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Abstract: The COVID-19 pandemic has caused millions of deaths and remains a major public health
burden worldwide. Previous studies found that a large number of COVID-19 patients and survivors
developed neurological symptoms and might be at high risk of neurodegenerative diseases, such as
Alzheimer’s disease (AD) and Parkinson’s disease (PD). We aimed to explore the shared pathways
between COVID-19, AD, and PD by using bioinformatic analysis to reveal potential mechanisms,
which may explain the neurological symptoms and degeneration of brain that occur in COVID-19
patients, and to provide early intervention. In this study, gene expression datasets of the frontal cortex
were employed to detect common differentially expressed genes (DEGs) of COVID-19, AD, and
PD. A total of 52 common DEGs were then examined using functional annotation, protein–protein
interaction (PPI) construction, candidate drug identification, and regulatory network analysis. We
found that the involvement of the synaptic vesicle cycle and down-regulation of synapses were
shared by these three diseases, suggesting that synaptic dysfunction might contribute to the onset and
progress of neurodegenerative diseases caused by COVID-19. Five hub genes and one key module
were obtained from the PPI network. Moreover, 5 drugs and 42 transcription factors (TFs) were also
identified on the datasets. In conclusion, the results of our study provide new insights and directions
for follow-up studies of the relationship between COVID-19 and neurodegenerative diseases. The
hub genes and potential drugs we identified may provide promising treatment strategies to prevent
COVID-19 patients from developing these disorders.

Keywords: COVID-19; Alzheimer’s disease; Parkinson’s disease; bioinformatics; differentially
expressed genes; gene ontology; protein–protein interaction; hub genes; drugs

1. Introduction

With the liberalization of epidemic prevention and control in various countries,
more than 600 million people worldwide have been diagnosed with coronavirus dis-
ease 2019 (COVID-19), which is caused by the novel Severe Acute Respiratory Syndrome
Coronavirus-2 (SARS-CoV-2). It is well known that SARS-CoV-2 mainly attacks the hu-
man respiratory system and causes typical symptoms, including fever, sore throat, cough,
shortness of breath, and fatigue. Moreover, current evidence supports that SARS-CoV-2
is capable of targeting and invading the central nervous system (CNS) [1]. Neurological
symptoms have been observed during and after the acute COVID-19 phase, including both
CNS symptoms and vegetative/peripheral manifestations [2]. In particular, recent studies
have suggested that COVID-19 may trigger clinical manifestations of neurodegenerative
disorders, such as cognitive decline [3], dementia [4], and parkinsonism [5], bringing the
potential role of COVID-19 in the future development of neurodegenerative diseases into
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the spotlight. Some studies reported increased risk of these disorders among COVID-19
positive patients [6,7]. The changes in COVID-19 patients’ brain structure also reinforced
this hypothesis [8]. In addition, COVID-19-induced impairment of the frontal cortex, a
critical area for cognitive function, was described in complementary studies that combined
neuro-imaging and cognitive screening [9].

Neurodegenerative diseases are characterized by progressive dysfunction and loss
of neurons [10], and they can affect an individual’s movement, speech, memory, cogni-
tion, intelligence, and much more [11,12]. These diseases include Parkinson’s disease (PD),
Alzheimer’s disease (AD), Huntington’s disease (HD), multiple sclerosis (MS), amyotrophic
lateral sclerosis (ALS), epilepsy, and others [13]. AD and PD are the two most common hu-
man neurodegenerative diseases, and AD is the leading cause of dementia. Although PD is
traditionally considered a movement disorder, dementia is becoming more widely accepted
as part of the clinical spectrum of PD [14]. A previous study found that mild cognitive
impairment (MCI) was one of the most common non-motor symptoms of early-stage PD
patients, and dementia was presented in 83% of 20-year PD survivors [15]. There is growing
evidence suggesting an association between AD and PD at the molecular level, such as
failure in redox homeostasis, improperly folded modified proteins, and neuroinflamma-
tion [16]. The damage to the frontal cortex has been implicated in both AD and PD [17,18].
Clinical studies have reported that patients with a previous neurodegenerative disease have
an increased risk for COVID-19, as well as COVID-19-related hospitalization and mortal-
ity [19–21]. Progress in deciphering the common pathogenesis of COVID-19, AD, and PD is
conducive to developing effective strategies to treat the neurological symptoms of infected
individuals and to prevent these patients from developing neurodegenerative diseases.

To explore the molecular mechanisms of COVID-19-related neurodegenerative symp-
toms, we estimated transcriptome alterations in the frontal cortex of patients with COVID-19,
AD, and PD using two datasets. Further analyses, including Gene Ontology and pathway
enrichment, protein–protein interaction (PPI) and key module extraction, identification of
hub genes and potential drugs, and transcription factor (TF) regulatory network construc-
tion, were performed based on the common DEGs among COVID-19, AD, and PD. The
sequential workflow of our research is presented in Figure 1.
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2. Results
2.1. Identification of DEGs and Common DEGs among COVID-19, AD, and PD

