolize SCFAs, long-chain fatty acids (LCFAs), and hormones [32]. Minor changes
in the gut microbiome alter the type and level of neurotransmitters produced, which in
turn affects digestion, intestinal permeability, gastric motility, and immune regulation [4].
SCFAs play a major role in gut homeostasis but are equally important in the maintenance
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of intestinal epithelial cells (IECs), regulation of the immune system, and neurological
and endocrine functions [30]. Changes in SCFA levels may serve as an early warning
of colon cancer, inflammation, cognitive abnormalities, and IS. Changes in the secretion
of mucin-2, brought about by changes in the population of gut microbiota, lead to an
increase in regenerating islet-derived 3 gamma (REG3G), which serves as an early reporter
of ARLD [7].

This review looks at the possibility of developing disease-specific genetic- or molecular-
based reporter systems produced by gut microbiota that may be used to identify abnor-
malities at an early stage. Only a select few diseases with the most advanced research on
therapeutic targets are discussed. The purpose of the review is not to discuss the diseases in
detail but rather to identify possible reporter molecules that may be used in early detection.

2. Alcohol-Related Liver Disease (ARLD)

Moderate consumption of alcohol raises levels of high-density lipoprotein (HDL),
referred to as “good cholesterol” and is associated with protection against heart disease [33].
However, excess alcohol intake may lead to the development of alcohol-related liver
disease (ARLD), which contributes to 47.9% of all liver cirrhosis deaths [33]. Severe
alcoholic hepatitis, the most aggressive form of ARLD, has a 30-day mortality rate ranging
from 20 to 50% [34]. Symptoms vary from feeling sick to weight loss, loss of appetite,
yellowing of the whites of the eyes or skin (jaundice), swelling of ankles and midsection
of the body, drowsiness, vomiting of blood, and blood in the stool. The diagnosis of
ARLD is challenging and in most cases relies on the history of the patient and clinical and
laboratory findings [35]. Blood analyses are usually performed (summarized in Figure 1)
and, amongst other tests, include testing for the levels of transaminases, bilirubin, alkaline
phosphatase (ALP), albumin, gamma-glutamyl transferase, and prothrombin. The latter
test (prothrombin time or PT) is to determine the blood clotting rate (referred to as the
international normalized ratio, INR, blood test) [35]. Biochemical markers used to detect
chronic ARLD are gamma-glutamyl transferase (GGT), aspartate aminotransferase (AST),
alanine aminotransferase (ALT), mean corpuscular volume (MCV), and carbohydrate-
deficient transferrin (CDT) [36,37]. An AST:ALT ratio above two is normally considered
a reliable indication of ARLD [38]. However, patients with ARLD may not always have
elevated serum aminotransferase levels [39]. Further confirmation of ARLD is an increase
in the ratio of immunoglobulin A (IgA) versus IgG [40]. No single biomarker is sensitive
and specific enough to confirm ARLD. However, by using a combination of biomarkers
such as CDT, GGT, and MCV, the sensitivity of the test increases significantly. In many
cases, CDT testing is combined with screening questionnaires. In severe cases, liver biopsy
is performed to detect hepatic steatosis, inflammation, and Mallory–Denk bodies [35].

Since alcohol dependency is not only regulated by the brain but also by gut micro-
biota [41], it is safe to conclude that the GBA plays a decisive role in ARLD. Individuals
diagnosed with ARLD show clear changes in populations of Lactococcus, Streptococcus,
Psychrobacter, Helicobacter, Alloprevotella, Paenalcaligenes, and Janthinobacterium compared to
non-alcoholics (Figure 2) [42]. In patients diagnosed with Crohn’s disease, inflammation is
associated with a drastic decrease in Faecalibacterium prausnitzii [43]. Similar results have
been reported when mice were exposed to a high-alcohol diet [44]. The high levels of
butyrate produced by F. prausnitzii stimulate the expression of tight junction proteins and
the production of mucin, all of which are deemed important in maintaining the integrity
of the gut wall. With the depletion of F. prausnitzii the individual with ARLD is at risk of
developing a leaky gut.
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Figure 1. Biomarkers that are normally used in liver function tests. ALP = alkaline phosphatase, PT 
= prothrombin time, GGT = gamma-glutamyl transferase, AST = aspartate aminotransferase, ALT = 
alanine aminotransferase. An AST:ALT ratio above 2 is normally considered a reliable indication of 
ARLD. The red cross denotes a loss in liver tissue. Constructed using Biorender.com (25 March 
2024). 
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March 2024).
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tract, ARLD = alcohol-related liver disease. Changes in cell numbers of some genera may be symp-
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Diet plays a major role in selecting gut microbiota and the protection of intestinal
epithelial cells (IEC), as shown by the increase in bifidobacteria with a diet rich in inulin-
type fructans [45]. Bifidobacteria are proliferating butyrate producers but are sensitive to
alcohol. It is thus no surprise that metagenomic studies conducted on mice exposed to
excessive alcohol intake have shown a decrease in the production of butyrate and saturated
long-chain fatty acids (LCFAs) [46]. Since Lactobacillus spp. use saturated LCFAs as an
energy source, their cell numbers are also drastically reduced in individuals with ARLD.
This leads to further disruption of tight junctions. Feeding mice with impaired gut walls
saturated LCFAs has led to the recovery of tight junctions, an increase in Lactobacillus cell
numbers, and an alleviation of symptoms associated with ARLD [46]. Supplementation of
diets with LCFAs must, however, be carefully controlled, as it may lead to the overgrowth
of Lactobacillus spp., dysbiosis, and hepatic steatosis (fatty liver disease) [47,48]. Screening
for overall changes in the microbial population, SCFAs (e.g., butyrate), and LCFAs is
not the answer to detecting early signs of ARLD as cell numbers, species, and nutrient
compositions vary with changes in diet, stress, and medication [3,4,49]. However, since
F. prausnitzii and bifidobacteria are strongly associated with butyrate production, genes
encoding enzymes in butyrate pathways may hold the answer to the development of DNA
probes that can be used as reporters of early ARLD.

