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Abstract: Presenilin, a transmembrane protein primarily known for its role in Alzheimer’s disease
(AD) as part of the γ-secretase complex, has garnered increased attention due to its multifaceted
functions in various cellular processes. Recent investigations have unveiled a plethora of functions
beyond its amyloidogenic role. This review aims to provide a comprehensive overview of presenilin’s
diverse roles in AD and other neurodegenerative disorders. It includes a summary of well-known
substrates of presenilin, such as its involvement in amyloid precursor protein (APP) processing and
Notch signaling, along with other functions. Additionally, it highlights newly discovered functions,
such as trafficking function, regulation of ferritin expression, apolipoprotein E (ApoE) secretion, the
interaction of ApoE and presenilin, and the Aβ42-to-Aβ40-converting activity of ACE. This updated
perspective underscores the evolving landscape of presenilin research, emphasizing its broader impact
beyond established pathways. The incorporation of these novel findings accentuates the dynamic
nature of presenilin’s involvement in cellular processes, further advancing our comprehension of its
multifaceted roles in neurodegenerative disorders. By synthesizing evidence from a range of studies,
this review sheds light on the intricate web of presenilin functions and their implications in health
and disease.

Keywords: presenilin; Alzheimer’s disease; neurodegenerative diseases; trafficking; ApoE;
Aβ42-to-Aβ40-converting activity of ACE; PD; FTD; HD; ALS

1. Introduction

Presenilin stands as a pivotal genetic player in the intricate landscape of Alzheimer’s
disease (AD), particularly in its early-onset familial form. Gene mutations in presenilin
have been remarkably diverse, with over 200 different forms identified, implicated in
approximately 90% of familial AD pedigrees [1]. Presenilin’s primary involvement in AD
stems from its role as the catalytic core of the γ-secretase complex, a transmembrane protein
with nine membrane-spanning domains [2]. Functioning as an aspartyl protease, presenilin,
with aspartic acid at its active center, cleaves the amyloid β protein (Aβ) at the γ position
of its substrate, the amyloid precursor protein (APP). This process leads to the generation
of Aβ peptides, a hallmark feature in AD pathology [3].

In this review, we aim to deepen the understanding of presenilin and provide new
explanations for neurodegenerative diseases. Going beyond traditional perspectives, we
emphasize the wide-ranging roles of presenilin in cell biology, offering a fresh perspective
on unraveling the mechanisms of neurodegenerative diseases. We highlight the importance
of exploring the multifaceted functions of presenilin in driving field advancement and fu-
ture research, providing profound insights for upcoming studies. Additionally, we further
delve into the newly discovered functions of presenilin, discussing the close associations
between these functions and known cellular physiology and pathological processes. De-
tailed explanations of how these associations impact the mechanisms of neurodegenerative
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diseases are provided, emphasizing the regulatory role of presenilin at various cellular
levels. This in-depth interpretation not only underscores the diversity of presenilin but also
offers profound insights for future research, potentially paving the way for new directions
in the treatment strategies for neurodegenerative diseases.

2. Structure

Presenilin is a polytopic transmembrane protein encoded by two homologous genes,
PSEN1 and PSEN2. PSEN1 is located on chromosome 14, while PSEN2 is on chromosome 1.
These genes encode presenilin proteins, which share structural similarities. Presenilin has
nine transmembrane domains with both N- and C-termini located in the cytoplasm [4].
Presenilin undergoes post-translational modifications, including endoproteolysis, to gen-
erate a 30 kDa N-terminal fragment (NTF) and a 20 kDa C-terminal fragment (CTF) [5].
These two fragments form the γ-secretase complex (as discussed below), and it has been
established that the aspartic acid residues present in them possess functional activity, acting
as intramembrane cleaving proteases in the hydrophobic environment of the membrane [6].
Subsequent studies revealed that γ-secretase, which cleaves the APP protein at the γ posi-
tion to produce Aβ, exists as a complex of four proteins, including presenilin [7]. These
include Nicastrin, PEN-2, APH-1, and presenilin [1,8]. Nicastrin and APH-1 first form
a subcomplex in the endoplasmic reticulum (ER), which then binds to the subcomplex
formed by presenilin and PEN-2. Additionally, APH-1 has been found to directly bind to
the C-terminal end of presenilin, shedding light on the molecular mechanism of how the
four components of the γ-secretase complex cleave Aβ from APP [8–10].

3. Association with Alzheimer’s Disease

For an extended period, presenilin has played a pivotal role in Alzheimer’s disease re-
search, particularly as the core of the γ-secretase complex. Through in-depth exploration of
presenilin’s functionality, we underscore its critical role in traditional Alzheimer’s disease
research while also highlighting its extensive involvement in cell biology. We comprehen-
sively summarize presenilin’s functions in various aspects, including calcium signaling,
synaptic plasticity, apoptosis, and the Notch signaling pathway, revealing the multifaceted
nature of presenilin (Figure 1). This comprehensive observation provides us with a novel
and profound perspective on the mechanisms underlying neurodegenerative diseases.

