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Abstract: The integrated dysbiosis of gut microbiota and altered host transcriptomics in irritable
bowel syndrome (IBS) is yet to be known. This study investigated the associations among gut
microbiota and host transcriptomics in young adults with IBS. Stool and peripheral blood samples
from 20 IBS subjects and 21 healthy controls (HCs) collected at the baseline visit of an RCT were
sequenced to depict the gut microbiota and transcriptomic profiles, respectively. The diversities,
composition, and predicted metabolic pathways of gut microbiota significantly differed between
IBS subjects and HCs. Nine genera were significantly abundant in IBS stool samples, including
Akkermansia, Blautia, Coprococcus, Granulicatella, Holdemania, Oribacterium, Oscillospira, Parabacteroides,
and Sutterella. There were 2264 DEGs found between IBS subjects and HCs; 768 were upregulated,
and 1496 were downregulated in IBS participants compared with HCs. The enriched gene ontology
included the immune system process and immune response. The pathway of antigen processing and
presentation (hsa04612) in gut microbiota was also significantly different in the RNA-seq data. Akker-
mansia, Blautia, Holdemania, and Sutterella were significantly correlated with ANXA2P2 (upregulated,
positive correlations), PCSK1N (downregulated, negative correlations), and GLTPD2 (downregulated,
negative correlations). This study identified the dysregulated immune response and metabolism in
IBS participants revealed by the altered gut microbiota and transcriptomic profiles.

Keywords: irritable bowel syndrome; gut microbiome; gene expression profiling; immunity; metabolic
processes; multi-omics

1. Introduction

Irritable bowel syndrome (IBS) is a complex and multifactorial disorder manifesting
abdominal pain and symptoms including anxiety, depression, fatigue, etc., and its exact
underlying mechanisms are not fully understood [1–3]. A combination of genetic, environ-
mental, and microbial factors are likely to influence IBS. Accumulated evidence suggests
the gut–brain axis, which involves bidirectional communication between the gut and the
central nervous system, plays a crucial role in IBS [4–6]. Moreover, the specific genes impli-
cated may differ among individuals and across different subtypes of IBS. Advancements
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in high-throughput sequencing technologies and comprehensive multi-omics approaches
contribute to a more comprehensive understanding of gene expression in IBS [7,8].

The interaction of the gut–brain axis and transcriptomics has been confirmed to medi-
ate the pathophysiology of IBS [7,8]. Recent studies also demonstrate that gut microbiota
and related metabolism mediate IBS relapses [7,9]. Our recent study reported the distin-
guishing distribution of gut microbiota compositions between young adults with IBS and
healthy controls and the effect of diet on gut microbiota diversity and compositions [10,11].
Research on the role of gut microbiota in young adults with IBS has been ongoing, and the
results have, indeed, been inconsistent. Previous studies found that dysregulated immune
responses, including elevated pro-inflammation and inflammation, and altered lipidome
metabolism, are related to the development and progression of IBS [12–15]. However,
specific genes related to immune response and metabolism in young adults with IBS were
not universally agreed upon across studies.

Exploring the relationship between gut microbiota and host transcriptomics can pro-
vide insights into the molecular and genetic factors contributing to the development and
progression of IBS. Investigating the interaction between gut microbiota and host gene
expressions involved in young adults with IBS is crucial for advancing our understanding
of the etiologic mechanisms of the disorder, developing personalized treatment strategies,
identifying biomarkers, and ultimately improving patient outcomes. In this study, we focus
on multi-omics data using the gut microbiome 16S rRNA sequencing data and transcrip-
tomic data from a randomized control trial (RCT, NCT03332537) [16]. This multi-omics data
analysis aimed to (1) depict the different diversities, composition, and predicted metabolic
pathways of gut microbiota between young adults with and without IBS; (2) describe
transcriptomic profiles including differentially expressed genes (DEGs), differentially en-
riched gene ontology, different pathways between young adults with and without IBS; and
(3) explore the association among those significantly enriched genera, downregulated and
upregulated genes, as well as the associated functions.

2. Results
2.1. Phenotypic Characteristics of Subjects

The majority of IBS subjects and HCs were non-Hispanic, White female, and college
students. The detailed characteristics are summarized in Table 1. IBS subjects reported
significantly higher pain severity (worst pain and least pain in the last 24 h, average pain,
and current pain), pain interference, anxiety, and fatigue than the HCs (Table 2). IBS subjects
also reported higher levels of depressive symptoms and sleep disturbance (Table 2).

Table 1. Demographic characteristics.

IBS Subjects
(N = 20)

Healthy Control
(N = 21) p

n Percentage
(%) n Percentage

(%)

Sex

0.530Female 13 65.00 11 52.38

Male 7 35.00 10 47.62

Race

0.144

White 15 75.00 9 42.86

Asian 2 10.00 6 28.57

Black or African-American 3 15.00 4 19.05

Not reported 0 0 2 9.52
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Table 1. Cont.

