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Abstract: Citrus hassaku extract reportedly activates AMPK. Because this extract contains an abun-
dance of auraptene, we investigated whether pure auraptene activates AMPK and inhibits prolifera-
tion using prostate cancer cell lines. Indeed, auraptene inhibited the proliferation and migration of
LNCaP cells and induced phosphorylation of AMPK or its downstream ACC in LNCaP, PC3, and
HEK-293 cells, but not in DU145 cells not expressing LKB1. In addition, the mTOR-S6K pathway,
located downstream from activated AMPK, was also markedly suppressed by auraptene treatment.
Importantly, it was shown that auraptene reduced androgen receptor (AR) and prostate-specific
antigen (PSA) expressions at both the protein and the mRNA level. This auraptene-induced down-
regulation of PSA was partially but significantly reversed by treatment with AMPK siRNA or the
AMPK inhibitor compound C, suggesting AMPK activation to, at least partially, be causative. Finally,
in DU145 cells lacking the LKB1 gene, exogenously induced LKB1 expression restored AMPK phos-
phorylation by auraptene, indicating the essential role of LKB1. In summary, auraptene is a potent
AMPK activator that acts by elevating the AMP/ATP ratio, thereby potentially suppressing prostate
cancer progression, via at least three molecular mechanisms, including suppression of the mTOR-S6K
pathway, reduced lipid synthesis, and AR downregulation caused by AMPK activation.
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1. Introduction

The incidence of cancer has steadily been rising worldwide with rapid population
aging. Prostate cancer is one of the most common cancers in men, with 1.41 million new
cases in 2020 [1]. While several treatment options are available, including surgery, radiation,
and anti-androgen therapy, another approach is expectant management, in which cancer
progression is monitored without definitive therapy, reflecting how slow-growing prostate
tumors tend to be [2–4]. Compared with the side effects of widely used cancer drugs, certain
natural products with low toxicity levels might be beneficial and merit consideration for
treatment and/or prevention of cancer development.

AMP-activated protein kinase (AMPK) is a serine/threonine kinase governing various
cellular processes, including metabolism, mitochondrial biogenesis, autophagy, cell growth,
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and proliferation [5,6]. AMPK is activated in response to cellular energy depletion (i.e.,
increased intracellular AMP/ATP ratio) by LKB1-mediated phosphorylation of Thr172 in
the AMPKα subunit, which can also be mediated by CAMKK2 when calcium flux occurs.
AMPK activation has been shown to suppress the mammalian target of the rapamycin
complex 1 (mTORC1) pathway by directly phosphorylating TSC2 and RAPTOR [7–11].
AMPK also activates p53 by phosphorylating Ser15 (in humans) in p53, thereby promoting
arrest of the cell cycle [12,13]. Therefore, activating AMPK has the potential to inhibit
cancer proliferation via the inhibition of mTORC1 and the activation of p53. Natural
products activating AMPK might thus exert beneficial effects when used in combination
with currently available therapies and might also be applicable to patients diagnosed with
prostate cancer but still not eligible for definitive therapy.

Auraptene, also known as 7-geranyloxycoumarin, is a member of the coumarin family
of compounds that can be isolated from citrus fruits such as Citrus aurantium (bitter orange),
Citrus hassaku, and grapefruit. It has been extensively studied in terms of its therapeutic
potential against cancer as well as for exerting other actions such as anti-inflammatory
or neuroprotective effects [14–17]. Tang et al. reported that dietary auraptene effectively
reduced high-grade lesions of the prostate in TRAP rats, a transgenic rat model developing
adenocarcinomas of the prostate that express the SV40 T antigen transgene under control of
the probasin promoter in vivo, and that auraptene consistently inhibited the proliferation of
human prostate cancer cell lines, including LNCaP, DU145, and PC3, in vitro [18]. Lee et al.
also demonstrated that auraptene increased apoptosis in DU145 and PC3 cell lines [19].
However, the precise mechanisms by which auraptene inhibits proliferation and increases
apoptosis in prostate cancer cells are yet to be identified. It was recently reported that Citrus
hassaku extract powder (CHEP) upregulated PGC-1α and increased the mitochondrial
content of muscles in mice fed a CHEP-containing diet by promoting SIRT3 expression and
AMPK activation [20].