3.1. Presenilin and APP Processing

Presenilin mutations are associated with a distinctive phenotype of AD, character-
ized by an early onset, often occurring in the fourth to fifth decades of life. Mutated
presenilin proteins, especially PSEN1 mutants, disrupt the normal processing of APP by
the γ-secretase complex, favoring the production of Aβ42 over Aβ40. This alteration in
the Aβ42/Aβ40 ratio is particularly significant because Aβ42 has a higher tendency to
aggregate and form toxic oligomers and fibrils in the brain, leading to the formation of
amyloid plaque—a pathological hallmark of AD [11–14]. The hastened aggregation of
Aβ, stemming from presenilin mutations, accelerates early cognitive decline and neuronal
dysfunction. These noxious Aβ species not only impair synaptic function but also instigate
neuroinflammation, ultimately leading to neuronal death.

In addition, presenilin interacts with a network of proteins that modulate its functions
and contribute to AD pathology. One such protein is nicastrin, a subunit of the γ-secretase
complex. Nicastrin stabilizes presenilin and promotes its proper maturation, thus influ-
encing γ-secretase activity [15]. Moreover, nicastrin mutations can disrupt γ-secretase
function and contribute to Aβ accumulation in AD [16]. Another critical player is PEN-2,
which forms a stable complex with presenilin and is required for γ-secretase activity [17].
PEN-2 mutations can impair this interaction, leading to the onset of familiar AD [18,19].
Understanding the intricate interplay between presenilin and its associated proteins is vital
for unraveling the complexities of AD pathogenesis.
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Figure 1. Multifaceted Roles of Presenilin in Neurodegenerative Diseases: A Comprehensive Dia-
gram. This diagram illustrates the diverse functions of presenilin in Alzheimer’s disease (AD) and 
other neurodegenerative disorders. Grey boxes represent functions associated with presenilin con-
tributing to AD through γ-secretase substrates, neuron loss, and organelle dysfunction. Pink boxes 
highlight novel functions of presenilin, indicating potential mechanisms. Blue boxes depict the re-
lationships between presenilin and other degenerative diseases. In the center, the γ-secretase com-
plex’s subunits and their membrane topologies are displayed. During complex maturation, prese-
nilin undergoes proteolytic processing, resulting in amino-terminal fragment (NTF) and carboxy-
terminal fragment (CTF). The catalytic aspartic acid residues in NTF and CTF are marked with stars. 
Additional subunits include Nicastrin, APH-1, and PEN-2. 
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Figure 1. Multifaceted Roles of Presenilin in Neurodegenerative Diseases: A Comprehensive Diagram.
This diagram illustrates the diverse functions of presenilin in Alzheimer’s disease (AD) and other
neurodegenerative disorders. Grey boxes represent functions associated with presenilin contributing
to AD through γ-secretase substrates, neuron loss, and organelle dysfunction. Pink boxes highlight
novel functions of presenilin, indicating potential mechanisms. Blue boxes depict the relationships
between presenilin and other degenerative diseases. In the center, the γ-secretase complex’s subunits
and their membrane topologies are displayed. During complex maturation, presenilin undergoes
proteolytic processing, resulting in amino-terminal fragment (NTF) and carboxy-terminal fragment
(CTF). The catalytic aspartic acid residues in NTF and CTF are marked with stars. Additional subunits
include Nicastrin, APH-1, and PEN-2.

3.2. Notch Signaling and Other Substrates of Presenilin

Beyond its role in Aβ production, presenilin plays a crucial role in the Notch signaling
pathway. Notch signaling is crucial for cell fate determination, development, and tissue
homeostasis. Presenilin-mediated cleavage releases the intracellular domain of Notch
(NICD), allowing it to translocate to the nucleus and regulate gene expression [20,21].
Disruption of Notch signaling due to presenilin mutations can lead to familial AD [22,23]
and has been implicated in certain cancers [17]. This altered processing disrupts normal
cell activities, impacting neuronal survival [24,25]. Understanding these interactions is
vital for developing targeted therapies to modulate γ-secretase and restore normal Notch
signaling in AD [1].

Additionally, presenilin has several other substrates, including ErbB4, a tyrosine kinase
receptor for neuregulins. Study suggests that ErbB4 may mediate a novel signaling function
independent of its canonical role as a tyrosine kinase receptor [26]. Another substrate, CD44,
undergoes presenilin-dependent intramembrane proteolysis, leading to the liberation of its
intracellular domain and the secretion of an Aβ-like peptide [27].

Presenilin 1 plays a crucial role in the maturation and trafficking of N-cadherin to
the plasma membrane [28]. Notably, presenilin 1 mutations disrupt the production of the
N-cadherin intracellular fragment, leading to a failure in suppressing CREB-dependent
transcription [29]. These findings suggest an alternative explanation for FAD that is
separate from the widely accepted “amyloid hypothesis”: dysfunction in transcription
regulatory mechanisms. Furthermore, a total of 149 γ-secretase substrates have been
identified to date [30–32]. These substrates represent a valuable resource that may facil-
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itate the future development of drugs inhibiting or modulating γ-secretase activity in a
substrate-specific manner.