Dysregulation of bile acid (BA) metabolism is typical of individuals diagnosed with
ARLD. This leads to the malfunctioning of tight junction proteins, followed by intestinal
inflammation [46,50] and the formation of reactive oxygen species that disrupt cell mem-
branes and mitochondria [51]. Lithocholic acid (LCA), a derivative of cholic acid, induces
stress on the endoplasmic reticulum (ER) and enhances cell death (Figure 3), which is
described as “unfolded protein response (UPR)-activating cell death” [52]. LCA transforms
growth factor-β in HepG2 liver cancer cells, induces oxidative phosphorylation (Figure 3),
stimulates antitumor immunity, and inhibits epithelial–mesenchymal transition and the
expression of vascular endothelial growth factor A [53]. Changes in BA may thus serve as
an early indication of ARLD and the health status of IECs.

A diet rich in proteins and low in carbohydrates may lead to an increase in bile-
producing Clostridium scindens, Clostridium hiranonis, Clostridium hylemonae, and Clostridium
sordellii [54]. Since these species are closely associated with colorectal cancer (CRC) [55],
a species-specific diagnostic test is invaluable, provided that the tests are performed on
a routine basis and diets remain unchanged. Bile acids serve as ligands for farnesoid
X receptor (FXR) and induce the FXR target gene fibroblast growth factor (FGF)-19 in
humans. The release of FGF-19 into the portal vein inhibits the synthesis of hepatic BA
in the liver [56]. FGF-19 may thus serve as a reporter molecule for alcoholic hepatitis and
early ARLD.

Another possible reporter molecule for ARLD is the c-type lectin called regenerating
islet-derived 3 gamma (REG3G). Studies conducted on mice with ARLD have shown that
the increase in mucosal bacteria, especially in the jejunum, is associated with a decline
in REG3G production [57]. Mice deficient in the Reg3g gene developed alcoholic steato-
hepatitis [58], confirming the protective role of REG3G in ARLD. An increase in REG3G
prevented ARLD in mice [58]. The authors have also shown an increase in inflammation
and steatosis in REG3G-deficient mice, associated with the translocation of bacteria to
mesenteric lymph nodes and the liver. Bacteria-derived products such as lipopolysaccha-
rides (LPS) and fungal cell wall components are also translocated across impaired gut walls
(Figure 3) [59]. The overexpression of Reg3g in mice led to a decrease in mucosa-associated
microbiota and prevented the translocation of bacteria, thus protecting the animals from
developing alcoholic steatohepatitis [58]. Studies on humans have yielded similar results.
Furthermore, a deficiency of mucin-2 (Muc2), the most abundantly secreted mucin in the
small and large intestine, resulted in an increase in antimicrobial lectins, including REG3B
and REG3G [60,61]. REG3B and REG3G may serve as reporter molecules to detect early
changes in Muc2, which is strongly associated with ARLD.
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thesis of hepatic bile acid (BA) in the liver. Per2 = period circadian regulator, LCA = lithocholic acid, 
LPS = lipopolysaccharide, TNF-α = tumor necrosis factor alpha, IL-1β = isoleucine 1 beta (a pro-
inflammatory cytokine), NLRP-3 = Nod-like receptor protein 3, α-SMA = alpha smooth muscle actin, 
TFG-β = transforming growth factor beta, CYP2E1 = cytochrome P450 2E, ROS = reactive oxygen 
species. Created using Biorender.com (25 March 2024). 
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Figure 3. Damage caused by high alcohol consumption. An elevation in CYP2E1 and NADPH
oxidases (NOXs) increases oxidative stress. Gut dysbiosis alters gut metabolism and damages the
intestinal barrier (epithelial cells) through various mechanisms, including oxidative stress-mediated
post-translational modifications (PTMs) that decrease the interactions between tight junction proteins
(TJPs). The release of fibroblast growth factor 19 (FGF-19) into the portal vein inhibits the synthesis
of hepatic bile acid (BA) in the liver. Per2 = period circadian regulator, LCA = lithocholic acid,
LPS = lipopolysaccharide, TNF-α = tumor necrosis factor alpha, IL-1β = isoleucine 1 beta (a pro-
inflammatory cytokine), NLRP-3 = Nod-like receptor protein 3, α-SMA = alpha smooth muscle actin,
TFG-β = transforming growth factor beta, CYP2E1 = cytochrome P450 2E, ROS = reactive oxygen
species. Created using Biorender.com (25 March 2024).

Most studies have focused on ARLD. Less information is available on non-alcoholic
fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). High levels of
fructose increase intestinal permeability due to the loss of tight junction proteins. This,
in turn, leads to an increase in the translocation of endotoxins, damage to hepatocytes,
the activation of Kupffer cells, and the release of inflammatory cytokines and oxygen
radicals [62]. These changes stimulate Toll-like receptors (TLRs) in the liver [63] and lead to
increased levels of LPS. Individuals with NAFLD have lower cell numbers of Bacteroides and
Bifidobacterium, but increased numbers of Clostridium and Ruminococcaceae [64,65]. Similar
results were reported by Xue et al. [66] when they studied rats with NAFLD, except that the
authors reported an increase in E. coli and Enterococcus spp., and a decrease in Lactobacillus,
Bifidobacterium, and Bacteroides.