To determine shared genetic interrelations among COVID-19, AD, and PD, we initially
accessed the transcriptomic data from the frontal cortex of each disease in the GEO database.
Before the procedure of differential analysis, we performed normalization and removal
of batch effects to standardize the expression matrices, and the results of the processing
are shown in a density plot (Supplementary Figure S1A,B). After standardization, the
normality test (Supplementary Figure S1C) and the PCA plot of each dataset (Figure 2A)
indicate that the source of samples is reliable. Next, differential analysis of gene expression
was performed by controlling age and sex, which was significantly different between
the patients and the healthy controls (Tables 1–3). Finally, 1344 genes were identified as
DEGs for COVID-19, including 927 up-regulated and 417 down-regulated genes. In the
same way, 2655 DEGs (651 up-regulated and 2004 down-regulated) in the AD dataset
and 2589 DEGs (882 up-regulated and 1707 down-regulated) in the PD dataset were
obtained. The results are shown in the volcano plots (Figure 2B). Using a cross-comparative
analysis, we identified 52 common DEGs, including 9 common up-regulated genes and
43 common down-regulated genes, after excluding genes with opposite expression trends
among COVID-19, AD, and PD (Figure 2C). This common gene set was submitted to
further experiments.
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Figure 2. Identification of common DEGs shared by COVID-19, AD, and PD. (A) PCA plots of the
COVID-19, AD, and PD expression datasets used in this study after removing batch effects and
normalization. (B) Volcano plots of the three datasets. Up-regulated genes are marked in red, and
down-regulated genes are marked in blue. (C) Venn diagram (left) reveals that 60 common DEGs
are shared among COVID-19, AD, and PD: 9 genes are consistently up-regulated (middle, up arrow)
and 43 genes are consistently down-regulated (right, down arrow) in the 3 datasets.

Table 1. Clinical characteristics of the COVID-19_Train dataset.

Total Sample, N (%) COVID-19,
N = 12 (50%), N (%)

Control,
N = 12 (50%), N (%) Statistics/df p-Value

Gender (% female) 10 (41.67%) 5 (41.67%) 5 (41.67%) 0/1 1.0000

Age, in years,
mean ± SD 66.79 ± 10.06 66.7 ± 10.38 66.9 ± 9.72 −0.0487/22 0.9616

Table 2. Clinical characteristics of the AD_Train dataset.

Total Sample, N (%) AD,
N = 9 (50%), N (%)

Control,
N = 9 (50%), N (%) Statistics/df p-Value

Gender (% female) 10 (55.56%) 5 (55.56%) 5 (55.56%) 0/1 1.0000

Age, in years, mean ± SD 85.17 ± 6.15 85.67 ± 6.36 84.67 ± 5.89 0.3461/16 0.7338

Postmortem
interval, in hours,

mean ± SD
44.11 ± 25.89 38.22 ± 23.30 50.0 ± 26.99 −0.9911/16 0.3364

Table 3. Clinical characteristics of the PD_Train dataset.

Total Sample, N (%) PD,
N = 12 (57%), N (%)

PD,
N = 9 (43%), N (%) Statistics/df p-Value

Gender (% female) 11 (52.4%) 6 (50%) 5 (55.56%) 0.0636/1 0.8008

Age, in years,
mean ± SD 80.9 ± 6.78 78.08 ± 5.99 84.67 ± 5.89 −2.5125/19 0.0212

Postmortem
interval, in hours,

mean ± SD
40.48 ± 21.16 33.33 ± 10.87 50.0 ± 26.99 −1.9519/19 0.0659

2.2. Functional Annotation and Pathway Enrichment Analysis of Common DEGs

The connectivity of common DEGs may indicate crucial information about similar
biological roles. To further understand the underlying common biological characteristics
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among COVID-19, AD, and PD, we implemented four canonical and widely used databases
to analyze the common DEGs, including GO, KEGG pathway, Reactome, and GSEA.

Typically, GO enrichment analysis is performed to identify the most important molec-
ular features associated with genes, which can be categorized into three subsections, in-
cluding biological process (BP), molecular function (MF), and cellular component (CC),
for the annotation of gene products. For the biological process, the top GO terms that we
enriched were associated with synaptic signaling and its regulation, such as neurotrans-
mitter transport, modulation of chemical synaptic transmission, catecholamine transport,
and regulation of trans-synaptic signaling. According to the cellular component, synaptic
vesicle, transport vesicle, exocytic vesicle, and distal axon were the top terms. In the molec-
ular function, voltage-gated ion channel activity was the main enriched GO term. The top
10 GO terms of each subsection are illustrated in a dot graph (Figure 3A) and summarized
in Table 4.

For the pathway enrichment analysis, the KEGG analysis revealed that these common
DEGs were significantly enriched in the synaptic vesicle cycle pathway, GABAergic synapse,
MAPK signaling pathway, cAMP signaling pathway, and nicotine addiction (Figure 3B).
The Reactome analysis showed that these genes were most related to transmission across
chemical synapses, neuronal system, presynaptic depolarization, calcium channel opening,
LGI-ADAM interactions, transcriptional regulation by MECP2, and regulation of insulin
secretion (Figure 3C). Further independent analysis for the common up-regulated and
down-regulated DEGs revealed that the GO terms and pathways mentioned above were
mostly down-regulated, suggesting that a dysfunction of the synaptic vesicle cycle might
be the common pathogenesis of COVID-19, AD, and PD. More information for the pathway
enrichment results is presented in Table 5.

In addition, we used the GSEA to analyze common up-regulated and down-regulated
GO terms and KEGG pathways in the COVID-19, AD, and PD expression datasets. The
results demonstrated that cytokine–cytokine receptor interaction and humoral immune
response were up-regulated. The down-regulated terms were mainly linked to synapses,
synaptic membrane, and synaptic properties (Figure 3D). Based on these findings, we
supposed that SARS-CoV-2 infection might cause a general down-regulation of genes
associated with the synaptic vesicle cycle and synaptic signal transmission in the patients’
frontal cortex.