3.3. Presenilin and Synaptic Dysfunction and Neuronal Loss

Synaptic dysfunction is an early event in AD pathogenesis, leading to cognitive de-
cline. Presenilin mutations disrupt calcium homeostasis, impair neurotransmitter release,
and compromise synaptic plasticity [33]. This dysregulation can result from altered store-
operated calcium entry (SOCE) mechanisms, which play a critical role in maintaining
neuronal function. A study by Cheung et al. [34] demonstrated that mutant presenilin
disrupts SOCE, leading to abnormal calcium signaling in neurons. This disruption can
trigger excitotoxicity, mitochondrial dysfunction, and ultimately neuronal death. Another
study has also demonstrated that presenilin interacts with synaptic proteins, including
PSD-95, critical for synaptic structure and function [35]. These alterations in synaptic
function contribute to memory deficits and cognitive impairment in AD patients. Ther-
apeutic strategies aimed at preserving synaptic integrity by targeting presenilin-related
mechanisms hold promise for AD treatment.

Emerging evidence suggests that presenilin also plays a role in neuroinflammation,
a key feature of AD pathology. Mutant presenilin can activate microglia and astrocytes,
leading to the release of proinflammatory cytokines and chemokines [36,37]. This chronic
inflammatory response exacerbates neuronal damage and accelerates disease progres-
sion. Targeting presenilin-related neuroinflammation represents a potential avenue for
AD therapeutics.

AD is characterized not only by Aβ pathology but also by widespread neuronal
network dysfunction. Presenilin mutations have been linked to aberrant network activity
in the brain. Research by Palop et al. [38] demonstrated that transgenic mice expressing
mutant presenilin exhibit hippocampal hyperexcitability and epileptic seizures, suggesting
a role for presenilin in regulating neuronal network activity. These findings underscore the
far-reaching consequences of presenilin dysfunction beyond Aβ production.

Neuronal loss is a hallmark of advanced AD. Dysregulated Aβ production, neuroin-
flammation, and synaptic dysfunction driven by presenilin mutations all contribute to
progressive neurodegeneration [39]. Understanding the molecular mechanisms underlying
presenilin-mediated neuronal loss is crucial for developing interventions that can preserve
neuronal function and slow disease progression.

Presenilin’s involvement in apoptosis, or programmed cell death, is another causative
factor for neuronal loss. Dysregulated apoptosis is a hallmark of neurodegenerative dis-
eases, including AD. Studies have shown that increased sensitivity to apoptosis in neural
cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and en-
hanced oxyradical production [40–42]. Another study demonstrated that mutant PS-2
not only induced p53 expression but also led to an increase in miR-34a expression. This
suggests that mutant PS-2 may contribute to the apoptosis of neuronal cells by activating
the p53/miR-34a axis [43]. This apoptotic vulnerability contributes to the progressive loss
of neurons seen in AD.

Oxidative stress, resulting from an imbalance between free radicals and antioxidant,
increased oxidative stress in neurons [44]. This oxidative damage can lead to lipid per-
oxidation, protein oxidation, and DNA damage, contributing to neurodegeneration in
AD [42]. A study revealed that oxidative stress enhances PS1 protein levels in lipid rafts
via up-regulation of PS1 transcription, which may constitute the mechanism underlying
the oxidative stress-associated promotion of Aβ production [45]. In addition, our latest
study indicates that dysfunction of presenilin may reduce intracellular ferritin levels and is
involved in AD pathogenesis through increasing susceptibility to oxidative damage [46].

The blood–brain barrier (BBB) is essential for maintaining the brain’s microenviron-
ment. Recent studies have revealed that presenilin is involved in BBB integrity through
interactions with a reduced barrier function, reduced drug efflux pump activity, and dimin-
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ished glucose metabolism [47,48] Dysfunction of the BBB can lead to increased neuroin-
flammation and infiltration of peripheral immune cells, exacerbating AD pathology [49].

Nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are crucial
molecules in the nervous system, essential for the survival, development, and maintenance
of neurons. They engage in cell signaling by binding to cell surface receptors, facilitating
neuronal growth, differentiation, and survival.

3.4. Presenilin and Organelle Dysfunction

Endoplasmic reticulum (ER) stress is a cellular response to the accumulation of mis-
folded proteins in the ER, and it has been implicated in AD pathogenesis. Presenilin’s
role in ER calcium regulation and protein folding quality control positions it as a key
player in ER stress [50]. A study by Stutzmann et al. [51] demonstrated that presenilin
mutations disrupt ER calcium homeostasis, leading to ER stress and subsequent neuronal
dysfunction. This link between presenilin and ER stress highlights its multifaceted impact
on cellular physiology.

Mitochondrial dysfunction is a common feature of neurodegenerative diseases, includ-
ing AD. Recent studies have shown that presenilin directly interacts with mitochondria
and affects mitochondrial dynamics [52]. Dysfunctional mitochondria can lead to oxidative
stress and energy deficits, contributing to neuronal damage.