Studies with mice have shown that alcohol abuse may lead to an increase in the
expression of the Per2 gene that encodes the period circadian regulator Per2. This led to the
dysfunction of occludin in IECs of the duodenum and colon, followed by the translocation
of bacteria across the gut wall (Figure 3) [67]. Whether this applies to humans is uncertain.
According to Leclercq et al. [41] only 43% of individuals diagnosed with alcohol use
disorder and mild liver disease showed evidence of gut barrier dysfunction when tested
using the 51Cr-EDTA method. Further research is required to determine if Per2 or its gene
Per2 could be used as reporters of bacteremia due to alcohol misuse.

Individuals with liver cirrhosis have high levels of LPS, tumor necrosis factor-α
(TNFα), endotoxin, and pathogen-associated molecular patterns (PAMPs), usually asso-
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ciated with an increase in bacteroidetes, proteobacteria, Enterobacteriaceae, Alcaligenaceae,
Fusobacteriaceae, Prevotellaceae, bifidobacteria, and streptococci, and a decrease in Lach-
nospiraceae, Ruminococcaceae, Coprococcus, and F. prausnitzii [50]. Gut microbiota most
inhibited by alcohol are Clostridium, Akkermansia, and Bacteroides, and those stimulated
are Enterobacteriaceae, Actinibactaeria, Proteobacteria, Firmicutes, Prevotellaceae, Veillonellaceae,
and Streptococcoceae [68]. Alterations of these microbiota are associated with an increase in
endotoxins and β-glucan, and a decrease in amino acids, steroids, SCFAs, LCFAs, indole-3
acetic acid, vitamin B, and bacteriocins [68].

More research is required to determine the effect of bacterial diversity on ARLD, and
to what extent treatment with beneficial microorganisms could alleviate symptoms. Repair
of the gut barrier is possible with microbial fecal transplants (MFTs), supplementation with
SCFAs, and synthetic biology interventions [69]. Despite all the knowledge gathered on
ARLD, we still lack a detailed understanding of which species are more prone to cause
a leaky gut, the species or strains best suited to rectify damage to the gut wall, and the
most harmful circulating PAMPs. Although changes in microbial populations have been
identified, we have not yet developed a set of microbial markers that may be used as an
early reporting system for liver disease. This is important, as currently available biomarkers
for ARLD are not always sensitive enough, and not all patients display elevated serum
aminotransferase levels.

3. Cancer

Biomarkers currently used to detect the most prevalent cancers (Figure 4) are alpha-
fetoprotein (αFP) (testicular and hepatocellular cancer), human chorionic gonadotrophin
(β-HCG) (testicular cancer), calciton and thyroglobulin (thyroid cancer), cancer antigen
(CA) 125 (ovarian cancer), CA 19.9 (pancreatic cancer), CA 15.3 (breast cancer), carcinoem-
bryonic antigen (CEA) (colorectal cancer), paraproteins (myeloma), and prostate-specific
antigen (PSA) (prostate cancer) [70]. A better understanding of microorganisms associated
with tumors and the carcinogenic metabolites they produce may, however, lead to the
development of early cancer reporters. Some examples are discussed.

Fusobacterium nucleatum and Helicobacter pylori promote cancer through a complex
set of mechanisms, including chronic inflammation, DNA damage, and the activation of
oncogenic pathways [71,72]. Proteases and phospholipases produced by H. pylori degrade
the mucus layer on the surface of gut epithelial cells. This not only facilitates the adherence
of H. pylori to mucus layers [73] but also upregulates the cytotoxin-associated gene A (CagA),
leading to an increase in spermine oxidase (SMO). During the conversion of polyamine
spermine to spermidine, H2O2 levels increase, causing damage to the DNA of epithelial
cells and apoptosis. A subpopulation of the affected epithelial cells gradually becomes
resistant to apoptosis and transforms into malignant cells [74,75]. Infection with H. pylori
is, however, not an indication of cancer. Only 1–4% of individuals infected with H. pylori
develop gastric cancer. Colibactin, a genotoxin produced by polyketide synthetase-positive
strains of Escherichia coli (pks+ cells), alkylates DNA and causes colorectal cancer [76,77].
Screening for colibactin-producing E. coli may be a strategy to restrain the production of
pro-tumorigenic factors from the tumor microenvironment. Our understanding of the
cancer-promoting potential of pks+ E. coli is limited and the expression of SMO in colorectal
tumors needs to be confirmed with more clinical studies. In the future, colibactin and SMO
may serve as reporters of colon cancer.

Microbial cells have also been also detected in various other tumors, including breast
and pancreatic cancers [76,77]. Although it seems feasible to use bacteria as biomarkers to
predict different types of cancer, differentiation between cancer-causing microbes within
cells and those surrounding cancer cells or immune cells remains difficult [78–80]. This
is further complicated by low cell numbers and the infrequent distribution of bacterial
cells in tumors [81,82]. The average distribution of microorganisms in malignant tumors
is one in every 104 cells [83]. It is thus clear that microorganisms associated with cancer
cells can only be detected with susceptible molecular methods that are specific enough
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to differentiate between bacterial species and detect the progression of bacterial cells
in different tissues. Data generated by research groups that screen for microorganisms
associated with cancer are inconsistent and unreliable. This may change with the vast
strides made in the identification of invading species with next- and third-generation
sequencing [84,85].
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Some cancers are not caused by direct contact with microbial cells or TME but by
microbial metabolites. Growing evidence indicates that commensal bacteria are involved
in the pathogenesis and progression but also the suppression of various human cancers.
Bacterial communities that populate solid tumors have been described. Some microbial
molecules can be therapeutically exploited to detect cancer at an early stage. Examples
are lipoteichoic acid (LTA) and deoxycholic acid (DCA) translocated from the GIT to the
liver via enterohepatic circulation and the release of outer membrane vesicles (OMVs) from
microbial cells [86,87]. OMVs released by Fusobacterium nucleatum subsp. polymorphum
enter the bloodstream through capillaries and spread to distantly located cells. Activation
of TLR4 and NF-κB in colonic epithelial cells stimulates the production of downstream
pro-inflammatory factors that cause intestinal inflammation [88]. It is, however, difficult to
detect low quantities of TLRs in the intestinal mucosa. Quantitative PCR has been used to
detect the expression of specific genes but does not always provide consistent results due
to variations of TLRs within the mucosa. Although most TLRs are expressed in IECs in the
large intestinal tract, in vitro tests have shown that the expression of TLR and signaling
in IECs is down-regulated [89]. On the other hand, in patients with inflammatory bowel
disease (IBD), an increase in the expression of mucosa-located TLR4 has been reported [89].
Ungaro et al. [90]. used immunohistochemistry (IHC) instead and claimed that they could
detect different expression levels of TLR4 in several cell types. By using immunofluores-
cence (IF) and IHC methods, the authors discovered that a subset of human colorectal
cancer cells overexpressed TLR4. OMVs secreted from F. nucleatum alter epithelial home-
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ostasis by targeting the receptor-interacting protein kinase 1 (RIPK1)-mediated cell death
pathway. This weakens the intestinal mucosal barrier and leads to ulcerative colitis [91,92].