2.3. Gene–Disease Analysis of Common DEGs

The DO (Disease Ontology) enrichment analysis was conducted to identify the diseases
associated with the common DEGs, thereby providing novel perspectives on our intended
diseases. Through the DO analysis, we found that the common DEGs were mainly related
to a loss of cognitive function or mental diseases, such as different types of epilepsy,
dementia, and autism disorder, supporting that these common DEGs might be involved in
the neurological symptoms of COVID-19, AD, and PD (Figure 4).

2.4. PPI Network Construction and Key Module Analysis

PPI networks have been used to discover novel protein functions, as well as identify
functional modules and conserved interaction patterns [22]. Thus, the construction of a PPI
network is regarded as the crucial step of cellular biology study and works as a precondition
for system biology [23]. Here, the PPI network of the common DEGs is depicted in Figure 5,
containing 52 nodes and 320 edges. Based on the PPI network, two closely connected
modules were obtained through the MCODE plugin, and module 1 is shown in Figure 6A,
which has the highest score (18.222) with 19 nodes. The GO and KEGG pathway analyses
of module 1 were performed using ClueGO. The results of the GO analysis indicated that
it was primarily related to synaptic vesicles (Figure 6B), and the KEGG pathway analysis
also showed that module 1 was significantly correlated with the synaptic vesicle cycle
(Figure 6C).
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Figure 3. Functional annotation of common DEGs among COVID-19, AD, and PD. (A) GO analysis of
shared DEGs and the top 10 terms of each category, including biological process, molecular function,
and cellular component, are shown in the dot graph. (B,C) The pathway enrichment analysis results
of the KEGG (B) and Reactome (C) databases. The top 10 pathways are exhibited in the bar plots.
Count represents the number of DEGs enriched by the term. (D) The GSEA of the three datasets. The
enriched common KEGG and GO terms shared by COVID-19, AD, and PD are shown here.

Table 4. GO analysis results of common DEGs. The top ten enriched GO terms of each category
are tabulated.

Category GO ID Term p-Value Gene ID

BP

GO:0006836 neurotransmitter transport 1.64 × 10−5 SYT5/SLC6A17/RAB3B/SYP/SLC17A7/SLC6A7

GO:0006887 exocytosis 3.41 × 10−5 SYT5/PAK1/RAB3B/SYP/CRHBP/NSF/SYT13

GO:0034765 regulation of ion
transmembrane transport 3.70 × 10−5 KCNJ4/CACNG3/CACNB1/THY1/CRHBP/

RASGRF1/KCNC2/CACNA1A
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Table 4. Cont.

Category GO ID Term p-Value Gene ID

GO:0051937 catecholamine transport 3.95 × 10−5 SYT5/RAB3B/SYT13/VIP

GO:0015844 monoamine transport 6.85 × 10−5 SYT5/RAB3B/SYT13/VIP

GO:0051952 regulation of
amine transport 9.36 × 10−5 SYT5/RAB3B/SYT13/VIP

GO:2001257 regulation of cation
channel activity 0.0001 CACNG3/CACNB1/CRHBP/RASGRF1/KCNC2

GO:0015837 amine transport 0.0001 SYT5/RAB3B/SYT13/VIP

GO:0050804 modulation of chemical
synaptic transmission 0.0001 SRGN/CACNG3/SYP/ADCYAP1/RASGRF1/

NTNG1/CACNA1A

GO:0099177 regulation of
trans-synaptic signaling 0.0001 SRGN/CACNG3/SYP/ADCYAP1/RASGRF1/

NTNG1/CACNA1A

CC

GO:0070382 exocytic vesicle 3.31 × 10−10 SYT5/SLC6A17/RAB3B/SYP/SVOP/SLC17A7/WDR7/
GAD2/ATP6V1G2/SYT13

GO:0030672 synaptic vesicle
membrane 4.42 × 10−10 SYT5/SLC6A17/RAB3B/SYP/SVOP/SLC17A7/

GAD2/ATP6V1G2

GO:0099501 exocytic vesicle membrane 4.42 × 10−10 SYT5/SLC6A17/RAB3B/SYP/SVOP/SLC17A7/
GAD2/ATP6V1G2

GO:0008021 synaptic vesicle 3.34 × 10−9 SYT5/SLC6A17/RAB3B/SYP/SVOP/SLC17A7/WDR7/
GAD2/ATP6V1G2

GO:0030133 transport vesicle 8.86 × 10−9 SYT5/NRSN1/SLC6A17/RAB3B/SYP/SVOP/
SLC17A7/WDR7/GAD2/ATP6V1G2/SYT13

GO:0030658 transport vesicle
membrane 8.37 × 10−8 SYT5/SLC6A17/RAB3B/SYP/SVOP/SLC17A7/

GAD2/ATP6V1G2

GO:0098563
intrinsic component of

synaptic vesicle
membrane

1.54 × 10−7 SLC6A17/RAB3B/SYP/SLC17A7/ATP6V1G2

GO:0150034 distal axon 1.01 × 10−6 NRSN1/SYP/THY1/CRHBP/ADCYAP1/RASGRF1/
KCNC2/OLFM1