Based on the aforementioned prior reports and the evidence that CHEP contains an
abundance of auraptene, we speculated that auraptene activates AMPK. We thus performed
experiments using multiple cell lines, including LNCaP, DU145, PC3, and HEK-293. Indeed,
we recently reported significant AMPK-activating and anti-proliferative effects of carnosic
acid and carnosol, both of which are components of rosemary extracts, based on our results
obtained by screening hundreds of commercially available extracts derived from natural
products [21]. In this study, we demonstrated AMPK activation by auraptene and its
inhibitory effects on cell proliferation and migration. The inhibitory effect of auraptene on
cell growth as well as reduced expression and activity of the androgen receptor (AR), a key
driver of prostate cancer progression, raise the possibility of auraptene, a major component
of Citrus hassaku, being useful as a treatment for or protection against the development of
prostate cancer.

2. Results
2.1. Auraptene Suppresses Proliferation and Migration of Prostate Cancer LNCaP Cells

First, to investigate the effects of auraptene on the growth of prostate cancer LNCaP,
DU145, PC3, and HEK-293 cells, equal numbers of these cell types were separately seeded
and then treated with various concentrations (0, 3, 10, 30 µM) of auraptene for 0 h, 24 h, or
48 h, followed by counting cell numbers to measure cellular proliferation. Auraptene was
shown to inhibit cell growth, irrespective of the presence or absence of dihydrotestosterone
(DHT), in a concentration-dependent manner at concentrations no lower than 3 µM (left and
right panels of Figure 1a). In contrast, the proliferation of DU145 cells was not significantly
suppressed at either 3 or 10 µM of auraptene, while significant suppression was observed
at 30 µM (Figure 1b). Similar suppressive effects of auraptene were observed in PC3 and
HEK-293 cells as well as in LNCaP cells (Figure 1c,d). Thus, the DU145 cell line appeared
to be significantly more resistant to the growth-inhibitory effects exerted by auraptene.

We also performed the CCK-8 assay, which reflects both cell proliferation and via-
bility. The IC50 of auraptene against LNCaP cells and DU145 cells, calculated from the
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CCK-8 assay, were 11.0 µM and above 100 µM, respectively (Figure 1e,f), much larger
in DU145 cells than in LNCaP cells, which is consistent with the cell counting assay re-
sults. (Figure 1a,b). The results of CCK-8 assays in PC3 and HEK-293 cells, as shown in
Supplementary Figure S1, were also in line with the results presented in Figure 1c,d.

Next, we performed a wound-healing assay to examine the effects of auraptene
on the migration ability using LNCaP cells. In good agreement with the results of the
cellular proliferation assays, the wound-healing assay revealed significant attenuation
of cell migration in response to treatment with auraptene at the 30 µM concentration
(Figure 1g,h). These observations suggest that auraptene suppresses cancer cell proliferation
and migration.
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Figure 1. Auraptene suppresses the proliferation and migration of prostate cancer LNCaP cells. (a) 
The effect of auraptene on the proliferation of LNCaP cells. Cells were treated with auraptene for 0, 
24, or 48 h at the indicated concentrations (with or without DHT (10 nM)) (n = 4). (b–d) The effect of 
auraptene on the proliferation of (b) DU145, (c) PC3, and (d) HEK-293 cells (without DHT) (n = 4). 
(e,f) Determination of the IC50 of auraptene against LNCaP and DU145 cells using CCK-8 assay. 
Cells were treated with auraptene for 24 h at the indicated concentrations, and then absorbances at 
450 nm were measured. Absorbances relative to auraptene-untreated cells (red dots, n = 4) were 
used to calculate the IC50 (blue lines: fitting curves). (g,h) Wound healing assay of LNCaP cells. Mi-
gration distances were measured under a microscope before and 96 h after administration of 30 µM 
auraptene (or vehicle as a control). Representative images (scale bar: 500 μm) (g) and quantification 
of wound closure (relative to control) (n = 4) (h). (* p < 0.05, ** p < 0.01, *** p < 0.001). 
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vation, and its downstream target acetyl Co-A carboxylase (ACC) Ser79 phosphorylation. 