Melanoma patients treated with a combination of T-lymphocyte-associated protein 4
(CTLA-4) and programmed cell death protein 1 (PD-1) have developed immune-related
adverse events (irAEs) of grade three or higher [93]. The binding of programmed cell death
ligand-1 (PDL-1) to PD-1 blocks treatment with immunotherapy drugs. Treatment that
targets the PD-1/PD-L1 axis has proved highly successful but is not without challenges.
In many cases, blocking the PD-1/PD-L1 axis is not sufficient to stimulate an effective
antitumor immune response, as seen in HCC patients. This suggests that the PD-1/PD-L1
pathway is not the only rate-limiting factor [94]. According to the authors of one study,
the PD-1/PD-L1 antibody may be used in combination with antivascular drugs, dual
immunotherapy, and combined with radiation and chemotherapy. Coprobacillus cateniformis
has been shown to down-regulate PD-L2 expression on dendritic cells (DCs) and increase
the efficacy of PD-1 inhibitors [95]. Research on the efficacy of drug therapy, drug reactions,
and the identification of tumor biomarkers is a challenging field and requires in-depth
fundamental research. The answer to the treatment of gastrointestinal cancer may very well
be the selection of gut bacteria with anti-PD-1 and PD-L1 properties. Melanoma patients
who received MFTs have defeated resistance to anti-PD-1 therapy [96,97].

B. intestinalis triggers the occurrence of irAEs by inducing the expression of IL-β1 in
the ileum [93]. Studies conducted on mice have shown that SCFAs limit the activity of
anti-CTLA-4 by restricting the up-regulation of CD80/CD86 on dendritic cells (DCs) and
inducible costimulatory (ICOS) on T cells and cause the accumulation of tumor-specific
and memory T cells [98]. Butyrate induces the differentiation of colonic regulatory T cells
(Tregs) [99] and may thus suppress antitumor immunity. In another study conducted on
patients diagnosed with HCC and treated with immune checkpoint inhibitors (ICIs) [100],
cell numbers of Lachnoclostridium increased, and thus also the levels of ursodeoxycholic
acid (UDCA) and ursocholic acid (UCA). Although several immunotherapy biomarkers,
such as PD-L1, tumor mutational burden (TMB), and tumor-infiltrating T cells have been
identified in different types of cancer [101–103], none have been validated clinically. These
biomarkers are often difficult to manipulate, which limits their practical applications.
Furthermore, innate and adaptive immunity could be regulated by gut microbiota and
their metabolites [104].

In several studies, patients diagnosed with liver cancer who responded to immunother-
apy had elevated numbers of Lachnospiraceae, Alistipes, Marseille, and Ruminococcaceae that
could be associated with longer progression-free survival (PFS) and overall survival (OS).
Patients who did not respond to immunotherapy had high numbers of Veillonellaceae and
worse PFS and OS outcomes [105,106]. Lung cancer patients who reacted positively to
immunotherapy had high levels of Alistipes putredinis, Bifidobacterium longum, Bacteroides
vulgatus, Prevotella copri, and Parabacteroides distasonis, while patients who did not respond
to immunotherapy had low numbers of Ruminococcus [107,108]. Phascolarctobacterium
and Ruminococcus spp. are associated with improved prognosis in lung cancers, while
an increase in Dialister spp. is linked to a shorter PFS [109,110]. Bifidobacterium longum,
Bifidobacterium adolescentis, Collinsella aerofaciens, and Enterococcus faecium have been shown
to be more abundant in patients with metastatic melanoma who responded to treatment
compared to non-responding patients [111].

In general, Firmicutes are associated with a positive immunotherapy response in HCC
patients, while Bacteroidetes are dominant in biliary tract cancer (BTC) patients who re-
spond favorably to immunotherapy [105]. High cell numbers of Bacteroides caccae have been
recorded irrespective of the type of ICI therapy. High cell numbers of Faecalibacterium praus-
nitzii, Bacteroides thetaiotamicron, and Holdemania filiformis have been observed in patients
who responded to Ipilimumab and Nivolumab, while an increase in Dorea formicogenerans
has been noted in patients treated with pembrolizumab [112]. Bacteroides zoogleoformans
has been associated with improved responses to immunotherapy, while Bacteroides ovatus,
Bacteroides dorei, and Bacteroides massiliensis have been associated with worse PFS [105,113].
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Based on these results, variations in bacterial species, even within the same genus, can
lead to opposite conclusions. Furthermore, results reported for the same type of cancer
are not always consistent. It is clear that the selection of immunotherapy biomarkers is
not that simple, and reports need to be critically evaluated. The inconsistency in results
may be attributed to the variation of cancer types, analysis methods, sample size, im-
munotherapy drugs used, pretreatments, and clinical history of patients. A good approach
to achieving consistent data would require the standardizing of trials, the enrollment of
more participants, and the use of updated interdisciplinary methods.