IBS Subjects
(N = 20)

Healthy Control
(N = 21) p

n Percentage
(%) n Percentage

(%)

Ethnicity

0.567
Not Hispanic or Latino 15 75.00 16 76.19

Hispanic or Latino 3 15.00 4 19.05

Not reported 2 10.00 1 4.76

Education

0.043

High school or below 0 0 2 9.52

College or associate degree 11 55.00 17 80.95

Bachelor degree 5 25.00 2 9.52

Graduate or Doctorate degree 4 20.00 0 0

Employment Status

0.094
Student 13 65.00 18 85.71

Working now 7 35.00 2 9.52

Unemployed or other 0 0 1 4.76

Marital Status

0.232Never married 18 90.00 21 100

Married 2 10.00 0 0

Mean SD Mean SD

Age 22.05 2.74 20.14 1.39 0.030

Year of IBS diagnosis 2.25 1.89 NA
Note: IBS, irritable bowel syndrome; SD, standard deviation; NA, not applicable. The p-values are calculated by
Fisher’s exact test for categorical variables and Wilcoxon rank sum test for continuous variable.

Table 2. Summary statistics of the pain and symptom variables among the two groups, mean (SD).

IBS Subjects
(N = 20)

Healthy Control
(N = 21) p

BPI pain severity 3.05 (2.14) 0.33 (0.72) a <0.001

Worst pain 4.30 (2.39) 0.62 (1.07) <0.001

Least pain 2.05 (2.46) 0.10 (0.43) <0.001

Average pain 3.70 (2.11) 0.43 (0.92) <0.001

Current pain 2.15 (2.48) 0.19 (0.68) 0.001

BPI pain interference 2.65 (2.77) 0.23 (0.40) a <0.001

PROMIS Symptoms T-Score

Anxiety 58.76 (8.30) 54.55 (6.00) b 0.047

Depression 52.53 (8.07) 48.48 (6.12) 0.099

Fatigue 53.53 (9.63) 48.73 (9.21) b 0.042

Sleep disturbance 49.90 (5.84) 47.68 (4.33) 0.375
Note: SD, standard deviation; BPI, brief pain inventory; IBS, irritable bowel syndrome; PROMIS, Patient-Reported
Outcomes Measurement Information System. a The measurement is significantly different from the baseline
tested by a Wilcoxon rank sum test; b the scores for the healthy control group were significantly lower than the
IBS groups tested by a Wilcoxon rank sum test.
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2.2. Differentiations of Gut Microbiota between IBS Subjects and HCs

All the 20 IBS subjects had valid gut microbiota data. Among the 21 HCs, one did not
mail back the stool sample, and one was removed from the final analysis due to the low
quality of sequencing reads, yielding a total of 39 stool samples included in this analysis.
The IBS group demonstrated a significantly lower coverage, higher Invsimpson index,
higher Shannon index, and higher total observed species (sobs) (Figure 1(a1–a4)). The
principal coordinate analysis (PCoA) plot (Figure 1b) of the Bray–Curtis dissimilarity index
showed that the IBS subjects and HCs were partially overlapped. The LEfSe results indicate
that there are nine genera significantly enriched in IBS, including Parabacteroides, Akkerman-
sia, Blautia, Coprococcus, Granulicatella, Holdemania, Oribacterium, Oscillospira, Parabacteroides,
and Sutterella (Figure 1c). A compositional relative abundance for the 39 subjects was
plotted on average according to the nine genera (Figure 1d). Furthermore, there were
34 significantly different predicted KEGG pathways between the IBS participants and HCs,
including the enriched pathway “Antigen processing and presentation” in HCs and the
enriched pathway “Butanoate metabolism” and “Phosphatidylinositol signaling system”
in IBS subjects (Figure 1e).
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Figure 1. Differentiation of gut microbiota between IBS subjects and HCs. (a1–a4). Differentiation of 
coverage, Invsimpson index, Shannon index, total observed species (sobs) between IBS and HC 
groups. (b). PCoA plot of the Bray–Curtis dissimilarity index showed that the IBS subjects and HCs 