In LNCaP cells, auraptene induced significant AMPK phosphorylation at 30 µM, 
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The total AMPK and total ACC levels remained essentially unchanged. Phosphory-
lation of AMPK at Thr172 is mediated by one of two upstream kinases, either LKB1 or 
CAMKK2 [6,22,23]. LKB1 activates AMPK in response to energy depletion (i.e., increases 
in the intracellular AMP/ATP and ADP/ATP ratios), whereas CAMKK2 activates AMPK in 
response to elevated calcium. Auraptene increased the cellular ADP/ATP ratio (Figure 2e), 
suggesting that auraptene activated AMPK via its impacts on cellular ATP production. 
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Figure 1. Auraptene suppresses the proliferation and migration of prostate cancer LNCaP cells.
(a) The effect of auraptene on the proliferation of LNCaP cells. Cells were treated with auraptene for
0, 24, or 48 h at the indicated concentrations (with or without DHT (10 nM)) (n = 4). (b–d) The effect
of auraptene on the proliferation of (b) DU145, (c) PC3, and (d) HEK-293 cells (without DHT) (n = 4).
(e,f) Determination of the IC50 of auraptene against LNCaP and DU145 cells using CCK-8 assay. Cells
were treated with auraptene for 24 h at the indicated concentrations, and then absorbances at 450 nm
were measured. Absorbances relative to auraptene-untreated cells (red dots, n = 4) were used to
calculate the IC50 (blue lines: fitting curves). (g,h) Wound healing assay of LNCaP cells. Migration
distances were measured under a microscope before and 96 h after administration of 30 µM auraptene
(or vehicle as a control). Representative images (scale bar: 500 µm) (g) and quantification of wound
closure (relative to control) (n = 4) (h). (* p < 0.05, ** p < 0.01, *** p < 0.001).

2.2. Auraptene Induces AMPK Activation

LNCaP, DU145, PC3, and HEK-293 cells were incubated with DMSO alone or in
addition to various concentrations of auraptene (3, 10, and 30 µM) or 5-aminoimidazole-4-
carboxamide 1-β-D-ribofuranoside (AICAR), a positive control for AMPK activation, for
8 h. We then evaluated phosphorylation levels of AMPKα Thr172, which is essential for its
activation, and its downstream target acetyl Co-A carboxylase (ACC) Ser79 phosphorylation.

In LNCaP cells, auraptene induced significant AMPK phosphorylation at 30 µM, along
with increased downstream ACC phosphorylation, which was statistically significant even
at 10 µM (Figure 2a–c). We next performed time-course examinations. LNCaP cells were
incubated with auraptene at 30 µM for various times (1, 2, 4, 8, and 24 h). Marked AMPK
and ACC phosphorylations were observed as early as 1 h after administration and persisted
up to 8 h in LNCaP cells (Figure 2d).

The total AMPK and total ACC levels remained essentially unchanged. Phosphory-
lation of AMPK at Thr172 is mediated by one of two upstream kinases, either LKB1 or
CAMKK2 [6,22,23]. LKB1 activates AMPK in response to energy depletion (i.e., increases in
the intracellular AMP/ATP and ADP/ATP ratios), whereas CAMKK2 activates AMPK in
response to elevated calcium. Auraptene increased the cellular ADP/ATP ratio (Figure 2e),
suggesting that auraptene activated AMPK via its impacts on cellular ATP production.

AMPK is known to be an upstream regulator of mTOR, which supports cell prolifera-
tion via activation of the p70S6K signaling pathway. Activated AMPK inhibits mTORC1
by phosphorylating its upstream inhibitor TSC2 [7] as well as directly phosphorylating
its Raptor component [8]. As illustrated in Figure 2f, auraptene markedly attenuates the
phosphorylation of p70S6K and its downstream target S6. These results suggest that au-
raptene suppresses the growth of LNCaP cells, at least in part, by inhibiting the mTOR-S6K
signaling pathway.

