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Abstract: Alzheimer’s disease (AD) is a common cause of dementia characterized by neurodegen-
erative dysregulations, cognitive impairments, and neuropsychiatric symptoms. Physical exercise
(PE) has emerged as a powerful tool for reducing chronic inflammation, improving overall health,
and preventing cognitive decline. The connection between the immune system, gut microbiota
(GM), and neuroinflammation highlights the role of the gut–brain axis in maintaining brain health
and preventing neurodegenerative diseases. Neglected so far, PE has beneficial effects on microbial
composition and diversity, thus providing the potential to alleviate neurological symptoms. There
is bidirectional communication between the gut and muscle, with GM diversity modulation and
short-chain fatty acid (SCFA) production affecting muscle metabolism and preservation, and muscle
activity/exercise in turn inducing significant changes in GM composition, functionality, diversity, and
SCFA production. This gut–muscle and muscle–gut interplay can then modulate cognition. For in-
stance, irisin, an exercise-induced myokine, promotes neuroplasticity and cognitive function through
BDNF signaling. Irisin and muscle-generated BDNF may mediate the positive effects of physical
activity against some aspects of AD pathophysiology through the interaction of exercise with the
gut microbial ecosystem, neural plasticity, anti-inflammatory signaling pathways, and neurogenesis.
Understanding gut–muscle–brain interconnections hold promise for developing strategies to promote
brain health, fight age-associated cognitive decline, and improve muscle health and longevity.

Keywords: physical exercise; Alzheimer’s disease; neuropsychiatric symptoms; microbiota; gut–
muscle–brain axis; irisin; BDNF

1. Introduction

An expanding body of evidence has repeatedly confirmed the view that physical ac-
tivity (PA) or physical exercise (PE) can be an effective, non-pharmacological, therapy-like
approach to improve the management of clinical symptoms in the category of mental illness,
especially for depressive and anxiety disorders [1–3]. However, a first and preliminary
distinction should be made between PA and PE. Despite both terms being used interchange-
ably, for PA we mean any motor activity or body movement requiring muscle contraction
and thus energy utilization, whereas PE is a planned, repetitive, schematized/structured,
and purposeful PA [4]. The positive outcome of PE intervention is now recognized to
be beneficial in different neurological/neurodegenerative diseases, reducing the risk of
premature mortality in depression [5], as well as dementia and mild cognitive impairment
(MCI) [6], and attenuating cognitive decline progression in severe forms of dementia such
as Alzheimer’s disease (AD) [7,8]. Interestingly, the adequacy and efficacy of PE both in
the area of psychiatric diseases (i.e., schizophrenia and major depressive disorder) [5,9]
and impaired cognition (dementia and AD) [10] disclose the possibility that a regular PE
might also favorably impact neuropsychiatric symptoms (NPSs) in AD. Long undervalued,
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the clinical relevance of NPSs in AD is now widely acknowledged [11]. Indeed, NPSs
are not only invalidating symptoms affecting the quality of daily living in MCI and AD
patients, but are also a proving ground for the evaluation of clinical severity and disease
prognosis, which is generally worse in the case of co-occurrence of cognitive deterioration
and NPSs [12]. Interestingly, it has been observed that some NPSs such as depression,
apathy, impulsivity, and irritability can manifest before cognitive decline, and for this
reason can be clinically identified to predict rapid progression to MCI and medial temporal
lobe atrophy, and faster MCI conversion to AD [13–15].