Autophagy, a critical mechanism for clearing damaged organelles and protein aggre-
gates, is also regulated by presenilin. Emerging research suggests that presenilin influences
autophagy through interactions with proteins such as Beclin-1 [53]. Dysregulated au-
tophagy can lead to the accumulation of toxic protein aggregates, further exacerbating
neurodegeneration in AD.

3.5. Presenilin and Tau Pathology

In addition to Aβ, the formation of neurofibrillary tangles, caused by the accumu-
lation of hyperphosphorylated tau protein, is a pathological hallmark of AD. Research
by Shipton et al. [54] demonstrated that tau protein is required for Aβ to impair synaptic
plasticity in the hippocampus and suggested that the Aβ-induced impairment of LTP is
mediated by tau phosphorylation. Many studies demonstrated that presenilin mutations
exacerbate tau hyperphosphorylation and aggregation in mouse models [55–57]. Moreover,
another study revealed that loss of presenilin function enhances tau phosphorylation and
aggregation in mice [58]. This interaction between presenilin and tau pathology further
highlights molecular events contributing to AD pathogenesis.

4. Novel Functions of Presenilin

In delving into newly discovered functions, we elaborate on multiple novel aspects
of presenilin, such as its role in cellular transport, regulation of APOE secretion, and
interaction with ApoE (Ref. Figure 1). Emphasis is placed on the close association of
these new functions with neurodegenerative diseases, offering profound insights. This
multifaceted research not only enhances our comprehensive understanding of presenilin’s
diverse functions but also opens up rich possibilities for the treatment and prevention of
neurodegenerative diseases.

4.1. Presenilin and Trafficking Function

Since 2000, presenilin, particularly presenilin 1, has been found to have the function
of trafficking and turnover of various type I transmembrane proteins. Interestingly, this
trafficking function of presenilin is both selective and bidirectional [1,59]. For instance,
presenilin-deficient cells or cells introduced with presenilin mutations or γ-secretase in-
hibitors significantly inhibit the maturation and surface localization of TrkB, nicastrin,
N-cadherin, and ApoER2 [60–62]. The immature form of nicastrin protein accumulates
in the ER, and presenilin is suggested to play a role in trafficking membrane proteins
from the ER to the Golgi and cell surface. On the other hand, these presenilin function
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inhibitions conversely increase the maturation and surface localization of APP, integrin β1,
telencephalin, EGFR, and TREM2 [59,63–65]. Notably, the immature protein of integrin β1
in the ER is significantly reduced, while mature integrin β1 on the cell surface is increased,
suggesting that presenilin may also suppress the trafficking of membrane proteins from
the ER to the Golgi and cell surface [59]. It can be anticipated that presenilin is deeply
involved in the metabolism and distribution of these substrate membrane proteins, which
function as receptors for neuronal signaling, adhesion, differentiation, and growth. How-
ever, the mechanism by which presenilin’s trafficking function is involved in the molecular
pathogenesis of AD (Aβ deposition, tau phosphorylation) remains unknown.

4.2. Presenilin and ApoE

Recently, we discovered that presenilin controls the secretion and intracellular local-
ization of ApoE. The ε4 allele of the ApoE gene accounts for over 90% of sporadic AD
cases and is known to accelerate the onset of AD by reducing Aβ clearance ability. In
presenilin 1,2-deficient cells, ApoE secretion is abolished, and remarkably, the intracellular
localization of ApoE shifts from the cytoplasm to the cell nucleus (Figure 2A–C). A decrease
in ApoE secretion and an increase in nuclear localization were observed in DAPT-treated
ApoE3 knock-in cells and astrocytes (Figure 2D–H) [66]. Presenilin has been found to
control not only the secretion but also the nuclear localization of proteins such as ApoE,
revealing a previously unknown role of presenilin in regulating the secretion of ApoE and
suggesting its involvement in the onset of sporadic AD. Moreover, we also found that
intracellular ApoE4 inhibits γ-secretase activity and thereby induces an increase in the
Aβ42/40 ratio via binding to the γ-secretase complex (Figure 3). This result suggests a
novel mechanism in which intracellular APOE4 contributes to the pathogenesis of SAD by
inhibiting γ-secretase activity [67]. As many γ-secretase inhibitors have faced successive
failures in clinical trials, our findings suggest the possibility that enhancing presenilin
function rather than inhibiting it could reduce the Aβ42 ratio in the brain and increase
ApoE secretion, potentially leading to the development of new therapeutic drugs.

4.3. Presenilin and Aβ42-to-Aβ40-Converting Activity of Angiotensin-Converting Enzyme (ACE)

Our investigations demonstrated that mouse and human brain homogenates exhibit
an enzyme activity converting Aβ(1–42) to Aβ(1–40), and the major part of this converting
activity is mediated by ACE, reducing the Aβ42/40 ratio [68,69]. Presenilin 1 deficiency
abolished Aβ42-to-Aβ40-converting activity. Notably, presenilin mutations found in FAD
impaired the Aβ-converting activity of ACE [70,71]. This intricate relationship between
presenilin and ACE sheds light on their collaborative role in regulating Aβ levels, offering
potential insights into therapeutic interventions for Alzheimer’s disease.