HCC is the third most common cause of cancer-related fatalities globally and is in-
fluenced by the gut microbiome [114]. This means biomarkers based on gut microbiota
may be used in the early detection of HCC [115,116]. In patients with NAFLD-HCC, gut
microbiota stimulates IL-10+ Tregs, causes a decrease in pro-inflammatory cytokines such
as IL-2 and IL-12, and leads to the attenuation of cytotoxic CD8+ T cells. According to
Behary et al. [117] such changes in immunosuppression may contribute to the progres-
sion and development of NAFLD-HCC. In mice dysbiosis has been shown to increase
the infiltration of myeloid-derived suppressor cells (MDSCs) to the liver, leading to liver
carcinogenesis and a decrease in Akkermansia muciniphila in the GIT [118]. This leads to an in-
crease in SCFAs [117]. Butyrate and propionate regulate CD4+ and CD8+ T cells and reduce
inflammation [99,119]. Patients diagnosed with HCC have shown a decrease in butyrate-
producing Ruminococcus, Oscillibacter, Faecalibacterium, Clostridium IV, and Coprococcus and
an increase in LPS-producing bacteria such as Klebsiella and Haemophilus [120]. Primary bile
acids that are converted to secondary bile acids by gut microbiota are reabsorbed in the intes-
tine and promote hepatic inflammation and hepatocarcinogenesis [121–123]. In individuals
with NAFLD-HCC and NAFLD-cirrhosis, Proteobacteria, Enterobacteriaceae, Bacteroides caec-
imuris, and Veillonella parvula are dominant. Oscillospiraceae and Erysipelotrichaceae are
less prominent in NAFLD-HCC patients [117]. Less Faecalibacterium, Ruminococcus, and
Ruminoclostridium, normally associated with SCFA production, have been isolated from
the feces of patients who tested negative for hepatitis B virus and hepatitis C virus [non-B,
non-C (NBNC) hepatitis] and (NBNC)-HCC. However, higher levels of pro-inflammatory
bacteria such as Escherichia-Shigella and Enterococcus were identified in these patients [123].

Several studies have shown that gut dysbiosis may lead to the development of colorec-
tal cancer (CRC) [124,125]. Accurate and noninvasive biomarkers for early CRC screening
are needed. A starting point would be further research on oncogenic strains of Bacteroides
fragilis, Escherichia coli, Enterococcus faecalis, Streptococcus gallolyticus, and Fusobacterium
nucleatum. Although different datasets show a drastic change, mostly a reduction in species,
in the microbiome of individuals with CRC [126,127], no single strain has been identi-
fied as a universal biomarker. Fusobacterium nucleatum may be used as a biomarker for
CRC in feces and tumors [128–130], but further research is needed to link cell numbers to
readings recorded with fecal immunochemical tests (FITs) and exposure to the anti-cancer
drug. Another promising non-invasive approach to detect early CRC is the detection of
microbial-derived metabolites in blood, urine, saliva, and fecal samples [131], possibly by
using nuclear magnetic resonance (NMR) [132]. Target molecules would be lactate, glucose,
and specific amino acids, as these were present at higher levels in CRC patients compared
to healthy controls [133]. Changes in the levels of SCFAs, glutamate, and succinate may be
used to follow the development of CRC, as these vary with the progression of tumors [132].
According to Lin et al. [132], acetate levels varied the most in the feces of CRC patients and
are thus a good biomarker. Chen et al. [134], on the other hand, have noted that the levels
of butyrate decreased in the stools of CRC patients as the numbers of butyrate-producing
bacteria declined. Liu et al. [135] have shown that Desulfovibrio, Escherichia, Faecalibacterium,
and Oscillospira may be used as fecal biomarkers, with a GC prediction of 90% and above.

4. Cognitive Impairment

The gut microbiome regulates the metabolism of D-amino acids in the brain and plays
a major role in cognitive impairment [136–138], as depicted in Figure 5. Corynebacterium
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glutamicum, Lactobacillus plantarum, Lactococcus lactis, Lactobacillus paracasei, Brevibacterium
avium, Mycobacterium smegmatis, Bacillus subtilis, and Brevibacterium lactofermentum convert
L-glutamate (L-Glu) to D-glutamate (D-Glu) and then to γ-amino butyric acid (GABA)
(Figure 5, reviewed by Dicks [4]). Chang et al. [139] have shown that Lactobacillus rhamnosus
JB-1 changes the expression of GABA receptors (GABARs) in the brain, leading to less
anxiety and depressive behavior. Low levels of D-Glu in the brain are also associated with
Alzheimer’s disease (AD, Figure 5). Several researchers have reported on the positive effect
probiotic lactic acid bacteria have on the protection of neurological pathways and ascribe
this to the reduction of inflammation, an increase in immune response, and stimulation of
neurotransmission through the metabolism of tryptophan to indole derivatives (Figure 5) in
the tryptophan–kynurenine signaling pathway [140,141]. In one study, Bifidobacterium breve
strain A1 administered to mice injected with amyloid-β prevented cognitive impairment
and suppressed the expression of pro-inflammatory and immune-reactive genes in the
hippocampus [142]. In several studies, lactobacilli and bifidobacteria prevented the progres-
sion of AD in mice [143–145], increased expression of neuronal proteolytic pathways [143],
and reduced neurodegeneration [145]. Akbari et al. [146] have shown an improvement in
cognitive functions and metabolic status of AD patients after treatment with a probiotic
containing Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium bifidum, and Lactobacil-
lus fermentum. In another study [147], a multispecies probiotic increased the cell numbers
of F. prausnitzii and improved the circulation of kynurenine in patients with AD. A higher
density of immune cells and antigen processing/presentation markers have been reported
present in patients with increased levels of Faecalibacterium [148].

