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Abstract: RNA regulates various biological processes, such as gene regulation, RNA splicing, and
intracellular signal transduction. RNA’s conformational dynamics play crucial roles in performing
its diverse functions. Thus, it is essential to explore the flexibility characteristics of RNA, especially
pocket flexibility. Here, we propose a computational approach, RPflex, to analyze pocket flexibility
using the coarse-grained network model. We first clustered 3154 pockets into 297 groups by similarity
calculation based on the coarse-grained lattice model. Then, we introduced the flexibility score
to quantify the flexibility by global pocket features. The results show strong correlations between
the flexibility scores and root-mean-square fluctuation (RMSF) values, with Pearson correlation
coefficients of 0.60, 0.76, and 0.53 in Testing Sets I–III. Considering both flexibility score and network
calculations, the Pearson correlation coefficient was increased to 0.71 in flexible pockets on Testing
Set IV. The network calculations reveal that the long-range interaction changes contributed most to
flexibility. In addition, the hydrogen bonds in the base–base interactions greatly stabilize the RNA
structure, while backbone interactions determine RNA folding. The computational analysis of pocket
flexibility could facilitate RNA engineering for biological or medical applications.

Keywords: RNA pocket flexibility; flexibility mechanism; interaction characteristics

1. Introduction

RNA plays major roles in various biological processes, including virus replication,
gene transcription, and protein synthesis [1–5]. For example, nucleoside analog inhibitors
affect coronavirus disease (COVID-19) replication by binding to virus-dependent RNA
polymerase [6]. RNAs are highly dynamic when interacting with other molecules [7–10].
For example, the L28 protein induces let-7 microRNA to form a specific conformation
and inhibits its maturation [11]. The benzimidazole inhibitors of the HCV replicon act by
conformational induction of a widened interhelical angle in the IRES subdomain IIa to
repress the translation [12]. Thus, the flexibility of RNA structure is closely related to its
biological function.

There are some experimental methods to determine the RNA structure. Unfortunately,
X-ray crystallography only determines static structures, and RNA structures’ flexibility
often prevents the formation of RNA crystals [13]. Although NMR experiments provide
multiple dynamic structural models of RNA, the application of solution NMR to RNA is
impacted by molecular size [14,15]. Moreover, the computational methods of molecular
docking do not consider or implicitly consider conformational changes in RNA [16]. For
example, NPDOCKT treats RNA as a rigid body for docking [17], RLDOCK currently
only considers the flexibility of ligands in RNA–ligand structures [18], and RNP-devono
allows for subtle conformational changes in RNA by folding RNA using Rosetta [19].
Therefore, it is still challenging to improve the accuracy of docking methods due to the
limited understanding of the RNA molecules’ flexibility, especially the conformational
flexibility of RNA pockets.
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At present, many algorithms have been developed for predicting and identifying
RNA pockets. For example, 3 V, MSPocket, PocketFinder, and CHUNNEL are used to
identify static pockets given a single RNA conformation [20–23]. Trj_cavity, CAVER 3.0,
MDpocket, and Epock track the geometric evolution of pockets throughout the course of
molecular dynamics (MD) trajectories [24–27]. However, these algorithms rarely provide
quantitative and detailed analysis of pocket flexibility, and the MD simulations used are
computationally quite expensive and time-consuming. While root-mean-square fluctuation
(RMSF) can measure pocket flexibility at the atomic level, it ignores the variation in pocket
topological features, such as volume, surface area, and sphericity. Previously, we developed
the RNA–ligand pocket and RNA–protein pocket databases [28,29]. We analyzed the static
features (sequence, secondary structure, and geometry) from the crystal structures or the
first NMR structural models in these databases. However, RNAs are relatively dynamic
when interacting with ligands or proteins to form complexes. Therefore, there is an urgent
need for an approach to quantitatively compute pocket flexibility.

In this work, we provide a computational approach, RPflex, to calculate the conforma-
tional flexibility of RNA pockets. The 3154 pockets from 160 NMR RNA-related structures
are first divided into 297 groups by similarity using a coarse-grained lattice model. Then,
we introduce the flexibility score to quantify the pockets’ topological flexibility. The flexibil-
ity scores show a strong correlation with RMSF calculations (Pearson correlation coefficient
of 0.53–0.76 in Testing Sets I–IV). The network calculations provide a mechanism for pocket
flexibility by network interaction changes. We further analyzed 178 ligand- and 284 protein-
binding pockets to reveal the recognition mechanism and interaction characteristics. Our
results suggest that most ligand-binding pockets are relatively rigid, and some protein-
binding pockets are relatively flexible. We believe RPflex could help the understanding of
pocket flexibility to accelerate RNA-related drug design.