Auraptene-induced phosphorylations of AMPK and ACC were also observed in
HEK-293 (Figure 3a,b) and PC3 (Figure 3c,d) cells. The concentration-dependency and
time-course profiles of auraptene using the HEK-293 and PC3 cell lines were similar to those
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obtained with LNCaP cells. Interestingly, however, auraptene failed to activate AMPK or
subsequent ACC phosphorylation in DU145 cells (Figure 3e,f).
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Figure 2. Auraptene induces AMPK activation in LNCaP cells. (a–c) LNCaP cells were treated
with auraptene at the indicated concentrations for 8 h. AICAR (1 mM) was employed as a positive
control. (a) AMPKα, phospho-AMPKα, ACC, phospho-ACC, and actin in LNCaP cells were detected
using immunoblotting. (b,c) Quantification of relative band intensities (pAMPK/AMPK (b) and
pACC/ACC (c)) (n = 4). (d) Western blot analysis. LNCaP cells were treated with 30 µM auraptene
for 1, 2, 4, 8, or 24 h. (e) LNCaP cells were treated with 30 µM auraptene for 1 h, and the intracellular
ADP/ATP ratio was determined using an ADP/ATP Ratio Assay Kit (n = 4). (f) Western blot analysis.
LNCaP cells were treated with 30 µM auraptene for 1 h. (* p < 0.05, *** p < 0.001).
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Figure 3. Auraptene induces AMPK activation in HEK-293 and PC3 cells but not in DU145 cells.
(a,c,e) AMPKα, phosphor-AMPKα, ACC, phosphor-ACC, and actin were detected using immunoblot-
ting after treatment with auraptene at the indicated concentrations for 8 h. AICAR (1 mM) was
employed as a positive control. (a) HEK-293, (c) PC3, and (e) DU145. (b,d,f) Cells were treated
with 30 µM auraptene for 1, 2, 4, 8, or 24 h, and immunoblotting was then performed. (b) HEK-293,
(d) PC3, and (f) DU145.

2.3. Auraptene Attenuates the Expressions of AR and PSA in LNCaP Cells

The AR signaling pathway is a key driver of prostate cancer progression, such that
inhibiting the AR signaling pathway is of major importance in the treatment of this malig-
nancy. Several prior reports have raised the possibility that AMPK activating agents, such
as metformin, downregulate AR activity and the expressions of its target genes [24–26].

Therefore, employing Western blot analysis, we investigated the effects of auraptene
on the expressions of AR and its target gene PSA. LNCaP cells were treated with various
concentrations of auraptene (3, 10, and 30 µM) for 24 h. AR and PSA protein levels were
significantly decreased at 30 µM and at 10 and 30 µM, respectively, after the administration
of auraptene (Figure 4a–c). Similar effects were observed when the 1 mM concentration of
AICAR was employed for stimulation (Figure 4d).
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Figure 4. Auraptene attenuates the expressions of AR and PSA in LNCaP cells. (a) Protein levels
of AR and PSA in LNCaP cells were examined using immunoblotting after treatment with 0, 3, 10,
or 30 µM auraptene for 24 h. (b,c) Relative band intensities of (b) AR and (c) PSA protein levels
are shown as bar graphs (n = 3). (d) Immunoblotting analysis of AR and PSA in LNCaP cells after
treatment with 1 mM AICAR for 8 or 24 h. (e) LNCaP cells were treated with auraptene at 30 µM
for 6 h, and the mRNAs of AR, PSA, and FKBP5 were examined using quantitative real-time PCR
analysis. (n = 4–6). (* p < 0.05, ** p < 0.01, *** p < 0.001).

In addition to the protein level, the effects of auraptene on the levels of AR and PSA
mRNA were investigated using a quantitative real-time PCR analysis. When LNCaP cells
were treated with 30 µM auraptene for 6 h, the levels of AR and PSA mRNA, as well as
that of another AR target gene, FKBP5, were significantly decreased (Figure 4e). These
observations are consistent with the decreases in AR and PSA protein levels. Our results
suggest that, in LNCaP cells, auraptene-induced reductions in AR and PSA proteins are
attributable to the suppression of their mRNA expression levels.