Butyrate, produced in the colon by Bifodobacterium, Lactobacillus, Lachnospiraceae, Blau-
tia, Coprococcus, Roseburia, and Faecalibacterium, provides energy to epithelial cells [149],
suppresses inflammatory responses by down-regulating histone deacetylase EC 3.5.1.98
(also referred to as lysine deacetylase) inhibitors (HDACi) [150], and modifies the integrity
of the blood–brain barrier (BBB), which affects the CNS and maturation of microglia [151].
Inhibition of HDACi in the frontal cortex and hippocampus of mice, brought about by the
administration of sodium butyrate, has alleviated depressive behavior [152], dementia, and
brain trauma [153]. Butyrate, on the other hand, also activates G-protein-coupled receptors
(GPCRs, Figure 5) that may cause several neurodegenerative disorders [154] and stimulate
regulatory T cells to produce inflammatory cytokines [155]. Low levels of butyrate inhibit
GPCRs and interrupt immune or hormonal responses [151]. Alteration of the hormone
signals reaches the EECs via the hypothalamic–pituitary–adrenal axis (HPA) [154]. Elevated
levels of the neuromodulator acetylcholine (Ach) increase the expression of bdnf, encoding
the brain-derived neurotrophic factor (BDNF, Figure 5) in the frontal cortex and hippocam-
pus, and stimulate brain development [156]. Low levels of BDNF are associated with
depression and anxiety [157]. Neurological disorders may thus be prevented by keeping
SCFAs and histone deacetylase (HDAC) at optimal levels. One way of achieving this is to
maintain a well-balanced gut microbiome. Monitoring butyrate levels may be considered a
reporter of inflammation and cognitive abilities. This would, however, be an indirect way
of monitoring brain functions related to mental health. More direct approaches need to
be considered, i.e., determining the levels of GABARs, HDACi, Ach, and the expression
of bdnf.

Neuronal conditions such as Alzheimer’s disease (AD), autism spectrum disorder
(ASD), multiple sclerosis (MS), Parkinson’s disease (PD), and amyotrophic lateral sclerosis
(ALS) are associated with dysfunctional microglia [158]. Fecal transplants from humans
with attention deficit hyperactivity disorder (ADHD), AD, and PD to mice have activated
the microglia in the brain and aggravated cognitive and physical impairments [159–161].
These findings, along with more evidence of a clear link between microbial dysbiosis
and neurodevelopmental, neurodegenerative, and psychiatric disorders such as ASD,
schizophrenia, AD, major depressive disorder (MDD), and PD [162–165] have prompted
researchers to have a closer look at the GBA.
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To the best of our knowledge, no biomarker tests for AD have been approved by the
U.S. Food and Drug Administration (FDA). Commercially available tests are AlzheimAlert™
(Nymox Pharmaceutical Corp., Saint Laurent, QC, Canada); Innotest® assays for microtubule-
associated protein (T-tau), phosphorylated tau (P-tau), and amyloid β 42 (Aβ42) (Fujirebio
Diagnotics, Malvern, PA, USA); AdMark® cerebrospinal fluid (CSF) analysis; DISCERN™
(Neurodiagnostics, Phoenix, AZ, USA) skin sample fibroblast testing; AD-Detect (Quest
Diagnostics, Secaucus, NJ, USA); and Lumipulse® G ß-Amyloid Ratio (1–42/1–40) Test
(Fujirebio Diagnostics).

5. Multiple Sclerosis

Oxidative stress is triggered by the production of reactive oxygen species (ROS), dys-
functional mitochondria, and damaged cells [166–168]. Neurons in the CNS are highly
susceptible to oxidative stress (Figure 6), which causes chronic inflammation and ultimately
demyelination and neurodegeneration [169,170]. Bacterial metabolites (small molecules
released by gut bacteria) are known to alter the levels of multiple sclerosis (MS) [170,171]
and may be used as biomarkers in MS. Yoon et al. [172] have shown changes in the levels
of SCFAs such as acetate, propionate, and butyric acid in individuals with MS. Studies with
mice have shown that SCFAs released from gut microbiota have anti-inflammatory proper-
ties through anti-inflammatory cytokine production and restore BBB integrity [99,173,174].
This is summarized in Figure 6. It is, however, important to note that SCFAs have an oppo-
site effect than long-chain fatty acids (LCFAs). Dietary LCFAs promote a pro-inflammatory
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status through Th17 cell activation. One of the causes of MS is the infiltration of the
CNS by peripheral autoreactive immune cells that cross a damaged BBB [175,176]. These
autoreactive immune cells (e.g., Th1, Th17, and CD8+ T), activate B cells to release au-
toantibodies [177] (Figure 6). Overactivation of exogenous and endogenous CNS immune
cells leads to neuroinflammation and neurodegeneration [178]. This is usually a cascade of
events. When autoreactive CD4+ T cells invade the CNS, Th17 cells are activated and ex-
press chemokine receptor 6 (CCR6) that binds to the CCL20 ligand on endothelial cells in the
BBB [179] (Figure 6). The release of IL-17 and granulocyte-macrophage-colony-stimulating
factor (GM-CSF) by activated CD4+ Th17 cells triggers the activation of microglia and
macrophages (Figure 6). Mononuclear phagocytes activated by GM-CSF migrate into the
CNS and induce the production of ROS species that damage neurons [180] (Figure 6). CD4+