4.4. Presenilin and Neurotrophic Factors

The neurotrophic factors, including Brain-derived neurotrophic factors (BDNF), play
a pivotal role in the growth, survival, and function of neurons [72]. In the context of AD,
BDNF depletion is associated with tau phosphorylation, Aβ accumulation, neuroinflam-
mation and neuronal apoptosis [73,74]. Many studies have shown that presenilin may
intersect with the BDNF signaling pathway. A study showed that PS1-knockout neurons
show defective ligand-dependent internalization and decreased ligand-induced degrada-
tion of TrkB and Eph receptors [75]. Stimulation of BDNF leads to tau dephosphorylation
through activation of TrkB and phosphatidylinositol 3-kinase (PI3K) signaling [76]. Another
study demonstrated that PS1 deficiency causes autophagy suppression in human NSCs
via downregulating ERK/CREB signaling [77]. Upregulation of BDNF by the extracellular
regulated kinases/cyclic AMP response element-binding protein (ERK/CREB) signaling
pathway can ameliorate the Aβ-induced neuronal loss and dendritic atrophy [78]. PSEN1
may also be involved in Wnt signaling by controlling β-catenin stability. PSEN1 can pro-
mote the phosphorylation of β-catenin and inhibit cyclin D1, CDK6, and c-Myc molecules,
as well as cell-cycle progression [79]. Wnt/β-catenin signaling pathways are activated in
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the process of BDNF-induced iPSC differentiation [80]. Furthermore, several studies have
also established a direct correlation between presenilin and BDNF. A study demonstrated
that the aberrant functioning of presenilin may have a negative impact on the produc-
tion and release of BDNF. In comparison with the wild-type (WT) group, the expressions
of synaptophysin and BDNF/Trk-B in the cerebellum were found to be reduced in the
APP/PS1 group [81]. A recent study showed that presenilin 1, as a key player in a neuro-
protective mechanism crucial for the formation of novel “survival complexes”, collaborates
with N-methyl-D-aspartate receptors and neuroprotective factors EFNB1 and BDNF [82].
These findings have implications for the pathogenic effects of familial Alzheimer’s disease
mutants and therapeutic strategies.
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for 48 h in serum-free conditional medium. Levels of secreted and intracellular ApoE, PS1-CTF, and 
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iment shown in (D). n = 3; * p < 0.05. NS, not significant, by one-way ANOVA followed by Tukey’s 
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staining (nuclei, blue) in primary cultured embryonic WT astrocytes treated with DAPT for 24 h. 
Scale bars, 50 µm. (G,H) Quantification of cytosolic and nuclear ApoE intensity from the experiment 
shown in F. Cytosolic ApoE was significantly decreased and nuclear ApoE was significantly in-
creased in 10 µm of DAPT-treated astrocytes compared with control cells. n ≥ 24 different stained 
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Figure 2. Presenilin Is Essential for ApoE Secretion, a Novel Role of Presenilin Involved in
Alzheimer’s Disease Pathogenesis (Section 4.2). (A) Immunoblot analysis of ApoE secretion and
intracellular ApoE, presenilin (PS) 1-CTF, and PS2-CTF expression in WT, PS1/2−/−, PS1−/−, and
PS2−/− fibroblasts cultured for 48 h in serum−free medium. (B) Quantification of ApoE secretion
from the experiment shown in (A). n = 3. ** p < 0.01, *** p < 0.001. NS, Not significant, by one−way
ANOVA followed by Tukey’s multiple−comparison tests. (C) Immunostaining for ApoE (red) and
nuclear staining with DAPI (blue) in WT, PS1/2−/−, PS1−/−, and PS2−/− fibroblasts. Scale bars,
5 µm. (D) Primary cultured embryonic WT astrocytes were treated with 1–10 µm of DAPT or DMSO
vehicle control for 48 h in serum-free conditional medium. Levels of secreted and intracellular ApoE,
PS1-CTF, and PS2-CTF were determined by immunoblotting. (E) Quantification of ApoE secretion
from the experiment shown in (D). n = 3; * p < 0.05. NS, not significant, by one-way ANOVA followed
by Tukey’s multiple-comparison tests. (F) Immunostaining for cellular distribution of ApoE (red) and
DAPI staining (nuclei, blue) in primary cultured embryonic WT astrocytes treated with DAPT for 24 h.
Scale bars, 50 µm. (G,H) Quantification of cytosolic and nuclear ApoE intensity from the experiment
shown in F. Cytosolic ApoE was significantly decreased and nuclear ApoE was significantly increased
in 10 µm of DAPT-treated astrocytes compared with control cells. n ≥ 24 different stained cells/group.
**p < 0.01, ***p < 0.001, by unpaired two-tailed t tests. These data are from the study by Islam et al. [66].
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spectively. The diagram is sourced from Sun et al. [67]. 
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BDNF depletion is associated with tau phosphorylation, Aβ accumulation, neuroinflam-
mation and neuronal apoptosis [73,74]. Many studies have shown that presenilin may in-
tersect with the BDNF signaling pathway. A study showed that PS1-knockout neurons 
show defective ligand-dependent internalization and decreased ligand-induced degrada-
tion of TrkB and Eph receptors [75]. Stimulation of BDNF leads to tau dephosphorylation 
through activation of TrkB and phosphatidylinositol 3-kinase (PI3K) signaling [76]. 