Figure 1. Differentiation of gut microbiota between IBS subjects and HCs. (a1–a4). Differentiation
of coverage, Invsimpson index, Shannon index, total observed species (sobs) between IBS and HC
groups. (b). PCoA plot of the Bray–Curtis dissimilarity index showed that the IBS subjects and HCs
were partially overlapped. (c). Compositional difference of gut microbiota between IBS participants
and HCs by the LEfSe analysis. The LEfSe results indicate that there are nine genera significantly
enriched in IBS, including Parabacteroides, Akkermansia, Blautia, Coprococcus, Granulicatella, Holdemania,
Oribacterium, Oscillospira, Parabacteroides, and Sutterella. The alpha value for the factorial Kruskal–
Wallis test was set to 0.05 for the pairwise Wilcoxon test, and the threshold on the logarithmic LDA
score for discriminative features was set as 2.0. Green indicates significantly enriched features in IBS,
red indicates significantly enriched features in HCs. (d). Compositional relative abundance for the
IBS and HC subjects plotted on an average basis according to the nine genera. (e). Different metabolic
profiles of gut microbiota between IBS subjects and HCs (predicted KEGG pathways).
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2.3. Differentiated Expressed Genes (DEGs) between IBS Subjects and HCs

Using the Deseq 2 analysis, we identified 2264 DEGs between the IBS participants
and HCs, with 768 upregulated and 1496 downregulated in IBS subjects (Figure 2a). The
principal component analysis (PCA) plot of gene expression profiling showed no overlap
between IBS participants and HCs (Figure 2b). Gene ontology analysis indicates that the
GOs among the top 50 upregulated genes comprise the GO 004419 biological process
involved in interspecies interaction between organisms, GO 0050896 response to stimu-
lus, and GO0002376 immune system process (Figure 2c). Meanwhile, the GOs among
the top 50 downregulated genes included the GO0002376 immune system process, GO
0022610 biological adhesion, and GO 0050789 regulation of biological process (Figure 2d).
By uploading the identified 2264 DEGs into Qiagen IPA analysis, we found that these
DEGs were involved in several disease pathways, e.g., antigen presentation pathway and
interferon signaling (Figure 2e). These GOs and disease pathways among the identified
DGEs highlight the dysregulated immune response among the host transcriptomics in IBS
subjects compared with the HCs.
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Figure 2. Differentiated expressed genes (DEGs) between IBS subjects and HCs. (a). Volcano plot of 
the DEGs, 2264 DEGs between the IBS subjects and HCs with 768 upregulated and 1496 
downregulated in IBS subjects. The black dots indicate genes present in both groups with a 
difference of log2 fold change (LFC) less than 1.5; The red dots indicate genes present in both groups, 
but with a difference of LFC equal to or greater than 1.5 (b). Principal component analysis (PCA) 
plot showed no overlap between IBS participants and HCs. (c). Gene ontology among the top 50 

Figure 2. Differentiated expressed genes (DEGs) between IBS subjects and HCs. (a). Volcano plot of the
DEGs, 2264 DEGs between the IBS subjects and HCs with 768 upregulated and 1496 downregulated in
IBS subjects. The black dots indicate genes present in both groups with a difference of log2 fold change
(LFC) less than 1.5; The red dots indicate genes present in both groups, but with a difference of LFC
equal to or greater than 1.5. (b). Principal component analysis (PCA) plot showed no overlap between
IBS participants and HCs. (c). Gene ontology among the top 50 upregulated genes in IBS participants.
(d). Gene ontology among the top 50 downregulated genes in IBS subjects. (e). Interferon signaling
pathway from DEGs. Gene, Protein, and Chemical identifiers marked with an asterisk indicate multiple
identifiers in the dataset file map to a single gene and/or chemical in the Global Molecular Network.
(f). IPA Prediction legend to help in the understanding of pathway from DEGs.



Int. J. Mol. Sci. 2024, 25, 3514 9 of 21

2.4. Associations of the Differentiated Gut Microbiota and Gene Expressions

We found 170 significant correlations of the nine genera (horizontal axis) and the top
50 upregulated and 50 downregulated DEGs (vertical axis) by using Spearman correlation
as presented in Figure 3. Among the top 50 upregulated genes, Sutterella was significantly
correlated with 21 DEGs, Akkermansia was significantly correlated with 20 DEGs, and
Blautia and Holdemania were significantly correlated with 18 DEGs. Regarding the top
50 downregulated genes, Akkermansia was significantly correlated with 18 DEGs, Blautia
was significantly correlated with 14 DEGs, Sutterella was significantly correlated with
11 DEGs, and Holdemania was significantly correlated with 8 DEGs. Among the nine
genera and the upregulated DEGs, RPL9P33 was significantly correlated with seven genera,
ANXA2P2 was significantly correlated with six genera, and RP11-730G20.2 was significantly
correlated with five genera. Among the downregulated DEGs, PCSK1N was significantly
correlated with five genera, and GLTPD2 was significantly correlated with four genera.
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axis). In the right column, the correlations between the nine genera (horizontal axis) and the top 50
downregulated DEGs (vertical axis). The significant correlations (q-value < 0.05), after multiplicity
adjustment by Benjamini-Hochberg method to control the false discovery rate (FDR) at 0.05, were
marked with asterisks. Blue indicates a positive correlation, red indicates a negative correlation.