2.4. Suppression of AR Target Gene PSA by Auraptene in LNCaP Cells Is at Least Partially
Mediated via AMPK Activation

Next, we investigated whether the downregulations of AR and PSA by auraptene were
dependent on the ability of auraptene to activate AMPK. LNCaP cells were transfected
with control siRNA or AMPK siRNA for 72 h and then treated with either the vehicle or
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auraptene at a 10 µM concentration for 24 h. The analysis conducted 24 h after auraptene
administration revealed that AMPK phosphorylation had already subsided while ACC
phosphorylation remained upregulated (Figure 5a). As expected, in cells treated with
AMPK siRNA, auraptene-induced phosphorylation of ACC showed marked attenuation
(Figure 5a). Moreover, auraptene-induced reductions in PSA protein levels were slightly
but significantly reversed when the cells were transfected with AMPK siRNA, as compared
to those transfected with control siRNA (Figure 5a,b). Similar results were confirmed
in experiments using the AMPK inhibitor compound C (Figure 5c). LNCaP cells were
pre-treated with 5 µM compound C for 1 h, and then treated with either the vehicle or
auraptene at a concentration of 3 or 10 µM for 24 h. Auraptene-induced reductions in the
PSA and AR protein levels were partially reversed when LNCaP cells were pretreated with
compound C. Collectively, these results indicate that auraptene-induced downregulations
of PSA expressions were mediated by AMPK activation.
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Figure 5. Auraptene-induced downregulation of PSA was partially reversed by suppressing AMPK.
(a) Effects of the treatment with AMPK siRNA on the protein levels of AR and PSA. LNCaP cells were
transfected with control siRNA or AMPK siRNA for 72 h and then treated with 10 µM of auraptene
(or vehicle as a control) for 24 h. PSA, AR, AMPK, phosphor-AMPKα, ACC, phosphor-ACC, and
actin were detected using immunoblotting. (b) Quantification of relative band intensities (PSA/actin)
(n = 4). (c) Effects of compound C on the protein levels of AR and PSA. LNCaP cells were pre-treated
with 5 µM of compound C for 1 h and then treated with 0, 3, or 10 µM of auraptene for 24 h. (* p < 0.05,
*** p < 0.001).

2.5. Auraptene Induces AMPK Activation through the LKB1 Pathway

As shown in Figures 2 and 3, auraptene induced AMPK activation in LNCaP, PC3,
and HEK-293 but not in DU145 cells. Therefore, we hypothesized that the characteristics of
DU145 cells might hold the key to revealing the mechanisms underlying auraptene-induced
AMPK activation. DU145 cells reportedly lack LKB1, and we confirmed this by analyzing
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the protein expressions of LNCaP, DU145, and PC3 cells (Figure 6a). CAMKK2 expression
has been reported to be transcriptionally regulated by AR [27,28]. Furthermore, CAMKK2
expression was consistently downregulated in AR-negative cell lines, which, surprisingly,
were almost undetectable in PC3 cells (Figure 6a).
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Figure 6. LKB1 is essential for auraptene to activate AMPK. (a) The protein expression profiles
of AMPKα, phospho-AMPKα, ACC, phospho-ACC, LKB1, PSA, AR, CAMKK2, and actin were
compared among LNCaP, DU145, and PC3 cells using immunoblotting. Notably, DU145 cells lack
LKB1. (b) Effect of introduction of the LKB1 expression plasmid into DU145 cells lacking LKB1
on AMPKα phosphorylation. DU145 cells were transfected with pcDNA3.1(-) or MTF (myc-TEV-
Flag-tagged)-LKB1 plasmids for 48 h, and then treated with vehicle or auraptene at 30 µM for 2 h.
The cell lysates were subjected to immunoblotting. (c) Quantification of relative band intensities of
pAMPK/AMPK (n = 3). (* p < 0.05, n.s.: not significant).

Considering our earlier experimental results, we speculated that auraptene induces
AMPK activation through LKB1, because auraptene does not activate AMPK in LKB1-
deficient DU145 cells but activates AMPK in CAMKK2-deficient PC3 cells. We investigated
whether auraptene can induce AMPK activation in DU145 cells exogenously expressing
LKB1. DU145 cells were transfected with control or LKB1 plasmids for 48 h. Subsequently,
the DU145 cells were treated with DMSO or auraptene at 30 µM for 2 h, and we then
determined phospho-AMPK protein levels. As expected, auraptene induced significant
AMPK phosphorylation in DU145 only when supplemented with LKB1 (Figure 6b,c).

Collectively, these data suggest that auraptene suppresses prostate cancer proliferation
and AR activity by inducing AMPK activation, which is mediated by an increase in the
cellular ADP/ATP ratio and subsequent phosphorylation by LKB1.

3. Discussion

We herein demonstrated that auraptene exerts inhibitory effects on both the pro-
liferation and the migration of prostate cancer cells. Then, we showed that auraptene
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dose-dependently activates AMPK in LNCaP, PC3, and HEK-293 cells. Interestingly, au-
raptene also downregulated AR and PSA expressions in LNCaP cells. Furthermore, the
inhibitory effects of auraptene on AR target gene expressions are, at least partially, reversed
by siRNA-mediated AMPKα1/2 knockdown or pretreatment with the AMPK inhibitor
compound C, an observation suggesting the involvement of AMPK in AR and its down-
stream genes, including those encoding PSA.