Figure 3. Apolipoprotein E4 inhibits γ-secretase activity via binding to the γ-secretase complex
(Section 4.2). Mutations in presenilin (PS) cause familial AD (FAD) and lead to impaired γ-secretase
activity and Aβ production, which results in an increased Aβ42/Aβ40 ratio. Here, we elucidated a
novel regulatory mechanism for Aβ production that involves the participation of APOE in γ-secretase
complex formation and activity. APOE4 inhibits γ-secretase activity and elevates Aβ42/Aβ40 ratio
compared with APOE3, suggesting that APOE3 and APOE4 isoform-dependently regulate Aβ
production and γ-secretase activity. Our findings provide a novel insight into the pathogenesis
of AD and link together PS and APOE, the most important causative molecules in FAD and SAD,
respectively. The diagram is sourced from Sun et al. [67].

Another neurotrophic factor is nerve growth factor (NGF), which binds to the
tropomyosin receptor kinase A (trkA) and the p75 neurotrophin receptor (p75NTR) [83].
TrkA has a high affinity for NGF. The NGF–trkA interaction activates various molecular
pathways, including the phospholipase C-γ (PLCγ) [84]. PSEN1 may impact phospholipase
C (PLC) and protein kinase C (PKC) activation. In terms of PSEN1 (and PSEN2) knockout,
the expression of most PKC and PLC isoforms was reduced [85]. Another study showed
that the surface trafficking of TrkA and p75NTR are altered in hiPSC-derived neurons
that are differentiated from PSEN1 mutant FAD patients. The surface movement of TrkA
molecules was less confined in PSEN1 mutant neurites. Contrarily, the trafficking of
p75NTR molecules was more confined in the FAD neurites. These results suggest that
presenilin may regulate NGF via trkA and p75NTR receptor [86].

5. Relationship with Other Diseases

We delve into the associations between presenilin and other neurodegenerative dis-
eases, presenting readers with a broader understanding of presenilin. Through in-depth
research on its connections with diseases like Parkinson’s, frontotemporal dementia, Hunt-
ington’s, and amyotrophic lateral sclerosis, we unveil the diverse functions of presenilin
in different conditions (Ref. Figure 1). This comprehensive exploration provides a fresh



Int. J. Mol. Sci. 2024, 25, 1757 9 of 17

perspective on the unique role of presenilin in the field of neurodegenerative diseases,
further highlighting the novelty and innovation of this research.

5.1. Presenilin and Parkinson’s Disease (PD)

The study of presenilin in other neurological disorders, such as PD, has also been
explored, albeit to a lesser extent. While PD and AD are distinct neurodegenerative diseases
with different clinical and pathological features, there are overlapping mechanisms and
common genetic factors that may contribute to the risk of both conditions. One such genetic
link involves presenilin mutations. Some studies have suggested that rare presenilin
mutations, particularly those affecting PSEN1, could increase the risk of developing PD
or cause atypical PD-like symptoms. A study by Chartier-Harlin et al. [87] reported that a
PSEN1 mutation was associated with autosomal dominant PD with typical PD pathology,
indicating a potential role of presenilin in PD pathogenesis.

Presenilin’s potential involvement in PD may be related to its functions beyond Aβ
production. Presenilin is a crucial component of the γ-secretase complex, which is involved
in the proteolysis of various transmembrane proteins, including Notch and the amyloid
precursor protein (APP). Dysregulation of Notch signaling, which relies on presenilin
function, has been implicated in both AD and PD. Altered Notch signaling could influence
neuronal differentiation, survival, and synaptic plasticity, all of which are relevant to PD
pathogenesis [88]. Furthermore, presenilin is involved in calcium homeostasis, a process
crucial for neuronal function and survival. Disruptions in calcium signaling, as observed
in presenilin mutations, can lead to excitotoxicity and mitochondrial dysfunction, both of
which are implicated in the pathogenesis of PD [89].