Figure 4 illustrates some of the significant correlations, including the positive as-
sociations between Blautia and DAZAP2P1 (rho = 0.458, q = 0.042, Figure 4a), Blautia
and ANXA2P2 (rho = 0.482, q = 0.042, Figure 4b); and the negative associations between
Akkermansia and FTH1P2 (rho = −0.499, q = 0.042, Figure 4c), and Sutterella and ADAT3
(rho = −0.393, q = 0.043, Figure 4d). In addition to the significant correlation between taxa
and genes, we found that several abundant metabolic pathways in IBS gut microbiota were
significantly enriched in genes, such as the hsa04612, antigen processing and presentation
(Figure 5). Figure 5a shows the enriched hsa04612 in IBS stool samples, and Figure 5b
shows the enriched hsa04612 in IBS gene expression profiles. The correlation and consistent
differential pathway of hsa04612 antigen processing and presentation reveal the dysreg-
ulated immune response in young adults with IBS both in the stool and blood samples.
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Figure 4. Spearman’s correlation coefficient of the identified genera and genes. The Benjamini–
Hochberg method was applied to control the false discovery rate (FDR) at 0.05 for multiple com-
parisons. (a). The positive associations between Blautia and DAZAP2P1 (rho = 0.458, q = 0.042).
(b). The positive associations between Blautia and ANXA2P2 (rho = 0.482, q = 0.042). (c). The negative
associations between Akkermansia and FTH1P2 (rho = −0.499, q = 0.042). (d). The negative associations
between Sutterella and ADAT3 (rho = −0.393, q = 0.043).
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Figure 5. KEGG 04162, antigen processing and presentation in the gut microbiota and DEGs. (a). 
Gut microbiota from stool samples show the predicted KEGG 04162 is significantly enriched in HCs. 
“Star” indicated the mean value, “+” indicates an outlier. (b). Gene expression profiling from blood 

Figure 5. KEGG 04162, antigen processing and presentation in the gut microbiota and DEGs. (a). Gut
microbiota from stool samples show the predicted KEGG 04162 is significantly enriched in HCs.
“Star” indicated the mean value, “+” indicates an outlier. (b). Gene expression profiling from blood
samples show that the KEGG 04162 is significantly enriched in IBS subjects. Gene, Protein, and
Chemical identifiers marked with an asterisk indicate multiple identifiers in the dataset file map to a
single gene and/or chemical in the Global Molecular Network.
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2.5. Association of Self-Reported Pain/Symptoms, and the Differential Gut Microbiota and
Gene Expressions

Given the different compositions of gut microbiota and gene expressions between
IBS subjects and HCs, we further explored if these significantly enriched nine genera,
and top 50 upregulated and downregulated DEGs were involved in pain and symptoms
among IBS subjects. The results of Spearman correlations (Figures 6 and 7) indicate that
no significant correlations emerged between the enriched nine genera and self-reported
pain and symptoms, nor between the top 50 upregulated and downregulated DEGs and
self-reported pain and symptoms.

Int. J. Mol. Sci. 2024, 25, 3514 13 of 22 
 

 

samples show that the KEGG 04162 is significantly enriched in IBS subjects. Gene, Protein, and 
Chemical identifiers marked with an asterisk indicate multiple identifiers in the dataset file map to 
a single gene and/or chemical in the Global Molecular Network. 

2.5. Association of Self-Reported Pain/Symptoms, and the Differential Gut Microbiota and Gene 
Expressions 

Given the different compositions of gut microbiota and gene expressions between 
IBS subjects and HCs, we further explored if these significantly enriched nine genera, and 
top 50 upregulated and downregulated DEGs were involved in pain and symptoms 
among IBS subjects. The results of Spearman correlations (Figures 6 and 7) indicate that 
no significant correlations emerged between the enriched nine genera and self-reported 
pain and symptoms, nor between the top 50 upregulated and downregulated DEGs and 
self-reported pain and symptoms. 

 
Figure 6. Spearman’s correlation coefficient of the self-reported pain and symptoms and the 
identified genera. Horizontal axis, self-reported pain and symptoms; and vertical axis, the nine 
genera significantly enriched in IBS, including Parabacteroides, Akkermansia, Blautia, Coprococcus, 
Granulicatella, Holdemania, Oribacterium, Oscillospira, Parabacteroides, Sutterella. Blue indicates a 
positive correlation, red indicates a negative correlation. No significant correlations emerged 
between the enriched 9 genera and self-reported pain and symptoms, after multiplicity adjustment 
by Benjamini-Hochberg method to control the false discovery rate (FDR) at 0.05. 