2. Results
2.1. Overview of the RNA Pocket Dataset

We divided 160 RNA-related structures of the RNA dataset into thirteen categories
based on their functions: rRNA (13), mRNA (10), tRNA (2), viral RNA (32), telomerase
RNA (10), snoRNA (2), 7sk RNA (2), dsRNA (4), IRES (9), ribozyme (12), riboswitch (6),
aptamer (12), and others (46) (Supplementary Data S1). Figure 1 shows most RNA-related
structures (~98%) have no more than three pockets per structural model. To consider
pocket flexibility, we also classified the RNAs into four categories based on the number
of NMR structural models. Table 1 shows 89% of the RNA-related complexes have no
more than 20 structural models. Next, we extracted 3154 pockets from the RNA dataset
to form the pocket dataset. Table 1 shows the pocket dataset extracted from RNA (2276
pockets), RNA–ligand (352 pockets), and RNA–protein (526 pockets) complexes. Unlike
most datasets that only contain sequence and structure information [30–34], our pocket
dataset provides much more detailed information with topological properties: volume,
surface area, sphericity, effective radius, and center of mass (Supplementary Data S2).
Notably, the pocket dataset provides the flexibility information on the classification of
3154 pockets into 297 pocket groups based on similarity, enabling biologists to better grasp
the flexibility of RNA pockets to facilitate drug design or RNA engineering.

2.2. RMSF Analysis of Pockets

To compare the pocket flexibility and structural flexibility, we calculated the RMSFs
of the pockets and the corresponding structural models. Larger RMSF values indicate
higher flexibility, while smaller RMSF values indicate more rigidity. For example, the
snoRNA (PDB code: 6HYK) is the U14 snoRNA K-turn motif (kt-U14) determined by NMR.
Chagot et al. demonstrated that the structure of kt-U14 is stabilized upon Snu13p binding
to control the assembly of many cellular RNPs and their downstream processes [35]. Here,
we calculated the RMSFs of 31 nucleotides in 10 NMR structural models and the RMSFs
of 11 overlapping nucleotides in a pocket group (6HYK-G1). Figure 2A shows that RMSF
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values (0.1~1.1 Å) of NMR structures have a similar range to 6HYK-G1 (0.1~0.9 Å). It
indicates that the structures and pockets are rigid, as shown by their stable conformational
changes. We also observed a similar RMSF trend and an identical nucleotide (U8) with
peak RMSF in the NMR structures as in 6HYK-G1. Thus, the rigid NMR structures of 6HYK
strongly agree with the pockets’ conformational changes.

Figure 1. The proportion of various types of RNA and the pocket distribution of each RNA type
in RNA (A), RNA–ligand (B), and RNA–protein (C) structures. The inner loop is the proportion of
various types of RNA. The outer loop is the maximum number of pockets contained in structural
models of a complex.

Table 1. Summary of RNA dataset based on the number of structural models.

Structure Type Number of Models Complexes Nucleotides RNA Pockets

RNA

5~10 47 2149 655
11~20 56 1894 1260
21~30 12 405 322
31~40 1 31 39
Total 116 4479 2276

RNA–ligand

5~10 12 432 155
11~20 5 183 119
21~30 1 38 20
31~40 1 27 58
Total 19 680 352

RNA–protein

5~10 6 215 59
11~20 16 493 332
21~30 1 27 21
31~40 2 60 114
Total 25 795 526

Another example is the structure (PDB code: 1NYB) consisting of an amino-terminal
bacteriophage ϕ21 N protein in complex with a boxB RNA. Cilley et al. discovered the ϕ21
boxB RNA adopts a stem-loop structure with a lack of stable hydrogen bonds [36]. Here,
we calculated the RMSFs of 24 nucleotides in 11 NMR structural models and the RMSFs
of 18 overlapping nucleotides in a pocket group (1NYB-G1). Figure 2B shows that RMSF
values (1.0~4.4 Å) of NMR structures have a similar range to 1NYB-G1 (0.9~3.8 Å). Some
nucleotides in NMR structures (~37%) and 1NYB-G1 (~33%) were greater than 2.0 Å. It indi-
cates that the structures and pockets are flexible, as shown by their unstable conformational
changes. We also observed a similar RMSF trend and identical nucleotides (G1, G2, and
C15) with larger RMSFs in the NMR structures as in 1NYB-G1. Thus, the conformational
changes in the flexible NMR structures and pockets of 1NYB are highly consistent.