In the context of Parkinsonism, cognitive decline commonly manifests as the primary
symptom in the majority of PSEN1 mutations, with Parkinsonism emerging in the later
phases of the disease. However, the recent review article provides an excellent summary
of examples of mutations linked to PD or dementia with Lewy bodies (DLB) as initial
symptoms. Moreover, it illustrates the potential association between PSEN1 mutations and
PD, encompassing abnormal protein folding clearance, neuroinflammation, endosomal
dysfunction, and more. Additionally, the article discusses the interaction of PSEN1 with
PD-related genes, including PRKN and PINK1, and explores how PSEN1 participates in mi-
tochondrial pathways by influencing APP cleavage and the formation of AICD [90]. PSEN1
could impact APP cleavage, thereby controlling the formation of the APP intracellular
domain (AICD). AICD could interact with FOXO3, which enhances the Pink1 expression.
AICD may impact the expression of several genes involved in mitochondrial dynamics, for
example, by reducing the expression of DNM1L/Drp1 and MFN2 (mitofusin 2). In addition,
AICD is involved in the expression of mitophagy/autophagy markers. AICD enhances
LC3-II expression but decreases the expression of SQSTM1, TIMM and TOMM. Through
these genes, upregulated PINK1 could stimulate PRKN expression and mitochondrial
functions. The PRKN-PSEN1-PINK1 cascade through AICD interactions could control the
mitochondrial pathways (biogenesis, organelle trafficking and mitophagy) and autophagy.
PSEN1 mutations could possibly result in PD or PD-like phenotypes via the impairment
of PRKN-PINK1-dependent mitochondrial processes [91,92]. PD and mitochondria have
been verified to be closely related, and abnormal mitochondrial pathways could play a key
role in disease progression [92].

Studies on PSEN1 Leu166Pro and exon9 deletion revealed that PSEN1 may interact
with alpha synuclein. This interaction may occur inside the different membrane compart-
ments such as synaptic vesicles, Golgi apparatus or mitochondria. Mutant PSEN1 and
alpha synuclein may prevent the release and appropriate transport of alpha synuclein to
phagosomes and autophagosomes. PSEN1 mutations may result in a stronger interaction
between PSEN1 and alpha synuclein. This interaction may inhibit the release of alpha synu-
clein to proteosomes or autophagosomes, leading to the aggregation of alpha synuclein.
Further studies are needed to determine how a mutant PSEN1–alpha synuclein interaction
may impact the formation of Lewy bodies [93].
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In a study of German early-onset Alzheimer’s disease (EOAD) patients employing
whole-exome sequencing, variants linked to presenilin 2 (PSEN2) were identified [94].
However, the study did not furnish direct evidence suggesting a definitive relationship
between PSEN2 and PD.

It is worth emphasizing that the role of presenilin in PD is still a topic of ongoing
research, and the precise mechanisms by which presenilin may influence PD pathology
are not fully understood. Given the complex and multifaceted nature of neurodegen-
erative diseases, exploring the potential links between presenilin and PD may provide
valuable insights into the shared molecular pathways and genetic factors that contribute to
these disorders.

5.2. Presenilin and Frontotemporal Dementia (FTD)

Studies indicate that mutations in the PSEN1 gene may contribute to dysfunc-
tion in FTD through presenilin1 dysfunction, and the development of FTD may be
influenced by the extent of loss of function in the PSEN1 gene and the resulting tau
pathophysiology [95,96]. In another study utilizing nested primers, PSEN1gene products
with deletions within the exon 4–8 region were observed. These findings propose a potential
association between alternative transcription of presenilin 1 and FTD [97]. Current research
suggests a potential connection between presenilin and FTD. Specific mutations in the
PSEN1 gene, such as Leu113Pro, Gly183Val, Leu226Phe, Met233Leu, or Arg352 insertion,
have been linked to the manifestation of FTD-like symptoms. These symptoms may include
behavioral and language variant diseases. This study also summarized potential mecha-
nisms through which PSEN1 is implicated in FTD, including loss-of-function mechanisms,
aberrant splicing, and regulation of Tau-related pathways [90]. However, compared to
Alzheimer’s disease, there is relatively less research on the relationship between presenilin
and FTD. Further in-depth studies are required to comprehensively understand the specific
connections and mechanisms between the two.

5.3. Presenilin and Huntington’s Disease (HD)

Research has indicated a potential association between presenilin and HD. HD is a
neurodegenerative disorder caused by a mutation in the huntingtin gene. Presenilin’s
involvement in the pathogenesis of HD may be linked to autophagy [98].

Several studies have demonstrated the presence of autophagy in the brains of patients
suffering from HD [99] and in animal models of HD [100]. It is hypothesized that the
lysosomal system, particularly the process of autophagy, is involved in the clearing of
ubiquitinated inclusions in HD [101]. Presenilin1 is essential for v-ATPase targeting to
lysosomes, lysosome acidification, and proteolysis during autophagy [102,103]. These
studies suggest that the aberrant function of presenilin may lead to disturbances in the
autophagosome–lysosome system, influencing the progression of HD. However, it is
essential to note that further in-depth research is required to elucidate the specific roles and
mechanisms of presenilin in the context of HD, providing a comprehensive understanding
of its involvement in various neurodegenerative disorders.

5.4. Presenilin and Amyotrophic Lateral Sclerosis (ALS)

ALS is an adult-onset neurodegenerative disease characterized by the selective death
of upper and lower motor neurons, ultimately leading to paralysis and death. A re-
cent study confirmed that presenilin-1 mutations are a cause of primary lateral sclerosis-
like syndrome [104]. The connection between presenilin and ALS is still under inves-
tigation, with emerging evidence suggesting potential links. Pathological changes in
ALS are closely associated with pronounced and progressive changes in mitochondrial
morphology [105,106]. Additionally, presenilin mutations deregulate mitochondrial Ca2+

homeostasis and metabolic activity, causing neurodegeneration in Caenorhabditis elegans
and cultured rat hippocampal neurons [107,108]. These studies indicated that presenilin
mutation may contribute to ALS by impairing mitochondrial function.
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TDP-43 is a major constituent of ubiquitin-positive cytoplasmic aggregates present in
neurons of patients with frontotemporal lobular dementia and ALS [109]. A study has sug-
gested that the presenilin-binding protein ubiquilin 1 (UBQLN) serves as a polyubiquitin-
TDP-43 cochaperone, facilitating the autophagosomal delivery and/or proteasome target-
ing of TDP-43 aggregates [110].