Th1 cells also cross the BBB and release gamma-interferon (IFN-γ) which activates microglia
to release IL-12 and initiate a CD8+ cytotoxic T cell response [181]. IFN-γ induces the for-
mation of major histocompatibility complex class I molecules (MHC I), which regulates
the immune response to pathogens [182]. With the increase in Th1 and Th17 cell levels,
pro-inflammatory molecules such as cytokines, interferons, and tumor necrosis factor (TNF)
are released, causing further damage to the CNS [183]. IL-17 produced by Th17 and CD8+

cells recruits neutrophils and monocytes to the CNS [183].
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Th1 and Th17-related pro-inflammatory cytokines, interferons, and tumor necrosis
factor (TNF) may thus be possible reporters of MS. The pro-inflammatory environment cre-
ated by Th1 and Th17 cells attracts peripheral monocytes and promotes neuronal damage.
In a normal immune response, T (and B) cells fight microbial infections. B cells produce im-
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munoglobulin A (IgA). Changes in these defense mechanisms lead to gut dysbiosis and the
risk of developing autoimmune diseases [184]. In MS, B cells are transformed into CXCR3+

cells that infiltrate the brain [185], and central as well as peripheral tolerance mechanisms
control the development of autoreactive B cells [186]. MS individuals have a defective pe-
ripheral B cell tolerance [187], and activated microglia release pro-inflammatory mediators
(e.g., ROS, NO, and peroxynitrite) that are involved in the phagocytosis of myelin, forma-
tion of antigen T cells, and production of cytokines [188]. Pro-inflammatory mediators
such as interleukins, NO, and ROS cause neurodegeneration. NO produced by activated
microglia alters energy production at a cellular level, which leads to increased intracel-
lular Ca2+ and damage to neuronal cells. In addition, TNFα promotes the apoptosis or
pyroptosis of neuronal cells [189]. Acute demyelinated lesions in MS progress into chronic
active inflammatory lesions [190]. Astrocytes maintain BBB function and neurotransmitter
levels. They regulate enzymes involved in glutamate production. In individuals with MS
the regulatory role of astrocytes is repressed, leading to an increase in glutamate levels,
glutamate-mediated excitotoxicity, and neuronal death [189].

Gut microbiota maintains gut barrier integrity [190] but also modulates mitochondrial
activity and ROS production, either directly or indirectly through the production of SCFAs
and formyl-peptides or the activation of NADPH oxidase [191]. It is thus no surprise that
individuals diagnosed with MS suffer from gut dysbiosis. An increase in ROS alters intra-
cellular signaling pathways and promotes inflammation in MS patients [192,193]. ROS also
modulates redox signaling pathways in intestinal cells, such as the nuclear factor erythroid
2-related factor (Nrf2) pathway, TLR pathway, or NF-κB pathway. In healthy individuals
with a balanced gut microbiome, the interaction between gut bacteria and the immune
system protects cells from ROS damage. Nrf2 decreases ROS levels by regulating mitochon-
drial functions [192]. Clostridium spp. and Lactobacillus rhamnossus inhibit NFκB-mediated
inflammation by producing metabolites that control immune response [193–197]. NF-κB
can thus play a protective role in the gut [198]. If NF-κB is at below-optimal physiological
levels, as in individuals with MS, mucosal innate immunity is compromised and pathogens
increase [197,198]. Tryptamine, produced from tryptophan, decreases inflammation by
stimulating the growth of butyrate-producing gut bacteria [199]. A derivative of tryptamine,
5-hydroxy-tryptamine (5-HT or serotonin), acts as an anti-depressant. Low levels of 5-HT
are found in MS patients. Serotoninergic modulators such as SSRIs activate microglia and
decrease oxidative stress and neuroinflammation [200,201]. N-acetyl-5-methoxytrypatmine
(melatonin), another tryptamine derivative, acts as a signaling molecule at the CNS level
and regulates immune response, oxidative stress, and apoptosis. However, in a recent
review it was mentioned that melatonin may instigate oxidative stress and inflamma-
tion [202].

Developing a reporter for MS is a challenge, as the molecule may be produced en-
dogenously or by intestinal microbiota. This is intensified by the high similarity between
compounds produced by gut microbiota and human cells. A recently published gut
microbiota-specific exposome database [203] may provide answers to the selection of re-
porters for MS. This would require pooling information associated with MS from databases
on exposomes, genes, and metabolites (including those of bacterial origin).