GO:0030285
integral component of

synaptic vesicle
membrane

2.19 × 10−6 SLC6A17/SYP/SLC17A7/ATP6V1G2

GO:0043204 perikaryon 3.79 × 10−6 SERPINI1/CRHBP/ADCYAP1/KCNC2/OLFM1/VIP

MF

GO:0035254 glutamate receptor
binding 6.19 × 10−6 CACNG3/NECAB2/NSF/RASGRF1

GO:0022843 voltage-gated cation
channel activity 3.14 × 10−5 KCNJ4/CACNG3/CACNB1/KCNC2/CACNA1A

GO:0046873 metal ion transmembrane
transporter activity 0.0001 KCNJ4/CACNG3/CACNB1/SLC17A7/KCNC2/

SLC6A7/CACNA1A

GO:0005244 voltage-gated ion
channel activity 0.0002 KCNJ4/CACNG3/CACNB1/KCNC2/CACNA1A

GO:0022832 voltage-gated
channel activity 0.0002 KCNJ4/CACNG3/CACNB1/KCNC2/CACNA1A

GO:0000149 SNARE binding 0.0002 SYT5/NSF/SYT13/CACNA1A

GO:0005245 voltage-gated calcium
channel activity 0.0002 CACNG3/CACNB1/CACNA1A

GO:0008331 high voltage-gated
calcium channel activity 0.0003 CACNB1/CACNA1A

GO:0019905 syntaxin binding 0.0009 SYT5/NSF/CACNA1A

GO:0030165 PDZ domain binding 0.0013 KCNJ4/CACNG3/NSF
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Table 5. Pathway enrichment analysis of common DEGs. The top 10 enriched pathways of the KEGG
and Reactome databases are listed.

Category ID Pathway p-Value Gene ID

KEGG

hsa04721 Synaptic vesicle cycle 2.06 × 10−6 NSF/SLC17A7/ATP6V1G2/SLC6A7/
CACNA1A

hsa04010 MAPK signaling pathway 0.0011 PAK1/CACNG3/CACNB1/RASGRF1/
CACNA1A

hsa04727 GABAergic synapse 0.0019 NSF/GAD2/CACNA1A

hsa04024 cAMP signaling pathway 0.0031 PAK1/SST/ADCYAP1/VIP

hsa05033 Nicotine addiction 0.0056 SLC17A7/CACNA1A

hsa04723
Retrograde

endocannabinoid
signaling

0.0079 NDUFV2/SLC17A7/CACNA1A

hsa04921 Oxytocin signaling
pathway 0.0089 KCNJ4/CACNG3/CACNB1

hsa05120
Epithelial cell signaling in

Helicobacter pylori
infection

0.0163 PAK1/ATP6V1G2

hsa05412
Arrhythmogenic right

ventricular
cardiomyopathy

0.0196 CACNG3/CACNB1

hsa04260 Cardiac muscle
contraction 0.0246 CACNG3/CACNB1

Reactome

R-HSA-112315 Transmission across
chemical synapses 8.21 × 10−7 KCNJ4/CACNG3/CACNB1/NSF/SLC17A7/

RASGRF1/GAD2/CACNA1A

R-HSA-112316 Neuronal system 1.84 × 10−6 KCNJ4/CACNG3/CACNB1/NSF/SLC17A7/
RASGRF1/KCNC2/GAD2/CACNA1A

R-HSA-112308
Presynaptic

depolarization and
calcium channel opening

0.0005 CACNB1/CACNA1A

R-HSA-5682910 LGI-ADAM interactions 0.0007 CACNG3/LGI2

R-HSA-8986944 Transcriptional regulation
by MECP2 0.0008 FKBP5/SST/GAD2

R-HSA-422356 Regulation of
insulin secretion 0.0015 SYT5/KCNC2/CACNA1A

R-HSA-373080 Class B/2 (secretin family
receptors) 0.0027 CRHBP/ADCYAP1/VIP

R-HSA-112314
Neurotransmitter

receptors and postsynaptic
signal transmission

0.0029 KCNJ4/CACNG3/NSF/RASGRF1

R-HSA-399719 Trafficking of
AMPA receptors 0.0037 CACNG3/NSF

R-HSA-399721

Glutamate binding,
activation of AMPA

receptors, and
synaptic plasticity

0.0037 CACNG3/NSF

2.5. Identification of Hub Genes

According to the PPI network, we intended to explore the hub genes that play indis-
pensable roles in the shared biological mechanisms of COVID-19, AD, and PD. Based on
three widely used methods, MCC, Degree, and Betweenness Centrality, we listed each
algorithm’s top 10 hub genes (Figure 6D). After taking the intersection of these genes,
we identified five common genes as the hub genes, including TAGLN3, GAD2, SST, SYP,
and KCNJ4.
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2.6. Identification of Potential Therapeutic Drugs

Furthermore, we searched the drug targets of the common DEGs to identify potential
therapeutic targets. Here, we identified 6 drug targets and 18 related drugs based on Drug-
Bank (Figure 7). Among them, five drugs, including Ibutilide, Azelnidipine, Dotarizine,
Copper, and Artenimol, were considered to have potential therapeutic effects. The detailed
information of these drugs and their targets is summarized in Table 6. Ibutilide is a class III
antiarrhythmic agent used to correct atrial fibrillation and atrial flutter [24], and it can be
considered as an alternative to cardioversion. Azelnidipine is a dihydropyridine calcium
channel blocker [25]. It has a gradual onset of action and produces a long-lasting decrease
in blood pressure, with only a small increase in heart rate. It is currently being studied for
post-ischemic stroke management [26]. Dotarizine is a calcium antagonist used to treat and
prevent migraines [27]. Copper is an essential element in the body and is incorporated into
many oxidase enzymes as a cofactor [28]. The precise mechanisms of the effects of copper
deficiency are vague due to the wide range of enzymes which use its ion as a cofactor.
Artenimol is an artemisinin derivative and an antimalarial agent used in the treatment of
uncomplicated Plasmodium falciparum infections [29].