As mentioned above, the conformational changes in pockets can reflect structural
flexibility. Although RMSF can describe pocket flexibility at the atomic level, it ignores
the topological features that are essential for pocket-like geometric structures. Therefore,
there is an urgent need for a theoretical approach to measuring pocket flexibility in terms
of topological characteristics.



Int. J. Mol. Sci. 2023, 24, 5497 4 of 16

Figure 2. Examples of pocket flexibility reflect structural flexibility. (A) Conformational changes and
calculations of RMSF for structure (PDB code: 6HYK) and pockets (6HYK-G1). The purple marker
dots indicate the overlapping nucleotides forming the pockets in 6HYK-G1. (B) Conformational
changes and calculations of RMSF for structure (PDB code: 1NYB) and pockets (1NYB-G1). The
orange marker dots indicate the overlapping nucleotides forming the pockets in 1NYB-G1.

2.3. Quantitative Analysis of the Pocket Flexibility

Through RPflex, we calculated the flexibility score (Q) to quantify pocket flexibility
by the coarse-grained lattice model. Compared to measuring flexibility by RMSF, the
flexibility score considers the topological features of pockets, including volume, surface
area, and sphericity. A larger value of Q indicates higher flexibility. Then, we divided the
pocket dataset into three classes based on the flexibility score: rigidity, 130 pocket groups
(0 < Q < 0.30); intermediate flexibility, 119 pocket groups (0.30 ≤ Q < 0.60); and flexibility,
48 pocket groups (0.60 ≤ Q) (Table 2).

Table 2. The distribution of the classes of flexibility and binding types for pocket groups in Testing
Sets I–III.

Testing Set Number of
Pocket Groups

Class Binding Type

Rigidity Intermediate
Flexibility Flexibility Non-

Binding
Ligand-
Binding

Protein-
Binding

Small 165 58 73 34 153 2 10
Medium 97 50 37 10 75 11 11

Large 35 22 9 4 31 2 2
Total 297 130 119 48 259 15 23
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To validate the correlation between RMSFs and Qs, we divided the 297 pocket groups
into Testing Sets I–III based on the overlapping volume: small (0 < Vg ≤ 500 Å3,
165 pocket groups); medium (500 < Vg ≤ 1500 Å3, 97 pocket groups); and large
(1500 < Vg ≤ 7200 Å3, 35 pocket groups) (Supplementary Data S3). In Table 2, the bind-
ing pockets in small (31.6%) and medium (57.9%) are more than in large (10.5%). It indicates
that pockets are mainly distributed in small and medium, including the binding pockets.
Similar to that reported by the RPocket database, the volume of the ligand-binding pockets
of RNA (~75%) ranged from 200 to 2000 Å3 [28]. Next, we further calculated Pearson
correlation coefficients to test the pocket flexibility score (Qs) with RMSFs. The results
indicate that there are strong correlations for small (Pearson correlation coefficient r = 0.60)
and medium (r = 0.76), followed by large (r = 0.53). Figure 3A–C show a similar trend
between Qs and RMSFs for pockets in small and medium, followed by large. Therefore, the
flexibility scores reflect the conformational changes in pockets, demonstrating the accuracy
of RPflex.

Figure 3. The correlation between the flexibility scores (Qs) and RMSFs of pocket groups in Testing
Sets I–III: small (A), medium (B), and large (C). The topological information distribution of overlap-
ping volume (D) and average volume (E) of pocket groups in the medium. The distribution of S/P of
pocket groups in the medium (F). The mean values are colored black.

Additionally, we tested the flexibility scores by systematically analyzing the topologi-
cal properties of pockets in the medium. Firstly, we calculated each pocket group’s average
volume and overlapping volume. When the average volume is larger, the pocket with a
smaller overlapping volume is more flexible. As shown in Figure 3D,E, the average volume
tends to decrease in flexibility (1296 Å3), intermediate flexibility (1271 Å3), and rigidity
(1120 Å3) pockets, whereas the overlapping volume tends to increase in flexibility (670 Å3),
intermediate flexibility (810 Å3), and rigidity (923 Å3) pockets. Secondly, we also calculated
the average surface area and overlapping surface area of each pocket group. When the
average surface area is larger, the pocket with a smaller overlapping surface area is more
flexible. We observed that the average and overlapping surface areas had the same trends
as their volumes (Figure S1). Thirdly, we calculated the values of S/P for each pocket group.
S/P reflects the overall spatial variation in pockets in a group, where pockets with larger
S/P are more flexible. Figure 3F shows the value of S/P of flexibility pockets (0.48) is the
largest, followed by the intermediate flexibility (0.30) and rigidity (0.11) pockets. Therefore,
we verified the accuracy of the flexible score in terms of the topological features.
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2.4. Flexibility on Binding and Unbinding Pockets