Figure 6. Spearman’s correlation coefficient of the self-reported pain and symptoms and the iden-
tified genera. Horizontal axis, self-reported pain and symptoms; and vertical axis, the nine genera
significantly enriched in IBS, including Parabacteroides, Akkermansia, Blautia, Coprococcus, Granulicatella,
Holdemania, Oribacterium, Oscillospira, Parabacteroides, Sutterella. Blue indicates a positive correlation,
red indicates a negative correlation. No significant correlations emerged between the enriched
9 genera and self-reported pain and symptoms, after multiplicity adjustment by Benjamini-Hochberg
method to control the false discovery rate (FDR) at 0.05.
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Figure 7. Spearman’s correlation coefficient of the top 50 upregulated and downregulated DEGs
and self-reported pain and symptoms. In the left column, the correlations between self-reported
pain and symptoms (horizontal axis) and the top 50 upregulated DEGs (vertical axis). In the right
column, the correlations between self-reported pain and symptoms (horizontal axis) and the top
50 downregulated DEGs (vertical axis). Blue indicates a positive correlation, red indicates a negative
correlation. No significant correlations emerged between the top 50 up- and downregulated DEGs
and self-reported pain and symptoms, after multiplicity adjustment by Benjamini-Hochberg method
to control the false discovery rate (FDR) at 0.05.
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3. Discussion

By assaying the gut microbiota and whole transcriptomics, we identified the differ-
ent diversities, compositions, predicted functions of gut microbiota, and the differently
expressed genes, gene ontology, and metabolic pathways of these DEGs from a group of
young adults with IBS and healthy controls. The results confirm previous findings that IBS
subjects experience significant pain severity and pain interferences in daily life, as well as
higher levels of anxiety and depressive symptoms [17,18]. These results are also in line
with our previous study, which reports the pain and symptom experiences of the whole
IBS group (N = 80) [16,17]. Thus, sampling representation in the study was warranted,
although the IBS subjects were older than the HCs. We only reported the different genera
between the IBS subjects and HCs to homogenize the microbiota data for the multi-omics
data analysis. The significantly enriched Akkermansia, Blautia, Oscillospira, and Parabac-
teroides were consistent with our previous findings by comparing the whole group of 80 IBS
subjects with the 21 HCs, further validating the current analysis [10].

This study reported the link between gut microbiota and transcriptomic profiles among
young adults with IBS, including the specific taxa at the genus level and the association
of genera and genes. Both the gut microbiota and DEGs analysis have identified that the
pathway “antigen presenting process” was significantly different between IBS subjects and
HCs, indicating a contrasting expression of antigen presentation in the DEGs and the gut
microbiota (Figure 5), revealing a dysregulated immune response in IBS, and supporting the
physiopathology of IBS. We also found that the predicted pathways “butanoate metabolism”
and “phosphatidylinositol signaling system” were enriched in IBS subjects’ stool samples
(Figure 1d). Both the dysregulated “butanoate metabolism” and “phosphatidylinositol
signaling system” had been implicated in gastrointestinal inflammatory states [19–21].
A previous DEGs study found that the butanoate metabolism was downregulated in
ulcerative colitis [22]. These contrasting expressions of “Butanoate metabolism” in the gut
microbiota and DEGs may depict a dynamic interaction of the genera and gene expressions
in IBS. Further studies are needed to verify the contrasted enriched pathways in the DEGs
and the gut microbiota of IBS subjects. The cohesively dysregulated immune response
and metabolism revealed by the gut microbiota and gene expressions implicate potential
therapeutic strategies.

Among the nine identified genera, Akkermansia, Blautia, Holdemania, Parabacteroides,
and Sutterella were significantly correlated with upregulated and downregulated genes.
Ours and other studies have confirmed the significantly elevated abundance of Akkerman-
sia, Blautia, Oscillospira, and Parabacteroides in the intestinal tract of ulcerative colitis and
patients with IBS [10,23–25]. This analysis highlights the role of Holdemania and Sutterella
in IBS. Previous studies confirm the role of Sutterella in small intestine edema and in the
development and progress of IBD [26,27]. A multicenter data analysis with 1522 amplicon
samples confirms that Holdemania is enriched among IBS subjects [28].

Both RPL9P33 and RP11-730G20.2 were significantly upregulated in IBS subjects com-
pared with HCs. RPL9P33 was positively associated with the abundance of Akkermansia,
Blautia, Coprococcus, Granulicatella, Holdemania, Parabacteroides, and Sutterella. RP11-730G20.2
was significantly correlated with five genera (Blautia, Oribacterium, Oscillospira, Parabac-
teroides, and Sutterella) in our study. RPL9P33 (https://www.ncbi.nlm.nih.gov/gene/1002
71229, accessed on 18 January 2024) and RP11-730G20.2 (https://dice-database.org/genes/
RP11-730G20.2, accessed on 18 January 2024) are pseudogene, RP11-730G20.2 is indexed
in the Database of Immune Cell Expression, Expression quantitative trait loci (eQTLs),
and Epigenomics (DICE) and significantly enriched in CD4 T cells. The detailed functions
of RPL9P33 and RP11-730G20.2 are yet to be understood fully. The strong correlations
between RPL9P33, RP11-730G20.2, and specific genera may reveal the underlying func-
tion of RPL9P33 and RP11-730G20.2 in IBS development through meditating the specific
microbiota. Further studies are warranted to confirm these novel findings.