Several prior studies have underscored the relevance of AMPK activation and down-
regulation of AR target genes, though the proposed underlying mechanisms vary among
reports [24–26]. Metformin (30 mM) reportedly decreased AR protein levels in LNCaP
and C4-2B cells, with a corresponding AR mRNA decrease [24]. They also suggest that
metformin-induced AR protein degradation is another layer of AMPK-mediated AR
regulation [24]. A study using genome-wide expression profiling of LNCaP cells treated
with AICAR or metformin revealed AR to possibly be a transcription factor downstream
from AMPK [26]. That study obtained results indicating that the downregulation of AR tar-
get genes is attributable to a diminished nuclear localization of AR rather than to reductions
in the mRNA or protein expressions of AR [26]. In our present experiments, auraptene
decreased not only the expressions of AR target genes but also both the mRNA and the
protein level of AR, which supports the former view that AMPK downregulates AR activity
by decreasing AR protein levels [24]. Indeed, an AMPK-specific activator, MT 63-78, also
reportedly reduced AR levels in LNCaP and C4-2 cells, and these reductions were further
enhanced by co-treatment with the AR antagonist bicalutamide [25]. However, our data
do not exclude the possibility of coexisting post-translational regulation of AR activity by
AMPK, including its nuclear localization [26].

While androgen deprivation therapy is initially effective, prostate cancer cells eventu-
ally acquire resistance against this therapy via several mechanisms, such as amplification,
transcriptional upregulation, gene mutations, and/or the generation of splice variants
(such as AR-V7) of AR [29]. In castration-resistant prostate cancer (CRPC), despite reduced
serum testosterone levels, AR signaling is therefore persistently activated to drive tumor
progression. Currently, second-generation AR targeting agents such as enzalutamide are
clinically used to combat this persistent AR activation in CRPC, though the effects are
limited. Combined therapy with drugs that inhibit AR signaling at different nodes is a
more effective treatment for CRPC in some cases, and AMPK-activating agents such as
auraptene might be a promising option. Further studies are needed to determine whether
auraptene exerts anti-cancer effects in CRPC when used either alone or in combination
with available AR targeting agents.

In terms of the safety of auraptene, a previous study demonstrated that oral admin-
istration (250 mg/kg) for 28 days did not cause toxicity in rats [30], which supports its
future clinical application. However, additional animal and clinical studies are needed to
investigate the long-term safety of auraptene and potential drug interactions.

AMPK activation exerts an inhibitory action on energy-consuming anabolic pathways,
including that of lipogenesis. AMPK blocks lipogenesis by directly phosphorylating and
inhibiting acetyl-CoA carboxylase (ACC), a rate-limiting enzyme of lipogenesis, which
catalyzes the reaction converting acetyl-CoA to malonyl-CoA [6], as well as by inhibit-
ing sterol regulatory-element binding protein (SREBP) activation via several, both direct
and indirect, mechanisms [31–34]. SREBP is a transcription factor known to serve as a
master regulator of lipogenesis and regulates genes such as fatty acid synthase and ACC.
Interestingly, androgen has been shown to promote lipogenic gene expressions by acti-
vating SREBP [35,36], and increased fatty acid synthase expressions have consistently
been observed in conditions ranging from prostatic intraepithelial neoplasia to prostate
cancer [37,38]. Lipogenesis is essential for rapidly dividing cancer cells that require building
components for cellular membranes.

In addition to its role in lipid metabolism, mTOR/S6 kinase regulation of the cell cycle
is essential for cellular proliferation. Auraptene markedly suppressed the mTOR/S6 kinase
pathway, which is located downstream from AMPK. Thus, auraptene-induced AMPK



Int. J. Mol. Sci. 2023, 24, 16011 11 of 15

activation apparently suppresses the cell growth of prostate cancer cells via at least three
mechanisms, i.e., by inhibiting lipid metabolism, AR, and the mTOR/S6 kinase pathway.