6. Diabesity

Diabesity, described as a strong pathophysiological link between diabetes and excess
body weight, is becoming a global concern [204] and is treated using pharmacological
and non-pharmacological approaches. Fundamental studies have shown that changing
the gut microbiome may be one way of treating diabesity. Proposed ways of facilitating
such a change include the use of nano nutraceuticals (including nanoprobiotics), nanopre-
biotics, and plant-derived nanovesicles (Figure 7). Several studies have shown that an
increase in Bifidobacterium, Enterococcus, Bacteroides, Lactiplantibacillus plantarum (previously
Lactobacillus plantarum), and Akkermansia muciniphila regulates diabesity [204,205]. Obese
individuals have an abundance of Firmicutes, Alistipes, Anaerococcus, Fusobacterium, and
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Parvimonas (Figure 7), whereas lean people have more Bacteroides, Faecalibacterium, and
Lachnoanaerobaculum [206]. In general, a healthy gut is dominated by Bacteroidetes and
Firmicutes [207]. This has led nutritionists to believe the Firmicutes/Bacteroidetes (F/B)
ratio may be an indicator of GIT health. This is confirmed by an increase in F/B amongst
obese individuals and the opposite (a decrease) during weight loss [208]. Lean people
have a high population of bacteria associated with anti-inflammatory properties, whereas
obese people have more bacteria with pro-inflammatory properties [206] (Figure 7). Similar
changes in bacterial populations are observed in people with diabetes. The onset and
progression of diabetes are characterized by an increase in pro-inflammatory bacteria and
a decrease in anti-inflammatory bacteria [209]. Eubacteria rectale, Roseburia, Verrucomicro-
bia, Clostridium, F. prausnitzii, and Akkermansia muciniphila inhibit the effects of diabetes,
whereas E. coli, Bacteroides stercoris, Desulfovibrio, Clostridium mutans, Streptococcus mutans,
Lactobacillus gasseri, and Haemophilus parainfluenza promote the effects of diabetes [210,211]
(Figure 7). An imbalance in gut microbiota triggers inflammatory responses and affects
insulin-related signaling pathways, such as the mammalian target of the rapamycin sig-
naling pathway and TLR4/NF-κB signaling. This leads to insulin resistance and elevated
blood glucose [212,213]. Currently, there is no specific species that can be used as a reporter
for diabesity. Even if such a species is identified, further research is required to determine
the threshold of cell numbers considered to be a warning sign for developing diabesity. As
with many other abnormalities, more reliable reporters would be enzymatic profiling or
the overexpression of specific genes by gut microbiota.
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7. Stroke

Ischemic stroke (IS) is described as a blockage of blood supply to part of the brain,
causing irreversible damage and brain tissue necrosis [214]. Half of the individuals who
have had IS suffer from gastrointestinal complications, including dysphagia, gastrointesti-
nal bleeding, constipation, and intestinal incontinence [215] (Figure 8). It is interesting to
note that people with Alzheimer’s disease, Parkinson’s disease, stroke, and autonomic
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spectrum disorder have an imbalanced gut microbiome [216–219]. The GIT Firmicute
and Bacteroidetes cell numbers decrease in individuals who have had a stroke, while the
Proteobacteria increase (Figure 8). The difference between these phyla correlates with
the severity of the stroke. The increase in trimethylamine (TMA)-producing bacteria of
people who have had a stroke (Figure 8) is ascribed to the abundance of dietary quaternary
ammonium compounds, mainly choline [220,221]. Such a change in bacterial phyla may
serve as a stroke warning, thus a reporting system may be referred to, e.g., the Stroke Dys-
biosis Index (SDI) [222]. A high SDI correlates with an increase in Enterobacteriaceae and
Parabacteroides but a decrease in Fecalibacterium, Clostridiaceae, and Lachnospira (Figure 8).
The value of using an SDI as a reporter system for stroke has been demonstrated in a murine
experiment. Mice that received fecal transplants from patients with a high SDI experienced
severe brain damage, increased levels of IL-17 and T cells (Figure 8), and a significantly
higher risk of stroke than mice that received normal fecal transplants [203]. Changes in the
gut microbiome from beneficial to pathogenic phyla lead to an increase in endotoxins such
as LPS that ultimately enter the circulatory system. Endotoxins stimulate the overexpres-
sion of Toll-like receptors (TLRs), and activate the nuclear factor kappa B (NF-κB) pathway,
peripheral immune response, and chronic inflammatory response [223] (Figure 8). An
imbalanced gut microbiome can also increase the levels of oxidized low-density lipoprotein
(OX-LDL), causing blood vessel constriction and, thus, hypertension [224]. Blood pressure
is regulated by SCFAs produced by gut microbiota, via the gut-sympathetic nervous system
axis [225]. Apart from the GBA and HPA, the nervous and immunological pathways, the
gut–blood (intestinal epithelial and mucosal) barrier, and the BBB play a major role in brain
functions [226].
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8. Conclusions

Bacterial interactions with the human GIT are difficult to study, not only due to the
vast number of coexisting species found in the microbiome but also due to the difficulty in
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culturing many of the bacteria. Interactions between intestinal bacteria and human cells
may occur randomly without selective pressure or develop due to changes in immune
responses caused by certain diseases. Further research is required to understand the
interactions between bacterial proteins and proteins of human origin and the effect small
molecules such as SCFAs have on gut homeostasis, regulation of the immune system,
maintenance of IECs, and regulation of neurological and endocrine functions. Other
physiological functions may also be modulated and regulated.

Abnormalities such as ARLD, cancer, cognitive impairment, MS, diabesity, and IS may
not always be preventable, but the early detection of these diseases is important and affects
the success of treatments. Although diagnostic tests are available to identify these diseases,
most are based on changes in certain enzymatic and chemical profiles. Some of these early
screening tests are unreliable, as seen with the monitoring of serum aminotransferase levels
in the diagnosis of ARLD. In this case, a combination of biomarkers such as CDT, GGT, and
MCV have to be used to validate the results. Alternative options need to be investigated,
such as using REG3B and REG3G as reporter molecules to detect early changes in gut
epithelial Muc2, which is strongly associated with ARLD. Changes in the levels of the
circadian regulator Per2 or expression of Per2, and levels of the fibroblast growth factor
FGF-19 may also serve as reporters in the early detection of ARLD. The early detection of
colon cancer is possible by testing for colibactin and SMO and changes in butyrate levels.
The importance of monitoring butyrate levels is also important from an immunological
perspective. With a decline in butyrate, HDACi levels increase, leading to an increase in
depressive behavior, dementia, and other brain traumas. At the same time, GPCRs are
inhibited, causing immune and hormonal imbalances. Butyrate may thus be a reporter of
inflammation, cognitive abilities, and mental health. Pro-inflammatory molecules such as
cytokines, interferons, and TNF may be used as early reporters of MS. These are just a few
examples of microbial enzymes and metabolites that may be considered in the development
of early reporter systems.
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