The ANXA2P2 was significantly upregulated in IBS subjects compared with HCs and
positively associated with the abundance of Akkermansia, Blautia, Granulicatella, Holdemania,

https://www.ncbi.nlm.nih.gov/gene/100271229
https://www.ncbi.nlm.nih.gov/gene/100271229
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Oscillospira, and Sutterella. ANXA2P2 is a potential immunological and prognostic signature
gene, impacting the pathogenies and prognosis of ovarian serous cystadenocarcinoma and
hepatocellular carcinoma [29,30], and functioning in the progression of glioblastoma [31].
In addition, ANXA2 acts as a potential biomarker for immune infiltration and prognosis of
cancer [32], as well as a potential immunosuppression marker in glioma [33]. These may
suggest that ANXA2P2 is involved in the dysregulated immune response of the develop-
ment and progression of IBS through entangling the altered gut microbiota, although we
recruited emerging adults with IBS experiencing a mild level of pain and symptoms.

DAZAP2P1 was significantly upregulated in IBS and is anticipated to facilitate various
functions, including the stimulation of lysophospholipids and arachidonic acid release [34].
Arachidonic acid undergoes further metabolism, resulting in the production of certain
inflammation mediators. Consequently, pharmacological agents such as phospholipase A2
inhibitors hold significant value for treating inflammatory conditions [35]. Earlier research
has indicated the potential of phospholipase A2 inhibitors as anti-inflammatory agents [36].
Additional investigations are necessary to validate the elusive effects of DAZAP2P1 in the
pathobiology of IBS and to explore the potential therapeutic applications of phospholipase
A2 inhibitors in managing IBS.

PCSK1N was significantly downregulated in IBS and negatively associated with the
abundance of Akkermansia, Blautia, Coprococcus, Parabacteroides, and Sutterella. PCSK1N is a
shared gene with a typical endocrine expression profile in enteroendocrine cells from the
healthy stomach and duodenum [37]. The downregulation of PCSK1N among IBS patients
in our study indicates abnormal hormone-secretion-related gene expression, which may
explain the abnormalities in releasing hormones and irregular bowel movements among
IBS patients [38]. This finding requires further intestinal histological or hormonal studies to
confirm, since the expression signatures may vary from enteroendocrine cells to peripheral
blood samples. On the other hand, the PCSK1 gene exhibits more prevalent variants that
have been linked to changes in body mass index, elevated levels of circulating proinsulin,
and disruptions in glucose homeostasis, which may also contribute to gastrointestinal
disorders, including IBS [39].

The downregulated GLTPD2 was negatively associated with the abundance of Akker-
mansia, Blautia, Holdemania, and Sutterella. GLTPD2 has been reported as a genetic deter-
minant of the human lipidome and in the regulation of inflammation and cell deaths [40].
The findings are consistent with a previous study that demonstrates that elevated lipid
levels and pro-inflammatory symptoms characterize colon mucosa of IBS patients [14].
The downregulated GLTPD2 and the associated genera may also reveal the underlying
mechanisms of the intolerance of fatty food among IBS patients [15].

Although we measured patients’ self-reported pain and symptoms, we did not detect
a significant association between the different genera, different expressed genes, and self-
reported pain and symptoms among young adults with IBS, possibly due to the small
sample size. One of the possible reasons could be the high-dimensional characteristics of the
gut microbiota and RNA sequence data. In addition, the mechanisms of pain and symptoms
in IBS are yet to be illustrated, even though previous studies indicate that the trajectories of
IBS pain and symptoms are related to the altered gut microbiota [41,42]. Another possible
reason could be that we recruited IBS subjects with a younger age (mean = 21 years old)
and experienced a mild level of pain and unpleasant symptoms. Enrolling a group of IBS
patients experiencing severe pain and symptoms or longitudinally following up with IBS
patients to map the pain and symptoms trajectory may further capture the underlying
multi-omics mechanisms of IBS pain and symptoms.