2.7. Identification of Regulatory Transcript Factors

The mapping and characterization of TFs regulating the expression of common DEGs
can provide insights into the comprehensive biological processes [30]. In this study, 10 pos-
sible TFs, including SP2, SIN3A, REST, ATF3, MYF6, TBX5, RFX1, RPL6, NR3C1, and
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HDAC2, were discovered to be related to 42 common DEGs (Figure 8). Among these DEGs,
the five hub genes were all involved.
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Table 6. The detailed information of the candidate drugs.

Drug Type p-Value Target Expression Structure/Formula Indication

Ibutilide activator 0.0058 CACNB1 Down

C20H36N2O3S

1 
 

 

Indicated for the rapid conversion of atrial
fibrillation or atrial flutter of recent onset

to sinus rhythm.

Azelnidipine agonist 0.0058 CACNB1 Down

C33H34N4O6

1 
 

 

 

 

 

For the treatment of hypertension.

Dotarizine unknow 0.0068 CACNA1A Down

C29H34N2O2

1 
 

 

 

 

 

Investigated for use/treatment in migraine
and cluster headaches.

Copper unknow 0.0233 SFPQ Up
Cu

1 
 

 

 

 

 

For use in the supplementation of total
parenteral nutrition and in contraception

with intrauterine devices.

Artenimol ligand 0.0233 SFPQ Up

C15H24O5

1 
 

 

 

 

 

For the treatment of uncomplicated
Plasmodium falciparum infection in adults,
children, and infants aged 6 months and

up and weighing over 5 kg. Used in
combination with Piperaquine.
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3. Discussion

In this study, we used three datasets of COVID-19, AD, and PD patients’ frontal cortex
from the GEO database to discover the underlying mechanisms and potential therapeutic
strategies for neurodegenerative disorders caused by SARS-CoV-2 infection. Through the
intersectional analysis, we identified 52 common DEGs, and most of them were down-
regulated, indicating that COVID-19, AD, and PD might cause a suppression of common
cellular functions in patients’ frontal cortex.

We next performed a pathway-based analysis to identify shared biological pathways
of COVID-19, AD, and PD. The pathway analysis revealed that these common DEGs were
significantly enriched in the synaptic vesicle cycle pathway. Synaptic vesicles undergo a
complex trafficking cycle, which could be divided into sequential steps: the formation of
synaptic vesicles; the docking of synaptic vesicles in the active zone of the presynaptic
membrane; the priming of synaptic vesicles; the fusion of synaptic vesicles with the
presynaptic membrane; the release of neurotransmitters by exocytosis; and the endocytosis
of vesicles [31]. An independent GO analysis of the common up- and down-regulated
DEGs showed that the top terms, which were mainly associated with the synaptic vesicle
cycle, were all down-regulated (Supplementary Figure S2A,B). Furthermore, the GSEA of
the three datasets also demonstrated that synapses, components of synapses, and synaptic
function were down-regulated in these three diseases. Our results indicated that the loss
and damage of synapses and synaptic dysfunction might be the cause of neurodegenerative
disease-related symptoms in COVID-19 patients or survivors.

Consistent with our results, some studies have shown that SARS-CoV-2 infection may
cause synaptic disorder based on high-throughput sequencing and systematic bioinfor-
matic analyses. Andrew et al. found that the synaptic signaling of upper-layer excitatory
neurons, which are linked to cognitive function, is preferentially affected in COVID-19
patients through profiling large single-nucleus transcriptomes from the frontal cortex and
choroid plexus samples across control individuals and patients with COVID-19 [32]. Cheng
et al. also identified that SARS-CoV-2-infected neurons undergo degeneration, including
shortened neurite length and reduced synapses [33].

AD may be primarily a disorder of synaptic failure. Synapse loss and synaptic dys-
function are the best-known pathological correlates of cognitive deficits found in AD
patients [34,35]. Recently, studies have shown that synaptic pathology occurs in the early
stage of AD progression, mainly manifested by a loss of synaptic proteins [36]. It has been
reported that synaptophysin, a presynaptic vesicle protein, is decreased by around 25% in
MCI patients, and this change occurs before Aβ plaque formation [37]. The dysfunction of
synapses in the frontal cortex is considered a marker of AD progress and a very promising
therapeutic target. Moreover, researchers have started to develop synaptic therapies to
restore and prevent synaptic dysfunction in AD. These treatment strategies aim to avoid
synaptic loss, strengthen synaptic connections, and improve synaptic signal transmission
function. Moreover, recent studies have shown that a disorder of synaptic vesicle trafficking
plays a vital role in the pathogenesis of PD [38]. Among the reported PD-related genes,
alpha-synuclein (αS) [39,40], LRRK2 [41,42], Parkin [43,44], PINK1 [45,46], and DJ-1 [47,48]
have also been found to regulate the release of neurotransmitters from presynaptic vesicles
and the circulation of synaptic vesicles. Obviously, synaptic dysfunction is closely related
to the progression of neurodegenerative diseases.