The primary challenge for RNA-based therapeutics is to determine the targeted pock-
ets. Thus, we explored the flexibility-based recognition mechanism of RNA pockets in our
pocket dataset. Figure 4A shows the distribution of non-, ligand-, and protein-binding pock-
ets in three classes: rigidity, intermediate flexibility, and flexibility. The results show that
ligands prefer to bind to the rigidity (65.7%) compared to intermediate flexibility (34.3%)
pockets, while proteins tend to bind not only primarily to rigidity (50.4%) pockets but also
partially to flexibility pockets (14.1%). This may be due to many ligands being small and
stable molecules that bind to pockets in a “lock and key” mode. RNA binding proteins
(RBP) with disordered regions have higher specificity and affinity toward RNA, and flexible
RNAs can induce the conformational transition to their partner RBPs [37,38]. Thus, some
protein-binding pockets need to be relatively flexible. We also observed the non-binding
pockets, like binding pockets, are mainly distributed in the rigidity class (46.1%), interme-
diate flexibility class (41.4%), and partially in the flexibility class (12.5%), suggesting their
potential as targets for ligands and proteins. The structure views show that conformations
of rigidity pockets (2KX8-G2: Q = 0.09) from the RNA–ligand NMR structure (PDB code:
2KX8) are relatively stable with regular nucleotides (Figure 4B), whereas conformations of
flexibility pockets (2N82-G1: Q = 0.84) from the RNA–protein NMR structure (PDB code:
2N82) are relatively unstable with disorder nucleotides (Figure 4C).

Figure 4. (A) The frequency of non-, ligand-, and protein-binding pockets in three classes of flexibility.
(B,C) The examples of structure views of rigidity ligand-binding (2KX8-G2) and flexibility protein-
binding pockets (2N82-G1). The topological information distribution of volume (D) and surface area
(E) for ligand-binding pockets. The mean values are colored black.

We further statistically analyzed 178 ligand- and 284 protein-binding pockets to obtain
topological principles for the recognition mechanism. Figure 4D,E indicate that the ligand-
binding pockets (volume of 1521 Å3; surface area of 878 Å2) of intermediate flexibility
were more extended than the rigidity pockets (volume of 1055 Å3; surface area of 647 Å3).
In addition, the rigidity pockets with a volume of 527~1338 Å3 and a surface area of
364~759 Å2 are more likely to bind to small molecules, while the intermediate flexibility
pockets with a volume of 899~2381 Å3 and a surface area of 638~1248 Å2 (Figure S2). These
results emphasize smaller ligand-binding pockets are more rigid compared to larger ones.
Moreover, the result implies a trend for protein-binding pockets to be the largest in the
rigidity class, followed by the intermediate flexibility and flexibility class (Figure S3).
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2.5. Physics-Based Interactions on Flexibility

We used the HBPLUS program to calculate the hydrogen bonds and van der Waals con-
tacts of nucleotides that form ligand-binding pockets to understand the flexible mechanisms
of RNA. Figure S4A,B show the distributions of the hydrogen bonds and vdW contacts in
base–base, base–ribose, base–phosphate, ribose–phosphate, and ribose–ribose, respectively.
The distribution details of each pair for both types of contacts are listed in Table S1. It shows
more base–base hydrogen bonds (68.0%) in rigidity pockets than in intermediate flexibility
pockets (42.2%). Additionally, there are fewer ribose–ribose and ribose–phosphate hydro-
gen bonds in rigidity pockets (24.6% and 1.5%) than in intermediate flexibility pockets
(52.3% and 2.8%). These results suggest that the base–base hydrogen bonds greatly stabilize
the RNA structure while hydrogen bonds in backbones determine RNA folding. The
vdW contact calculations show that the RNA prefers to form ribose–ribose interactions to
optimize the structure in both rigidity (93.7%) and intermediate flexibility (66.7%) pock-
ets. Ligands prefer to form hydrogen bonds and vdW contacts with bases in both rigidity
(67.4% and 78.4%) and intermediate flexibility (54.0% and 52.2%) pockets (Figure S4C,D and
Table S2). We also observed that both types of contact in ligand–backbone for intermediate
flexibility pockets are more than rigidity pockets.