This study shows the feasibility of multi-omics investigations to explore the underlying
mechanisms of symptomology in young adults with IBS, as well as in patients with other
conditions. The identified genera and gene markers may reveal targeted intervention,
particularly the altered immune response and metabolism that emerged from the gut
microbiota and host transcriptomics, including the significantly enriched genera and DEGs
and the correlations between these enriched genera and DEGs.
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Strengths and Limitations

To the best of our knowledge, this study is one of the first to explore the involvement
of gut microbiota and gene expression changes, as well as self-reported pain and symptoms
among young adults with IBS. The differences between subjective measures (self-reported
pain and symptoms) and objective measures (gut microbiota and gene expressions) pro-
vided new insight into the molecular and genetic factors contributing to the development
and progression of IBS and the mechanisms of IBS pain and symptoms. Generalization of
findings from this study should be cautious since several limitations need to be addressed.
We only included a small sample size of IBS subjects and HCs recruited in one center.
However, the gene ontology analysis supported the idea that the IBS group had altered
gene expressions by the up- and down-expressed genes related to immune response. Given
that the RNA samples of IBS participants and HCs were sequenced in different batches,
the batch effect may skew the associations of gut microbiota and differentially expressed
genes. However, we adjusted the batch effects by applying the ComBat-seq to minimize
the variation in expression data attributed to batch effects.

4. Materials and Methods
4.1. Design

This multi-omics data analysis included baseline data from 20 subjects with IBS and
21 healthy controls (HCs) from an RCT (NCT03332537) [16]. Young adults with IBS and
healthy control were recruited from October 2016 to March 2019 in the northeastern region
of the United States. The RCT protocol was approved by the University Institute Review
Board (IRB). Informed consent was acquired from each participant. Privacy was maintained
during the entire data collection and management process. Deidentified data were used in
the current analysis.

4.2. Inclusion and Exclusion of Subjects

The inclusion and exclusion criteria were reported in our previous protocol and
trial [16]. Subjects were enrolled in the study if they were (1) 18–29 years of age; (2) able
to read and speak in English; (3) able to access the internet; (4) having a clinical diagnosis
of IBS according to the Rome III or IV criteria from a healthcare provider (for IBS subjects
only). Subjects were excluded if they had (1) chronic pain conditions (e.g., chronic pelvic
pain, headache, back pain, etc.); (2) severe mental health conditions; (3) celiac disease or
inflammatory bowel disease; (4) infectious diseases; (5) diabetes mellitus; (6) injury or open
skin lesions on the non-dominant arm; (7) history of substance abuse or regular opioid use;
(8) history of prebiotics/probiotics or antibiotics use in the past months.

4.3. Measurements of Variables
4.3.1. Demographic Characteristics and Self-Reported Pain and Symptoms

Sociodemographic data were collected including sex, age, race, ethnicity, education,
and employment status. Self-reported pain and symptoms (anxiety, depression, fatigue,
and sleep disturbance) were measured using the Brief Pain Inventory short-form (BPI-sf)
and the NIH “Patient-Reported Outcomes Measurement Information System” (PROMIS) in
the Research Electronic Data Capture (REDCap). The BPI-sf pain severity included 4 items
in pain severity (worst and least pain in the last 24 h, average pain, and current pain) and
7 items in pain interference (e.g., mood, walking ability, etc.). The four domains of RPOMIS
anxiety, depression, fatigue, and sleep disturbance were measured in this study. The scoring
systems of the BPI and PROMIS were reported in our previous reports [16,18]. A higher
score of BPI and T-score of PROMIS indicate a higher level of pain severity/interferences
and symptoms, respectively.

4.3.2. Stool Sample Collection and Gut Microbiota Data Sequencing

Stool samples were collected at home by the participants following our previous
protocol using the OMNIgene®-gut (DNA Genotek, Ottawa, ON, Canada) kit [11,43].
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Training on collection of the samples at home was provided to the participants by research
personnel. After collection, participants were instructed to mail the samples back to the
research laboratory within a week of the baseline visit data collection using a pre-labeled
and pre-paid envelope with a tracking barcode. Once received by the laboratory, the stool
samples were aliquoted into small tubes and stored in a −80 ◦C freezer for bulk processing.
A total of 0.25 g stool from each participant was placed into a beat tube and sent out
for DNA extraction and sequencing. The 16S rRNA V4 region amplicon was sequenced
by Illumina Miseq 2000 platform (Illumina, San Diego, CA, USA) at the University of
Connecticut Microbial Analysis, Resource, and Services laboratory following our previous
protocol for gut microbiota data analysis [43].

4.3.3. Blood Sample Collection and Whole Transcriptomics Data Sequencing

Non-fasting peripheral blood samples were collected using PaxGene tubes (Qiagen,
Germantown, MD, USA) following the manufacturer’s instructions. Venipuncture was
performed by trained registered nurses in the certificated bio-behavior laboratory. Blood
samples were stored homogenized in the Paxgene tubes according to the manufacturer’s
protocol. The Paxgene tubes were transferred to a −80 ◦C freezer in the laboratory at our
institute until RNA extraction procedures. RNA extraction, quality checks, quantitation,
library preparation, and sequencing were performed by the Center for Genome Innovation,
part of the Institute for Systems Genomics at the University of Connecticut. Libraries were
prepared with the Illumina Nextera Library Preparation kits (Illumina, San Diego, CA,
USA). Samples were sequenced on the Illumina NovaSeq 6000 platform using a 150 bp
paired-end run (2 × 150). We used FastQC (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/, accessed on 13 May 2023) and Trimmomatic v.0.39 [44] tools for evaluating
the quality of the raw sequence data following our previous process [45].