Collectively, previous studies have shown that the dysfunction caused by synaptic
vesicle circulation is strongly related to neurodegenerative diseases. Since the pathological
changes of synapses generally occur in the early stage of neurodegenerative diseases [49,50],
we reasonably speculate that patients may have synaptic dysfunction in the cerebral cortex
after SARS-CoV-2 infection, including a loss of synapses and an inhibition of synaptic
vesicle transport.

We identified two key modules and five hub genes based on the topological measures
of the PPI network analysis. The GO pathway analysis of the dominant module was
consistent with our previous results, which also highlighted that the synaptic vesicle cycle
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was the potential pathogenesis shared by COVID-19 and neurodegenerative diseases. Five
hub genes, including GAD2, SST, TAGLN3, SYP, and KCNJ4, were further verified using
the test_datasets of COVID-19, AD, and PD (Figure 6E).

GAD2 is expressed in both pancreatic islets and the brain at later ages [51], particu-
larly in the hypothalamus. It encodes one of the isoforms of glutamic acid decarboxylase
enzyme, which is responsible for catalyzing the production of γ-aminobutyric acid (GABA)
neurotransmitter. GABA is the primary inhibitory neurotransmitter in the central nervous
system, and dysfunction of GABAergic mechanisms is associated with different neuro-
logical conditions. Previous studies have shown that stimulation of GABAergic signaling
protects neurons against the neurotoxicity of amyloid β-protein. Therefore, GAD2 might be
a potential therapeutic target for AD treatment [52,53]. Somatostatin (SST), encoded by SST,
is a well-known neuropeptide that is expressed throughout the brain. In the cortex, SST is
expressed in a subset of GABAergic neurons and is known as a protein marker of inhibitory
interneurons. Recent studies have identified the critical functions of SST in modulating
cortical circuits in the brain and cognitive functions [54]. Furthermore, reduced expression
of SST is a hallmark of various neurodegenerative and neuropsychiatric disorders, such
as AD [55], PD [56], HD [57], major depressive disorder (MDD) [58], bipolar disorder,
and schizophrenia (SCZ) [59]. TAGLN3, which is preferentially expressed in the CNS, is
homologic to transgelin and calponin, two cytoskeleton-interacting proteins. TAGLN3 is a
member of the calponin family and co-localizes with actin and tubulin, which indicates that
TAGLN3 has a part in neuronal plasticity. Recently, Laurie et al. confirmed that TAGLN3
was significantly down-regulated in the brain of patients with AD, and they considered
it to be a molecular target to modulate neuroinflammation and a potential biomarker for
AD [60]. SYP is a synaptic vesicle membrane protein that accounts for approximately
7–10% of the total vesicle proteins [61], and it is also used as a marker for synaptogenesis
and synaptic density [62]. It has been reported that SYP could affect the efficiency of the
synaptic vesicle cycle [63], which would then undermine cognitive ability. Schmitt et al.
found SYP knock-out mice showed a significant dysfunction in learning and memory com-
pared to wild-type mice, confirming the role of SYP in modulating cognitive functions [64].
KCNJ4 encodes potassium voltage-gated channel subfamily J member 4, which is an inward
rectifier potassium channel family member. Previous studies have shown that KCNJ4 is
associated with the progression and poor prognosis of lung adenocarcinoma [65], dilated
cardiomyopathy [66], and prostate cancer [67]. Recent bioinformatic research revealed the
ion channel-related gene features in COVID-19, of which the up-regulated gene, KCNJ4,
was identified as the hub gene. This study indicated a correlation between KCNJ4 and SARS-
CoV-2 infection [68]. Moreover, Wang et al. showed that an overexpression of KCNJ4 can
protect against rotenone-induced apoptosis in cell models during the neurodegenerative
process, suggesting the protective effect of KCNJ4 on neurodegeneration [69].