Although there have been reports suggesting that AMPK may function as a tumor pro-
moter, depending on the environment [39,40], as previously reported, auraptene effectively
inhibited the proliferation of prostate cancer cells [18]. Furthermore, a very recent study
confirmed genetic prostate-specific AMPK activation to significantly attenuate both the
development and the progression of prostate cancer, effects attributable to the induction of
PGC1α and catabolic reprogramming of prostate cancer cells, which supports the theory
that AMPK activation exerts a protective effect against cancer cell proliferation [41].

In addition to suppressing prostate cancer, auraptene also reportedly suppresses the
cell viability and angiogenesis of breast cancer cells by downregulating expressions of
genes related to angiogenesis, such as vascular endothelial growth factor (VEGF) and VEGF
Receptor 2 [42]. Another report revealed that auraptene suppresses the proliferation of
breast cancer cells by inhibiting the IGF-1-stimulated S phase of the cell cycle [43]. Thus,
auraptene reportedly suppresses cancer cell proliferation through multiple mechanisms.

Taking into consideration that a high concentration of auraptene suppresses the prolif-
eration of DU145 cells, in which AMPK activation does not take place due to a lack of the
LKB1 gene, it is very likely that auraptene exerts a suppressive effect on cell growth not only
via an AMPK-dependent mechanism but also at least one AMPK-independent molecular
mechanism. Although further study is necessary to elucidate the AMPK-independent
anti-cancer mechanism(s) by which auraptene exerts its effects, the evidence that a higher
concentration of auraptene is required to suppress the cellular proliferation of DU145
than that of LNCaP cells suggests the significance of an AMPK-dependent mechanism
underlying auraptene-induced suppression of cell growth.

Taken together, the data obtained in this study suggest that auraptene, a component
of Citrus hassaku, is a potent AMPK activator. The possibility of applying auraptene to the
treatment of or protection against the development of prostate cancer, including CRPC,
merits further research.

4. Materials and Methods
4.1. Cell Culture

LNCaP, DU145, PC3, and HEK-293 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with glutamine and antibiotics (penicillin, streptomycin)
and 1% fetal calf serum (FCS) under 5% CO2 at 37 ◦C. We cultured cells in medium
containing 1% FCS to minimize basal AMPK activation while maintaining cell viabilities.
DMEM was purchased from Nissui (Tokyo, Japan).

4.2. Reagents

Auraptene and dihydrotestosterone were obtained from Tokyo Chemical Industry
(Tokyo, Japan), 5-aminoimidazole-4-carboxamide 1-b-D-ribofuranoside (AICAR) from
Wako (Osaka, Japan), and compound C from Abcam (Cambridge, UK).

The antibodies used were purchased from Santa Cruz Biotechnology (Dallas, TX, USA)
(actin: sc-47778, AR: sc-7305), Cell Signaling Technology (Danvers, MA, USA) (ACC: #3676,
p-ACC: #11818, AMPKα: #5831, p-AMPKα: #2535, PSA: #5877, p70S6K: #2708, p-p70S6K:
#9234, S6: #2217, p-S6: #4858, Raptor: #2280, p-Raptor: #2083), and Proteintech (Rosemont,
IL, USA) (CAMKK2: #11549-1-AP).

4.3. ADP/ATP Assay

The ADP/ATP Ratio Assay Kit was purchased from DOJINDO (Kumamoto, Japan).
LNCaP cells were seeded in a 96-well plate and incubated for 24 h, followed by administra-
tion of 30 µM auraptene (or vehicle) for 1 h. After incubation, the ADP/ATP ratio was calcu-
lated employing an ADP/ATP Ratio Assay Kit, according to the manufacturer’s instructions.
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4.4. CCK-8 Assay

Cells were seeded in a 96-well plate and incubated for 24 h, followed by administration
of auraptene (or vehicle) at the indicated concentrations and times. After incubation, 10 µL
of cell counting kit-8 (CCK-8) solution (which contains the water-soluble tetrazolium dye
WST-8) (DOJINDO, Kumamoto, Japan) was added to the cell culture medium, followed by
incubation at 37 ◦C for 3 h. We subsequently measured absorbances at 450 nm in a 96-well
plate. Absorbances (after background subtraction) relative to auraptene-untreated cells
were used to calculate IC50 using ImageJ (version 1.53).