2. Alzheimer’s Disease and Neuropsychiatric Symptoms

As is widely known, AD is the most common cause of dementia and its prevalence
is expected to increase worldwide from 50 million people in 2010 to 113 million people
in 2050 [16]. AD is a slow progressive neurodegenerative disease which encompasses
molecular, cellular, neural circuitry, and cognitive dysregulations. The pathophysiology is
characterized mainly by the accumulation of Tau protein in the brain, especially in the me-
dial temporal lobe and neocortical structures forming intracellular neurofibrillary tangles,
and the aggregation of amyloid-β (Aβ) peptide forming extracellular amyloid plaques,
together with the overactivation of glia and the loss of synaptic homeostasis, neurons, or
neuronal network integrity [17]. To date, there is still no cure for AD and pharmacological
approaches focus more on reducing symptoms using cholinesterase inhibitors such as
donepezil, rivastigmine, and galantamine, as well as N-methyl d-aspartate (NMDA) antag-
onists such as memantine [18]. According to the leading amyloid cascade hypothesis, the
progressive and toxic accumulation of extracellular Aβ peptides, formation of β-amyloid
fibrils, and defective Aβ clearance are the major causes of AD pathogenesis [19]. However,
especially because the recurring disappointments concerning anti-Aβ therapy and the
failure of a large number of clinical trials addressing Aβ aggregation, there is a need to
consider the recent strategy focused on passive (i.e., antibodies) and active (i.e., vaccines)
immunization, and the hope raised by the anti-amyloid and anti-tau immunotherapy in
AD [20]. Although many problems of immunotherapy such as partial efficacy, adverse
effects (i.e., safety), and target selectivity have to be resolved [21], there are few doubts
that this approach holds new promises for the development of disease-modifying interven-
tions. Thus, several antibodies have been used both in preclinical studies using transgenic
AD-like mice [22–24], in mouse models of sporadic AD [25], as well as in immunotherapy
trials [26]. Immunotherapies with recent approval from the Food and Drug Administra-
tion are aducanumab and lecanemab, which, in spite of safety concerns and controversial
clinical outcomes [26,27], are third-generation, high-clearance, anti-amyloid immunothera-
pies. These are considered a step forward in AD therapy and a significant improvement
in the modest risk/benefit ratio has been shown by the pharmacological approaches
available so far.

AD is characterized by prominent amnestic cognitive impairment (with a lower preva-
lence of patients with non-amnestic cognitive impairment) and difficulties in expressive
speech, visuospatial processing, and executive functions [17]. In AD patients, the severity
of cognitive decline is heterogenous, and it could start with cognitive difficulties in the
absence of impaired performance following cognitive testing. MCI refers to the earliest
manifestation of cognitive decline in which a single domain, or multiple cognitive domains,
presents an impairment, but the overall functionality is preserved [28].

In AD patients, cognitive decline is mostly accompanied by NPSs, which are referred
to as behavioral and psychological symptoms of dementia (BPSD) and include a wide range
of manifestations such as apathy, depression, anxiety, psychosis, agitation, aggression, sleep
disturbances, and other problematic behaviors such as wandering, sexually inappropriate
behaviors, and care refusal [29,30]. These symptoms have a deleterious impact on the
patient’s quality of life. In fact, they cause emotional distress, functional impairment,
frequent hospitalizations, and earlier mortality [31]. The prevalence of NPSs in AD patients
is between 56 and 98% in the community and could rise up to 91–96% in hospitals or long-
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term care facilities [32]. Given the heterogeneity of these symptoms, their high prevalence,
and their detrimental impact on both psychological well-being and overall quality of
life, patients suffering from AD-associated NPSs are often prescribed broad-spectrum
pharmacological therapies. Unfortunately, these treatments often prove to be inadequate at
improving the patients’ conditions, as they frequently entail various adverse side effects.
For instance, in the case of atypical antipsychotics, several studies have shown their liability
to induce severe metabolic alterations and even elevate the risk of mortality among patients
with dementia [33,34].

Apathy, aggression, and depression are correlated with age, disease progression, and
cognitive impairment in AD patients. Aggressive behaviors are more common in males
than females [35]. NPSs exacerbate cognitive decline in AD patients, and this is a burden
and a source of stress not only for patients but also for caregivers [36]. Heavy caregiver
burdens not only led to financial difficulties but also social isolation, health deterioration,
and psychological disorders such as depression due to the problems associated with the
management of the clinical situation.

Apathy is the most common NPS associated with AD and refers to a lack of motiva-
tion in almost one out of three domains, including goal-directed behavior, goal-directed
cognitive activity, and emotion. In comparison to psychosis or anxiety, apathy has a high
level of persistence [37]. The apathy symptomatology was found to be correlated with
morpho-functional alterations in the anterior cingulate circuit, involved in motivation, and
the medial orbitofrontal circuit which is involved in the integration of visceral–amygdalar
functions [29]. Depression is the second most common NPS in AD patients and it is associ-
ated with an increased risk of developing AD pathology, and a higher risk of conversion
from MCI to AD [38], suggesting that depression could be a prodromal feature of AD [39].
Neuroimaging studies correlated AD and late-life depression with a bilateral reduction
in the hippocampal volume [40]. Increased cortisol production can link depression and
dementia by inducing hippocampal atrophy [41]. In fact, depressive symptoms activate
the Hypothalamic–Pituitary–Adrenal (HPA) axis and increase glucocorticoid levels, which
may in turn damage the hippocampus and result in a down-regulation of hippocampal
glucocorticoid receptors, causing the impairment of negative feedback to the HPA axis
and the glucocorticoid cascade [42]. These effects may lead to hippocampal atrophy and
cognitive decline [41].