Since the beginning of the pandemic, extensive global research studies have been un-
derway to find appropriate drug agents to treat COVID-19. However, most of these drugs
and therapies aim to reduce COVID-19-related hospitalization rates and deaths, without
considering the improvement of neurological complications and ‘Long COVID’ [70,71].
Current treatments for post-COVID conditions are based on symptom relief and rehabil-
itation as there is no documented specific medical treatment [72]. Therefore, there is an
urgent need for drugs to treat neurological symptoms related to COVID-19. Since devel-
oping a novel drug is a lengthy, expensive, and risky process, drug repurposing is the
best approach to identify therapeutic options for COVID-19-related neurodegenerative
diseases in a limited time [73]. Here, we identified candidate drugs from the DrugBank
database, which contains very comprehensive information about approved drugs. Ibutilide
fumarate is the first ‘pure’ class III intravenous antiarrhythmic agent indicated for the acute
termination of atrial fibrillation and flutter [74]. Its predominant action is prolongation of
the myocardial action potential duration through a unique ionic mechanism of action [75].
Dotarizine, a novel piperazine derivative, belongs to wide-spectrum Ca2+ channel antago-
nists. Compared to other Ca2+ channel blockers, Dotarizine was found to have a lower oral
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toxicity [76]. To date, there are no reports of these two drugs in the treatment of neurological
diseases or COVID-19. They still need further experiments to explore their therapeutic
potential in neurology. Azelnidipine, a long-acting calcium channel blocker, is highly
lipid soluble and selective for the vascular wall [26]. Clinical studies have demonstrated
that Azelnidipine markedly reduces heart rate and proteinuria in hypertensive patients
by inhibiting sympathetic nerve activity. Azelnidipine has also been confirmed to have
cardio-protective, neuroprotective, and anti-atherosclerotic properties, and it has also been
found to prevent insulin resistance [77]. Many studies have reported its neuroprotective
effects in ischemic stroke (IS) [26,78,79]. Since IS is considered an important contributing
factor for the development of vascular dementia (VaD) and AD [80], Azelnidipine may also
have neuroprotective effects on neurodegenerative diseases. Copper, a trace element, is
present throughout the brain and is most prominent in the basal ganglia, hippocampus,
cerebellum, numerous synaptic membranes, and in the cell bodies of cortical pyramidal
and cerebellar granular neurons [81]. As a coenzyme factor, copper plays an important
role in central nervous system development, and copper deficiency may result in neuro-
logical disorders [82–84]. Previous studies have found that copper is implicated directly
or indirectly in the pathogenesis of numerous neurodegenerative diseases, such as AD,
PD, ALS, and HD [83]. Artenimol is an artemisinin derivative and an antimalarial agent
used in the treatment of uncomplicated Plasmodium falciparum infections. Recent evidence
has demonstrated the potential effect of artemisinin against SARS-CoV-2 [85]. Nair et al.
found that artemisia annua L. extracts inhibited the in vitro replication of SARS-CoV-2
and two of its variants [86]. Ruiz-Nuño et al. revealed that artemisinin and its derivatives
portrayed more potent binding to Lys353 and Lys31-binding hotspots of SARS-CoV-2 spike
protein than hydroxychloroquine, suggesting the potential repurposing of Artenimol for
the treatment of COVID-19 [87].

4. Materials and Methods
4.1. Datasets Acquired in This Study

The transcriptome profiling used in this study was obtained from the GEO database
(http://www.ncbi.nlm.nih.gov/geo/ accessed on 20 May 2022). The inclusion criteria
of GSE188847 included the following: (a) severe COVID-19 patients with pre- or peri-
mortem positive test results for SARS-CoV-2 by nasopharyngeal swab qPCR and history
of hospitalization, and (b) age- (±2 years) and sex-matched uninfected controls without a
history of neurological disorders or psychiatric diseases. The inclusion criteria of GSE150696
included the following: (a) all AD patients were diagnosed according to the Consortium to
Establish a Registry for Alzheimer’s disease (CERAD); (b) all PD patients were selected on
the basis of the Movement Disorders Society criteria; and (c) age- and sex-matched healthy
people without a history of COVID-19.

In this study, one RNA-seq dataset of COVID-19 (GSE18847) and one array dataset
containing AD and PD (GSE150696) patients were acquired as the training sets. To subse-
quently validate hub genes, we downloaded the GSE164332 dataset as a validation set for
COVID-19, the GSE104704 dataset for AD, and two datasets, GSE20168 and GSE8397, for
PD, which were merged, and their batch effects were corrected. Table 7 summarizes the
detailed information of included datasets in this study.

4.2. Identification of Common DEGs among COVID-19, AD, and PD

Firstly, the “ComBat” function in the SVA package (version: 3.38.0) was applied to the
merged datasets to correct batch effects. Next, we normalized the datasets and adjusted
for covariates using the “Normalizebetweenarrays” and “removeBatchEffect” function in
the limma package (version: 3.46.0) [88]. Principal component analysis (PCA), a classic
dimension reduction approach, was conducted to verify intra-group data repeatability in
each group using the FactoMineR package. A DEG is characterized as being expressed
differently at the transcription level when there is a statistically significant difference
between diverse conditions [89]. Herein, we performed differential expression analysis
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using the limma package to identify DEGs in R programming language (version: 4.1.3).
The cutoff criteria (p-value < 0.05 and |logFC (fold change)| > 1) were applied to screen
significant DEGs for all datasets. A Venn diagram analysis was performed to determine the
shared and unique DEGs among COVID-19, AD, and PD.

Table 7. Overview of datasets used in this study.

Disease
GEO

Accession Tissue Source
Data DEG Count

GEO GPL Assay Type
Case Control Up Down

COVID-19
Train_dataset GSE188847 frontal cortex 12 12 927 417 GPL24676 RNA-Seq

AD
Train_dataset GSE150696 frontal cortex 9 9 651 2004 GPL17585 Array

PD
Train_dataset GSE150696 frontal cortex 12 9 882 1707 GPL17585 Array

COVID-19
Val_dataset GSE164332 frontal cortex 9 7 658 349 GPL18573 RNA-Seq

AD
Val_dataset GSE104704 lateral temporal

lobe 12 18 683 2114 GPL18573 RNA-Seq

PD
Val_dataset

GSE8397 frontal cortex 5 3 552 676 GPL96 Array

GSE20168 frontal cortex 14 15 156 667 GPL96 Array

4.3. Functional Annotation and Pathway Enrichment of Common DEGs

The Gene Ontology (GO) database provides a comprehensive and computational
source to annotate gene product-based functions, comprising classes for molecular func-
tions, the biological processes these contribute to, and the cellular locations where these
occur [90]. Typically, the canonical pathway databases, Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Reactome, are considered as they are well-known databases to
grasp the signaling and metabolic pathways [91]. Gene set enrichment analysis (GSEA)
is another powerful analytical method for interpreting gene expression data [92]. The
Disease Ontology (DO), a comprehensive and standardized knowledge base for inherited,
developmental, and acquired human diseases, is utilized for disease annotation by major
biomedical databases (e.g., Array Express, NIF, and IEDB) [93].