4.4. Data Analysis

R version 4.2.0 was used for the data analysis. The demographic characteristics,
self-reported pain, and symptoms were summarized with frequency and percentage for
categorical variables and the mean and SD for continuous variables. The differences in
the demographic characteristics between IBS subjects and HCs were examined using a chi-
square and Fisher’s exact tests. The differences in age, self-reported pain, and symptoms
between the IBS participants and HCs were investigated using the Wilcoxon rank-sum test.

The raw 16S rRNA sequencing data were processed by the Mothur 1.43.0 software
following the analysis pipeline of Miseq (http://www.mothur.org/wiki/MiSeq_SOP, ac-
cessed on 13 March 2023) to obtain the taxonomy and diversity of the gut microbiota.
Paired-end sequences were combined into contigs and aligned against to the SILVA 132
V4 16 S rRNA gene reference alignment database with poor-quality sequences removed.
Operational taxonomic units (OTUs) were determined at a 97% identity [46,47]. Linear
discriminant analysis (LDA) effect size (LEfSe) [48] was used to identify the significantly
enriched abundant taxa between the microbiota composition of IBS subjects and HCs.
A taxonomic cladogram was used to visualize the discriminative features based on the
settings including the alpha value of 0.05 for the factorial Kruskal–Wallis test and for the
pairwise Wilcoxon test, and the logarithmic linear discriminant score of 2.0 for the LEfSe
following our previous analysis [46]. The metabolic functions (KEGG pathways) of gut
microbiota compositions were predicted using phylogenetic investigation of communities
by reconstruction of unobserved states (PICRUSt) [49]. Function (KEGG pathways at
level 3) differences between IBS subjects and HCs were detected using statistical analysis of
metagenomic profiles (STAMP) [50], and the Benjamini–Hochberg procedure was used to
decrease the false discovery rate for multiple test corrections. The p-value was set as 0.05.

The raw blood RNA sequences were aligned to the reference genome (GRCh38.p14/hg38)
downloaded from Ensemble 109 [51] using the HISAT2 (http://daehwankimlab.github.io/
hisat2/, accessed on 13 May 2023) [52] software. Gene expression was quantified with HT-
Seq v.2.0.4 [53], a method that regards a gene as the combination of all its exons, irrespective
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of isoforms, while excluding reads that span multiple genes. To tackle the issue of batch
effects, we utilized the software ComBat-seq (https://github.com/zhangyuqing/ComBat-
seq, accessed on 13 May 2023) [54], an extension of ComBat [55], a widely employed tool
for batch effect correction. Consequently, the batch-adjusted counts, the differentially ex-
pressed genes (DEGs) between the IBS and HC groups were assessed by using the R package
“DESeq2” (https://www.bioconductor.org/packages/release/bioc/html/DESeq2.html,
accessed on 13 May 2023) [56]. Genes were considered differentially expressed if their
adjusted p-value, estimated using the Benjamini–Hochberg test, was equal to or lower than
0.05. Furthermore, we prioritized the DEGs whose log2 fold change (LFC) absolute value
was higher than 1.5. We evaluated these gene sets for enrichment in biological processes
and pathway enrichment, including Gene Ontology (GO) [57] and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) [58]. We further imported the DEGs into QIAGEN ingenu-
ity pathway analysis (IPA) [59] to find the regulators of the DEGs, as well as the function of
these DEGs.

The Spearman correlation was calculated to assess the associations among the differ-
entially enriched genera in stool samples, the top 50 upregulated and downregulated DEGs
between the IBS and HC subjects, and self-reported pain and symptoms. The Benjamini–
Hochberg method was applied to control the false discovery rate (FDR) at 0.05 for multiple
comparisons [60], leading to the calculation of q-values and enabling statistical inference
for the correlations. The correlations and significance findings were visualized by heatmap.

5. Conclusions

This study reveals the linkage of gut microbiota and transcriptomic profiles among
young adults with IBS and the dysregulated immune response and metabolism in the gut
microbiota and transcriptomic profiles from a multi-omics approach. Further study could
explore the bi-direction between the alternative gut microbiota and transcriptomic among
patients with IBS and develop precise intervention by targeting the altered gut microbiota
and host transcriptomics-related molecular and genetic factors and dysregulated immune
response and metabolism.
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