4.5. Wound Healing Assay

A gap was created using the ibidi Culture-Inserts 2 Well, which provides two reservoirs
for culturing cells that are separated by a 500 µm thick wall. The ibidi Culture-Inserts 2 Well
was set in a 24-well plate, and 35,000 cells were seeded in each of the reservoirs and then
cultured for 24 h. After monolayer formation, the ibidi Culture-Inserts 2 Well was removed,
and each well was filled with medium. To evaluate cell migration ability, the gap was
measured at 0 and 96 h under a microscope.

4.6. RNAi Interference

siRNA-mediated knockdown was performed using the reverse transfection method
with Lipofectamine RNAiMAX (Invitrogen, Waltham, MA, USA), according to the manu-
facturer’s instructions. 2.0 × 105 LNCaP cells were transfected into a 24-well plate with
either 20 µM of negative siRNA (QIAGEN, Venlo, The Netherlands) or human AMPKα1/2
siRNA (Santa Cruz, sc-45312) for 72 h.

4.7. Real-Time Quantitative PCR

Total RNA was extracted from LNCaP cells using Sepasol reagent (Nakalai Tesque,
Kyoto, Japan), and 1 µg of total RNA was used for cDNA synthesis employing Verso cDNA
Synthesis Kits (Thermo Fisher Scientific, Waltham, MA, USA). Quantitative real-time PCR
was performed with a CFX-96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules,
CA, USA) using Brilliant SYBR® Green qPCR Reagents (Agilent Technology, Santa Clara,
CA, USA). GAPDH served as a reference gene for normalization of AR, prostate-specific
antigen (PSA), and FKBP5 expression levels. The following primers were used:

• Primers for human GAPDH: forward, 5′-GGC CTC CAA GGA GTA AGA CC-3′,
reverse, 5′-AGG GGT CTA CAT GGC AAC TG-3′.

• Primers for human AR: forward, 5′-GGT GAG CAG AGT GCC CTA TC-3′, reverse,
5′-GAA GAC CTT GCA GCT TCC AC-3′.

• Primers for human PSA: forward, 5′-TCA CAG CTG CCC ACT GCA TCA-3′, reverse,
5′-AGG TCG TGG CTG GAG TCA TC-3′.

• Primers for human FKBP5: forward, 5′-AGG CTG CAA GAC TGC AGA TC-3′, reverse,
5′-CTT GCC CAT TGC TTT ATT GG-3′.

4.8. Immunoblot Analysis

LNCaP, DU145, PC3, and HEK-293 cells were harvested and then boiled with sample
buffer containing sodium dodecyl sulfate (SDS) and 2-mercaptoethanol. Samples were
subjected to SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and then transferred to
polyvinylidene difluoride membranes. After blocking with 3% bovine serum albumin or 3%
non-fat dry milk in phosphate-buffered saline (PBS) containing 0.1% Tween20 (PBS-T) for
1 h at room temperature, the membranes were incubated with primary antibody overnight
at 4 ◦C. After being washed three times with PBS-T buffer for 10 min, the membranes
reacted with an anti-mouse or rabbit IgG horseradish peroxidase-linked secondary antibody
(1:10,000) for 1 h at room temperature. After the membranes had been washed in PBS-T
three times, for 10 min each time, signals were detected using Super Signal West Pico PLUS
Chemiluminescent Substrate (Thermo Scientific, Waltham, MA, USA) or ImmunoStar LD
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(Wako). β-actin was used as the control. Band intensities were quantitatively analyzed
using ImageJ (version 1.53).

4.9. Statistical Analysis

Statistical analyses were performed using EZR (Saitama Medical Center, Jichi Medical
University, Saitama, Japan) (version 1.37) [44]. We applied the t-test for comparing two
groups and one-way ANOVA, followed by the post hoc Dunnett’s test for multiple com-
parisons. Data are expressed as means ± S.E., and p < 0.05 was considered to indicate a
statistically significant difference.

5. Conclusions

Auraptene activates AMPK and suppresses the mTOR/S6K pathway, as well as inhibit-
ing the proliferation and migration of prostate cancer cells. Auraptene also downregulates
AR at both the mRNA and the protein level and decreases PSA expression in LNCaP cells,
actions that appear to be at least partially dependent on its AMPK activation. Auraptene-
induced AMPK activation is likely to be mediated by an increase in the ADP/ATP ratio and
requires LKB1. Activation of AMPK, a novel mechanism for the previously reported antitu-
mor effects of auraptene, indicates its therapeutic potential for managing prostate cancer.
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