Agitation and aggression include excessive motor activity (pacing, restlessness), verbal
aggression (yelling, screaming), and/or physical aggression (scratching, grabbing, slam-
ming doors). These behaviors are associated with emotional distress such as changes in
mood or irritability and lead to a significant impairment in social functioning, daily activi-
ties, and interpersonal relationships [43]. Many studies have highlighted the correlation
between agitation and loss of brain volume in brain regions such as the frontal cortex,
anterior cingulate cortex, posterior cingulate cortex, insula, amygdala, and hippocam-
pus [44–46], and decreased cholinergic activity in the frontal and temporal cortex and
decreased serotonin [47]. Delusions and hallucinations are frequently reported and these
psychotic symptoms could significantly affect the psychological well-being of patients,
causing the aggressive behavior that could in turn increase the risk of institutionalization.
Moreover, hallucinations and delusions are strongly associated with rapid cognitive decline.
Psychotic symptoms are related to atrophy in the lateral frontal, lateral parietal, and anterior
cingulate gyrus, implicated in the cortico-subcortical networks and in the regulation of
complex human behaviors [48]. Furthermore, neuroimaging studies showed that psychotic
symptoms and agitation can overlap with one another [45] (Figure 1).
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Figure 1. Schematic representation of AD-associated NPSs, from most to least common, and their detrimental impact on pathogenesis development and cognitive 
decline. 

Figure 1. Schematic representation of AD-associated NPSs, from most to least common, and their detrimental impact on pathogenesis development and
cognitive decline.
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Of particular interest, it has been observed that some NPSs such as depression, apathy,
impulsivity, and irritability can manifest before the beginning of cognitive decline, and,
for this reason, can be clinically identified to predict rapid progression to MCI and medial
temporal lobe atrophy, as well as faster conversion from MCI to AD [14,15]. In fact, MCI
patients with NPS comorbidities displayed an annual conversion rate of the pathology to
AD of ∼21% [49]. Many preclinical studies have shown that NPSs could even be found
in widely used animal models of AD. In a detailed review [50], researchers described
the presence of behavioral alterations in transgenic mouse models of AD corresponding
to some BPSD found in AD patients. Social withdrawal and depressive-like behaviors
were found to be related to the progression of AD pathology in mouse models of AD.
Interestingly, at early stages, some models displayed both aggression and sleep–wake
alterations [50]. All these behavioral alterations reported in different AD mouse models
confirm the existence of features corresponding to AD pathophysiology.

3. Physical Exercise, Gut Microbiota, and Alzheimer’s Disease Risk
3.1. The Role of Physical Exercise for Brain Health and Alzheimer’s Disease Prevention