In this study, we performed enrichment analysis of GO, KEGG pathway, and GSEA for
the common DEGs utilizing the clusterprofiler package (version: 3.18.1). The ReactomePA
package was applied to the Reactome pathway analysis, and the DOSE package was
employed for the Disease Ontology (DO) analysis. A p-value < 0.05 was considered
statistically significantly different.

4.4. Construction of PPI Network and Key Module Analysis

The Search Tool for the Retrieval of Interacting Genes (STRING) (https://string-db.org/
accessed on 1 July 2022), which supplies experimental and predicted interaction-based
information [94], was used to predict potential interactions between the identified common
DEGs at the protein level with a medium confidence score. Additionally, Cytoscape soft-
ware (version: 3.9) was used to construct and visualize the PPI network. Then, we used an
important plugin of Cytoscape, Molecular Complex Detection (MCODE), to extract pro-
found functional modules of genes in the PPI network with default parameters (K-core = 2,
degree cutoff = 2, max. depth = 100, and node score cutoff = 0.2) [95]. The MCODE method
is generally used to find densely connected regions in a PPI network that may represent
molecular complexes or parts of pathways based on graph-theoretic clustering algorithms.

https://string-db.org/
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4.5. Detection of Hub Genes

Hub genes are identified as having high intramodular connectivity (or module mem-
bership), and previous research has revealed critical biological functions by assessing hub
genes. To extract hub genes from the PPI network, we applied CytoHubba, which is a
plugin of Cytoscape, to identify essential nodes and sub-networks from the complex inter-
actome. It provides several topological algorithms that researchers can select (e.g., MCC,
Degree, DMNC, MNC, EPC, and Bottleneck).

4.6. Identification of Candidate Drugs

The study of drug–target interaction is of great importance for drug discovery and
design. Based on the common DEGs, candidate drugs and drug–target interactions were
predicted using the DrugBank database (https://go.drugbank.com/ accessed on 10 July
2022), which is the world’s most widely used reference drug resource comprising detailed
drug, drug–target, drug action, and drug interaction information about FDA-approved
drugs, as well as experimental drugs going through the FDA approval process [96]. The
intersection of the common DEGs and drug target genes (DTGs) downloaded from Drug-
Bank was then used to identify related drugs. Finally, we excluded drugs that have an
opposite effect on their target genes and acquired candidate drugs that might contribute to
phenotypes. The statistical significance was set at p-value < 0.05.

4.7. Prediction of Transcription Factors

Precise regulation of gene expression is imperative for all biological processes. In this
study, to identify substantial changes happening at the transcriptional level and obtain
insights into the hub proteins’ regulatory molecules, we employed the RcisTarget pack-
age [97,98] to decode the regulatory transcription factors (TFs), and a p-value < 0.05 was
considered significant. RcisTarget is an R-package to identify TF-binding motifs that are
over-represented on a gene list.

5. Conclusions

Previous studies have shown that COVID-19 survivors are at high risk of neurodegen-
erative diseases [6], and degeneration of brain regions related to cognitive functions has
been detected in milder cases [8]. It has also become evident that SARS-CoV-2 infection
has a negative effect on the outcome of patients with neurodegenerative diseases. In the
future, with an increasing number of infections, it is imperative to prevent or treat these
neurological symptoms. Our study explored the relations among these three diseases in the
context of transcriptomic analysis on AD, PD, and COVID-19 using bioinformatic analyses.
We identified the five most significant hub genes from the common DEGs of these three
diseases, and other transcriptome data can validate them. Most importantly, we found that
the synaptic vesicle cycle was the common pathway shared by COVID-19, AD, and PD.
Further analysis indicated that SARS-CoV-2 infection might lead to synaptic dysfunction
and extensive synaptic down-regulation in the cortex of patients, thus triggering or aggra-
vating neurodegenerative diseases. Our research contributes to a deeper understanding
of the linkage of SARS-CoV-2 to neurodegenerative diseases, and it proposes potential
therapeutic targets and related drugs, which may be promising therapeutic strategies for
further clinical research studies.

Our study also had some limitations. Firstly, this research was performed based on
bioinformatic and transcriptomic analyses; the differences in microarray platforms, tis-
sue collection, RNA extraction methods, and statistical methods could produce potential
bias in the results. In addition, our study was limited by the amount of available tran-
scriptome expression data derived from the frontal cortex; thus, the size of the datasets
used in this study needs to be larger to generate more compelling results. The inclusion
of more large cohorts of COVID-19, AD, and PD patients should be better, and future
cellular or animal experiments can also be conducted to provide convincing evidence to
support our results. Therefore, the above findings should be taken with caution. Nev-
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ertheless, our study sheds light on the shared pathogenesis and molecular mechanism
behind COVID-19, AD, and PD. Our results suggest the critical role of synaptic signaling
and provide several promising genes for the potential correlation between SARS-CoV-2
infection and neurodegenerative diseases.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ijms24054839/s1.
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