Next, we also calculated hydrogen bonds and van der Waals contacts of nucleotides
that form protein-binding pockets (Figure 5A,B and Table S3). The result also shows
more base–base hydrogen bonds (58.5%) in rigidity pockets than in flexibility pockets
(43.7%). Additionally, the ribose–ribose and ribose–phosphate hydrogen bonds in rigidity
pockets (26.1% and 5.7%) are less than in flexibility pockets (37.8% and 6.7%). Similar to
ligand-binding pockets, these results also suggest that the hydrogen bonds in base–base
interactions considerably limit the flexibility of RNA pockets. According to the vdW contact
calculations, RNAs like to generate ribose–ribose connections to optimize the structure. We
further analyzed the hydrogen bonds and vdW contacts in pockets with three amino acid
categories: charged, polar, and hydrophobic (Figure 5C,D and Table S4). The result shows
that the charged amino acids have the highest probability of forming both types of contact
with pockets. Additionally, there are more hydrogen bonds in polar and hydrophobic
amino acids with flexibility pockets than rigidity pockets.

Figure 5. The distribution of hydrogen bonds (A) and vdW contacts (B) of nucleotides forming
protein-binding pockets. The hydrogen bonds (C) and vdW contacts (D) distribution of proteins with
pockets. There are five pairs of interactions: base–base (BB), ribose–base (RB), phosphate–base (PB),
phosphate–ribose (PR), and ribose–ribose (RR).
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3. Discussion

RNAs interact with other molecules via binding pockets to perform their biological
functions [39–42]. Some of the pockets are flexible and have conformational changes during
the binding [43–45]. How to quantify pocket flexibility remains one unsolved problem. This
work analyzed a large scale of 3154 pockets from 160 non-redundant NMR RNA-related
structures. Using the coarse-grained lattice model, the flexibility score (Q) quantifies the
flexibility globally based on pockets’ spatial locations and topological properties. The
Pearson correlation coefficients between Qs and RMSFs in Testing Sets I–III are 0.60, 0.76,
and 0.53, respectively. Therefore, the flexibility score provides a good measure of flexibility
through global pocket features. In addition, we analyzed the secondary structures for
30 rigidity and 30 flexibility pocket groups. The results show that the stem units are
relatively more rigid than the loop units (Supplementary Data S4).

Since the coarse-grained lattice model considers neighboring interatomic interactions,
we propose the network model to capture the effects of interactions between nucleotides
on RNA folding and, subsequently, on pocket flexibility. The pocket network is defined by
nucleotides as nodes and non-covalent interactions as edges. Here, we calculated the stan-
dard deviation of average degrees (σ<k>) and the standard deviation of average clustering
coefficients (σ<C>) to measure the local interaction changes, while the standard deviation
of diameters (σdmax ) and the standard deviation of average path lengths (σ<d>) to measure
both local and long-range interaction changes (Supplementary Data S5). Combining the
flexibility score (Q), the results show that the local interaction calculations (Q ∗ σ<k> and
Q ∗ σ<C>) decrease the Pearson correlation coefficients to 0.34 and 0.26 in flexible pockets,
respectively (Figure 6A). In contrast, the Pearson correlation coefficients increase to 0.71 and
0.68 when considering both local and long-range interactions (Q ∗ σdmax and Q ∗ σ<d>). It
indicates that the long-range interaction changes contributed most to flexibility. Therefore,
the network calculations provide a flexibility mechanism by network interaction changes
and better characterizes pocket flexibility by integrating flexibility score (Q).

The network model provides both local and long-range interaction information. For
example, the structure (PDB code: 1NYB) consists of an amino-terminal bacteriophage ϕ21
N protein in complex with a boxB RNA [36]. Comparing the NMR structural model 1 (PDB
code: 1NYB), the nucleotides C5, A6, G17, and G18 form two more interactions in the NMR
structural model 10 (PDB code: 1NYB), leading to structural bending during RNA folding
(Figure 6B–D). The shortest path communications are G1–U3–C5–C7–U9–C15 and G2–U4–
A6–C8–G16–C14 in the NMR structural model 1. However, the long-range interaction
communications changed to G1–C15 and G2–C14 direct interactions by structural bending
in the NMR structural model 10. Thus, long-range interactions play an essential role in the
flexibility of RNA pockets.

The structural elements have been successfully applied to RNA complex structure
prediction. However, understanding the higher level of pocket flexibility is still limited. To
test if the higher level of pocket flexibility can identify native-like RNA complex structures,
we ran the popular RNA structure prediction program (RLDOCK) on complex structures
(PDB code: 1ARJ and 1F7I) to build sampling structures and evaluate the prediction
accuracy. For topological principles of the recognition mechanism, the rigidity pockets
with a volume of 527~1338 Å3 and a surface area of 364~759 Å2 are more likely to bind to
small molecules, while the intermediate flexibility pockets with a volume of 899~2381 Å3