In a targeted sequencing analysis of 169 genes among 242 individuals of Caucasian
descent in the United States, two presenilin mutations (PSEN1 W203C and PSEN1 I249L)
were identified in individuals with amyotrophic lateral sclerosis (ALS) [111]. Another study
suggested that the PSEN1 I249L mutation may contribute to increased Aβ42 production
and elevated Aβ42/Aβ40 ratios [112]. The understanding of presenilin’s role in ALS
is an evolving area of research, and more studies are needed to elucidate the specific
mechanisms involved.

6. Treatment and Research Progress

Research on Alzheimer’s disease (AD) has spurred investigations into therapeutic
approaches targeting the γ-secretase complex, particularly its crucial component, presenilin.
Drug development aimed at modulating γ-secretase activity for AD treatment faces chal-
lenges, as the complex is involved in various cellular processes with potential unintended
consequences upon inhibition.

Several drugs, such as semagacestat and avagacestat, targeting γ-secretase, underwent
clinical trials but were discontinued due to off-target effects and cognitive decline in some
patients [113]. Ongoing research seeks to refine γ-secretase inhibitors for improved safety
and efficacy. Alternative strategies focus on mitigating neuroinflammation and synaptic
dysfunction associated with presenilin dysfunction. Anti-inflammatory drugs and im-
munomodulatory therapies are being explored to counteract neuroinflammation in AD [36].
Efforts to enhance synaptic plasticity and neurotransmission through pharmacological
interventions are also underway [114].

Personalized medicine approaches are gaining momentum, recognizing the need for
tailored treatments based on specific presenilin mutations. Gene editing technologies
have been explored to correct certain presenilin mutations [115]. Recent studies have
shown that CRISPR-Cas9 gene editing technology is able to selectively disrupt PSEN1
mutations leading to an autosomal dominant form of early-onset AD and counteract the
AD-associated phenotype [116,117]. Despite challenges, targeting the γ-secretase complex,
especially presenilin, remains a therapeutic focus in AD research. Balancing the reduction
of amyloid beta production with the preservation of essential γ-secretase functions poses a
significant challenge in AD drug development [118].

7. Conclusions

Presenilin, initially identified for its role in Alzheimer’s disease (AD), has emerged as
a multifunctional protein with diverse roles in cellular physiology and pathology. Beyond
its well-known involvement in Aβ production, presenilin plays a pivotal role in vari-
ous cellular processes, including calcium signaling, synaptic plasticity, apoptosis, Notch
signaling, autophagy, ER stress, mitochondrial function, oxidative stress, blood–brain
barrier integrity, and tau pathology. In addition, we have summarized some recently
discovered new functions of presenilin, including trafficking function, regulation of APOE
secretion, interaction with ApoE and change of γ-secretase activity in different APOE
genotypes, induction of oxidative damage through ferritin, and alteration of ACE-mediated
Aβ42-to-Aβ40-converting activity.

Understanding the intricate molecular mechanisms underlying presenilin’s multi-
faceted roles is crucial for gaining insights into both normal cellular physiology and the
pathogenesis of various diseases, including AD. The γ-secretase complex, with presenilin
at its core, serves as critical molecular machinery involved in the processing of multiple
transmembrane proteins, including Notch and APP. Dysregulation of γ-secretase activity
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due to presenilin mutations disrupts the cleavage of these substrates, leading to profound
consequences in neurodegenerative diseases like AD.

While challenges remain, ongoing research into presenilin and its associated pathways
offers hope for novel therapeutic interventions that can slow or even halt the progression
of AD and other neurodegenerative diseases.

8. Method

In our research, we conducted a comprehensive literature review on the multifunction-
ality of presenilin in neurodegenerative disorders. Through systematic keyword searches
and exploration of highly cited classical articles in databases such as PubMed and Sci-
enceDirect, we aimed to cover recent research comprehensively. Our focus was on se-
lecting recent publications to gain the latest insights into presenilin’s diverse functions
in various neurodegenerative disorders. Emphasizing classical articles with high cita-
tions ensured a strong theoretical foundation for our review, enabling a thorough ex-
ploration of presenilin’s role. The genetic variation data were obtained from AlzForum
URL (accessed on 22 January 2024) (https://www.alzforum.org/mutations/psen-1 and
https://www.alzforum.org/mutations/psen-2). This literature review approach aimed to
provide robust support for our study, contributing to a comprehensive understanding of
presenilin’s multifunctionality in the context of neurodegenerative disorders.
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