and a surface area of 638~1248 Å2. Thus, we divided the prediction structures into global
sampling, pocket sampling, and target pocket sampling classes (Table S5). Figure S5 shows
the all-atom root-mean-square deviation (RMSD) measured against the native structure.
For 1ARJ and 1F7I, the top 20 predictions for target pocket sampling show lower RMSDs
(5.95 ± 2.43 Å and 7.85 ± 0.56 Å) than global sampling (14.63 ± 1.49 Å and 9.04 ± 1.84 Å)
and pocket sampling (14.34 ± 1.27 Å and 8.33 ± 0.91 Å). The results suggest that the higher
level of pocket flexibility patterns may improve the RNA complex structure prediction.
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Figure 6. (A) The Pearson correlation coefficients (r) between RMSF and Q, Q ∗ σ<C>, Q ∗ σ<k>,
Q ∗ σdmax , and Q ∗ σ<d>, respectively. (B) The nucleotides forming the yellow pocket in NMR
structural model 1 (PDB code: 1NYB) are colored yellow, and those forming the purple pocket in
NMR structural model 10 (PDB code: 1NYB) are colored purple. The nucleotides that do not form the
pockets are colored gray. (C,D) The pocket networks of NMR structural model 1 (PDB code: 1NYB,
colored yellow) and NMR structural model 10 (PDB code: 1NYB, colored purple). The overlapping
edges between NMR structural model 1 and NMR structural model 10 are colored gray, and the
different edges are colored yellow and purple, respectively.

4. Materials and Methods
4.1. Structure Dataset Collection

To construct a diverse RNA dataset, we extracted the RNA-related structures from
the Protein Data Bank (20 October 2021) with the search options “RNA” and “NMR”. We
extracted the RNA-related structures with a single RNA chain that binds to ligands or
a single-stranded protein. There are three types of NMR structures: RNA (358 entries),
RNA–ligand (54 entries), and RNA–protein (41 entries). Then, we removed the short (less
than 20 nucleotides) and highly complex (more than 120 nucleotides) RNA structures. To
acquire the non-redundant dataset, we used the CD-hit to remove the redundant RNAs with
RNA sequence identities >80% [46,47]. Then, the dataset consisted of 143 RNA structures,
24 RNA–ligand structures, and 27 RNA–protein structures. In addition, the NMR structures
with one structural model were removed. We also removed complexes if there were less
than three pockets in a group (see the method Section 2.2). Thus, the RNA dataset includes
116 RNA structures, 19 RNA–ligand structures, and 25 RNA–protein structures.

To construct the pocket dataset, the pockets of an NMR structure with multiple struc-
tural models were recognized by the 3V server using the rolling probe method [20,48,49].
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The coordinates of the structural model are superimposed on the cubic grids to roll two
virtual probes on the molecular surface. If the probe contacts more than two atoms on the
molecule surface, then the center of the probe is recorded [48]. These discrete positions
form the boundary of the pocket [49]. Here, we detected pockets using the discrete volume
method, where the default large probe radius is 10 Å, and the small probe radius is 3 Å.
The effective radius (reff) and sphericity (ψ) were calculated by

reff =
3VP

AP
, ψ =

π1/3(6Vp
)2/3

AP
(1)

where Vp and Ap represent the volume and surface area of the pocket, respectively.

4.2. Criteria for Pocket Conformational Flexibility

Here, we focus on exploring the conformational flexibility of RNA pockets, using the
flexibility score to quantitatively describe topological changes globally. The flexibility score
is calculated by the geometric topology of pockets using the coarse-grained lattice model.
The coarse-grained lattice model scales the box for the pocket size and divides the box
space into 3D grids of small cubes (i.e., voxels). Figure 7 shows the workflow using one
RNA–ligand structure (PDB code: 6IZP) as an example.

Figure 7. The workflow of the quantifying pockets’ flexibility. (A) Calculating the similarity of
pockets of all the structural models of a complex, such as an RNA–ligand complex (PDB code: 6IZP).
(B) Dividing pockets into different groups based on pocket similarity. (C) Calculating the flexibility
score of a pocket group.

The first step is to calculate the pocket similarity using the coarse-grained lattice
model (Figure 7A). For q pockets from all structural models of an NMR structure, our
method generated a pocket similarity matrix (q × q) describing the similarity of any two
pockets. To describe the index of the matrix element, we labeled the pocket numbers in the
order of the structural models as 1, 2, 3 . . . , q. For example, all the pockets of 6IZP were
labeled as 1 (m1-1), 2 (m1-2), 3 (m2-1), . . . , 15 (m10-2). In our model, the coordinates of
two pocket conformations are superimposed on the cubic grids in the box. The box size
is scaled according to the two pockets stored at a time, ensuring full use of the box space
to save computing time. The box is divided into voxels of size 1 Å3, and the value of the
voxel occupied by the pocket is 1; otherwise, it is 0. The overlapping voxel value of the
two pockets is 2. Here, the matrix element, Pij , is the similarity between pocket i and
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pocket j, where pocket i is selected as the reference conformation. We count the number
of voxels (Ni) occupied by pocket i and the number of overlapping voxels (nij). Thus,
pocket similarity, Pij , describes the conformational changes between two pockets in spatial
location, calculated by

Pij =
nij

Ni
(2)

Then, we figured out Pij between any two of q pockets to generate a pocket similarity
matrix, where Pii = 1.

The second step is to divide q pockets into different pocket groups based on pocket
similarity (Figure 7B). Here, we chose Pij = 0.25 as the cutoff for pocket classification,
which means that pocket i and pocket j are treated as a group for Pij > 0.25. We used
the pocket positions on the first structural model as the reference conformations, such as
two pockets in the first structural model of 6IZP. For the pocket similarity matrix of 6IZP,
six pockets were picked to form 6IZP-G1 for P1j > 0.25, and eight pockets were picked
to form 6IZP-G2 for P2j > 0.25. Then only one pocket left was counted as 6IZP-G3. The
research objects were defined as pocket groups with no less than three pockets; otherwise,
the pocket groups were deemed invalid, such as 6IZP-G3. Through this step, we can divide
the pockets obtained from the NMR structure into different groups according to their spatial
position and then obtain the pocket similarity matrixes of different groups to calculate the
pocket flexibility.

The third step is to calculate the flexibility score to quantify the conformational flex-
ibility of each pocket group (Figure 7C). For m pockets in a group, the flexibility score
describes pocket conformational changes in two ways: spatial location and topology prop-
erties. For the spatial location, we calculated the standard deviation of similarity for pocket
i, σi , which reflects the spatial variation in m pockets with reference pocket i. Considering
the general trend of conformational changes in m pockets, the average of the standard
deviation of similarity (S) and the average of the similarity matrix (P) were calculated by

σi =

√√√√∑j=m
j=1

(
Pij − ∑`=m

`=1 Pi`

)2

m
(3)

S =
σ1 + σ2 + ···+ σm

m
(4)

P =
∑i=m

i=1 ∑j=m
j=1 Pij

m×m
(5)

P reflects the degree of spatial overlap of the m pockets. A larger value of S means more
flexibility, whereas a larger P value means more rigidity. Thus, the value of S/P reflects
the overall situation of the spatial variation in m pockets. For topology properties, we
considered the trend between (Vi − V) and (Ai − A) for pocket i. V and A are the average
volume and average surface area of m pockets, respectively. According to the definition of
sphericity, we define Γ to describe the topological changes in m pockets, calculated by

Γ = ∑i=m
i=1

∣∣∣∣∣Ψi −
(
Vi − V

)2/3

6(Ai − A)

∣∣∣∣∣ (6)

where Ψi is the sphericity of pocket i. Thus, for m pockets in a pocket group, the flexibility
score, Q, is calculated by

Q =
S/P

Γ
= ∑i=m

i=1
S/P∣∣∣∣Ψi −
(Vi−V)

2/3

6(Ai−A)

∣∣∣∣ (7)

Larger Q values indicate higher flexibility, while lower Q values indicate more rigidity.
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4.3. Network Construction

We constructed structure networks to capture the effect of interactions between nu-
cleotides on pocket flexibility. The fragment of RNA tertiary structure forming a pocket is
transformed into a network in which nucleotides are nodes, and non-covalent interactions
with each other are edges. Previous work has shown that 8 Å can serve as a reliable contact
cutoff for RNA tertiary structure studies [50]. If two discrete nucleotides in a sequence
contain a pair of heavy atoms and are less than 8 Å apart, the two nucleotides are connected
by an edge. Cytoscape was used for network visualization [51].

To characterize the network characteristics, we calculated the average degree (< k >)
and average clustering coefficient (< C >) to infer the local interactions, while the diameter
(dmax) and average path length (< d >) to infer both local and long-range interactions. We
further calculated the standard deviations of four characteristics to measure the flexibility
of pocket networks. The formulas are as follows:

The average degree, < k >, indicates the average number of connected edges per
node, calculated by

< k > =
1
N ∑N

i=1 ki =
2L
N

, σ<k> =

√√√√∑j=m
j=1

(
< k >j − ∑`=m

`=1 < k >`

)2

m
(8)

where ki denotes the degree of node i, N is the total number of nodes, L is the total number
of connected edges in the network, and σ<k> represents the standard deviation of the
average degree for m pocket networks.

The average clustering coefficient, < C >, denotes the aggregation density of the
whole network, defined as

< C > =
1
N ∑N

i=1
2Li

ki(ki − 1)
, σ<C> =

√√√√∑j=m
j=1

(
< C >j − ∑`=m

`=1 < C >`

)2

m
(9)

where Li is the number of connected edges between the ki neighbors of node i, and σ<C>

represents the standard deviation of the average clustering coefficient for m pocket networks.
The diameter, dmax, is the maximum distance between all pairs of nodes in the network.

The standard deviation of the diameter for m pocket networks is calculated by

σdmax =

√√√√∑j=m
j=1

(
dmaxj − ∑`=m

`=1 dmax`

)2

m
(10)

The average path length, < d >, is defined as the average distance between any
two nodes, calculated by

< d > =
2

N(N − 1) ∑i≥ℊ diℊ, σ<d> =

√√√√∑j=m
j=1

(
< d >j − ∑`=m

`=1 < d >`

)2

m
(11)

where diℊ is the shortest path between node i and node ℊ, and σ<d> represents the
standard deviation of the average path length for m pocket networks.

4.4. RMSF Calculation

Root-mean-square fluctuation (RMSF) verified the pocket flexibility by using GRO-
MACS. Here, we used overlapping nucleotides to measure flexibility. We define the
overlapping nucleotides as a nucleotide that occurs more than 50% in a pocket group. The
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overlapping nucleotides forming the first pocket in each pocket group were used as the
reference positions. For a pocket group, the nucleotide-averaged RMSF is calculated by

RMSF =
∑`

i

√
∑m
j (Xj−X̃j)

2

m

`
(12)

where (Xj − X̃j) is the position of a nucleotide minus its reference positions, m is the total
number of pockets, and ` is the number of overlapping nucleotides. To compare pocket
flexibility and RNA structural flexibility, we calculated RMSF for structural models. The
structural model of the first pocket in each pocket group was used as the reference positions.

For a pocket group, V is the average volume of pockets, and P is the average of the
pocket similarity matrix. Then, we specify Vg (Vg = V × P) as the overlapping volume of
pockets in the group. As mentioned above, the overlapping nucleotides are used for RMSF
calculations, and the pocket flexibility score incorporates the P. Thus, the overlapping
volume, Vg, is a good feature for building testing sets. To validate the correlation between
RMSFs and Qs, we divided pocket groups into Testing Sets I–III based on overlapping
volume: small (0 < Vg ≤ 500 Å3), medium (500 < Vg ≤ 1500 Å3), and large
(1500 < Vg ≤ 7200 Å3). Next, we tested the network model on Testing Set IV with
30 rigid pocket groups (324 pockets) and 30 flexible pocket groups (257 pockets).

4.5. Chemical Group and Interaction Calculation

We utilize the atom-level model for interaction calculation. First, we consider the
nucleotides as six chemical groups: phosphate, ribose, adenine, cytosine, guanine, and
uracil (Table S6). For protein, 20 amino acid chemical groups are classified into three
categories according to their physicochemical properties: charged residues (Asp, Glu, Lys,
Arg, and His), polar residues (Cys, Asn, Gln, Ser, Thr, and Tyr), hydrophobic residues
(Ala, Phe, Gly, Ile, Leu, Trp, Met, Pro, and Val) (Table S7). Then, we used the HBPLUS
program to calculate the pockets’ hydrogen bonds and van der Waals contacts [52]. Here,
the criteria for defining a hydrogen bond were hydrogen–acceptor distance < 2.7 Å and
donor–acceptor distance < 3.35 Å. The van der Waals contacts were defined as all contacts
between atoms not involved in hydrogen bonds that were < 3.9 Å apart. Next, we obtained
the secondary structure of RNA from the Forna server [53].

5. Conclusions

In this work, we developed the RPflex to analyze the flexibility of RNA pockets. This
new approach considers the topological properties and three-dimensional conformation
of pockets. RPflex uses a coarse-grained network model to quantify flexibility by pocket
features. Combining the network interactions, our method provides local and long-range
interaction information and better characterizes pocket flexibility. The result shows that the
ligand-binding pockets prefer to be more rigid compared to protein-binding pockets. The
base–base hydrogen bonds stabilize the RNA structure, and ribose–ribose van der Waals
contacts optimize the structure. In addition, we constructed a pocket dataset that provides
information on topology properties and flexibility characteristics. We hope that the analysis
of pocket flexibility will facilitate the discovery of druggable pockets and contribute to
future drug design.
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