There is a robust consensus about the fact that a non-excessive level of PE and long-
term exercise intervention can positively contribute to reducing chronic systemic inflam-
mation, ameliorating human health, and promoting longevity [51–53]. Remarkably, accu-
mulating evidence supports the view that the benefits of PE may also extend to patients
with neurodegenerative disorders, particularly those with AD [54]. Indeed, in addition to
other factors (such as aging, low education, and poor diet), low levels of PE or complete
physical inactivity are considered crucial risk factors for developing dementia and AD [55].
Converging reports addressing the benefits of PE for reducing AD risk, and the favorable
impact of PE on brain aging and preservation of cognitive function [56] have underlined
the key importance of different types of long-term exercise training for the prevention of the
AD trajectory [56,57]. Thus, regular exercise is much more successful as a neuroprotective
strategy than sporadic or occasional activity, including aerobic and resistance/strength
exercise [56–58]. Several studies have investigated the multiple mechanisms that might
account for the beneficial impact of PE either on the likelihood to develop dementia and
AD or as disease-modifying option to reduce cognitive deterioration and delay the onset
of memory loss. Within this frame, the study of hippocampal physiology has received
particular attention, with studies reporting an increased size of the hippocampus following
PE such as aerobic exercise in both adults [59] and older adults [60]. In addition to the
increase in brain volume, found to be particularly enlarged in the frontal lobes of partici-
pants undergoing a 6-month aerobic exercise program [61], the main changes triggered by
regular training programs involve non-mutually exclusive mechanisms such as an increase
in cerebral blood flow and its positive effects on cognition (i.e., executive function) [62], neu-
rogenesis [63], angiogenesis [64,65], neurotrophic factors [66], and neuroplasticity [67,68].
In a recent systematic review of the literature focused on the effects of PE on the mecha-
nisms underlying AD etiology [69], the authors identified about eight principal pathways
through which PE can modify AD pathophysiology. Among these pathways, it is worth
remembering the roles of the immune system and inflammation that are, in turn, associated
with mechanisms of cell survival or cell senescence, as well as with the protective role of
PE against oxidative stress, lipid peroxidation, and improvements in energy metabolism
and insulin sensitivity [70,71] (Figure 2).
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Figure 2. Brief summary of the positive effects produced by PE on brain functions and gut microbiome underlying the gut–brain bidirectional crosstalk. According 
to the text, the figure illustrates and suggests that PE can produce beneficial effects on brain functions via a gut microbiota (GM)-mediated action, so that a PE–
GM–brain axis may have a crucial role in preventing or delaying AD development and symptomatology. 

Figure 2. Brief summary of the positive effects produced by PE on brain functions and gut microbiome underlying the gut–brain bidirectional crosstalk. According
to the text, the figure illustrates and suggests that PE can produce beneficial effects on brain functions via a gut microbiota (GM)-mediated action, so that a
PE–GM–brain axis may have a crucial role in preventing or delaying AD development and symptomatology.
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3.2. Exploring the Impact of Gut Microbiota Dysbiosis and Neuroinflammation in Alzheimer’s
Disease Pathogenesis

In recent years, a great deal of interest has been focused on the deleterious impact pro-
duced by GM dysbiosis, the growth of pro-inflammatory bacteria, increased permeability
of the intestinal barrier, and systemic inflammation in AD pathogenesis [72,73], including
the comorbidity of NPSs and AD [74].

Various studies have led to the formulation of a neuroinflammation theory of AD,
proposing a central role of the immune system, specifically of astrocytes and microglia,
the overactivation of which, caused by the presence of insoluble Aβ oligomers, would
up-regulate the production of pro-inflammatory agents causing neuronal damage and
cell death [75–78]. In the first formulation of this idea, indications were made exclusively
to the inflammation of the central nervous system (CNS), but more recent studies have
suggested the involvement of the peripheral nervous system (PNS) as a concomitant fac-
tor for the increase in neuroinflammation, as is typically observed in neurodegenerative
disorders [79,80]. In the human body, the intestinal tract has the largest microecosystem,
defined as GM, which counts over 100 trillion microorganisms (1014) including more than
2000 known different species of bacteria [81]. A healthy GM is characterized by bacterial
stability and species diversity. In the GM, bacteria are classified by genus, family, order,
and phylum. Firmicutes (such as Lactobacillus) and the Bacteroidetes represent the main
bacterial phyla in the gut, accounting for 90% to 95% of the total microbiota, followed by
Proteobacteria, Actinobacteria (such as Bifidobacterium), and Cyanobacteria [82,83]. The phylum
Firmicutes is made up of more than 200 genera consisting of Clostridium, Blautia, Faecalibac-
terium, Enterococcus, Lactobacillus Eubacterium, Roseburium, and Ruminococcus. Bacteroidetes
consist of different genera like Bacteroides and Prevotella [84]. The most common bacteria in
the stomach are Lactobacilli, Veillonella, and Helicobacter, while in the duodenum, jejunum,
and ileum there is a much higher concentration of Bacilli, Streptococcaceae, Actinomycinaeae,
and Corynebacteriaceae. Lachnospiraceae and Bacteroidetes are the more prominent bacteria
found in the colon [85].

The bidirectional crosstalk between the brain and gut, known as the “gut–brain axis”,
is mainly based on the direct and indirect connection of GM with the CNS, the autonomic
nervous system (ANS), the enteric nervous system (ENS), and the HPA axis [86], and it
involves multiple overlapping pathways, including the neuroendocrine and immune sys-
tems, playing a key role in neuronal development, brain function, cognitive regulation, and
aging [87]. The gut–brain axis influences fundamental brain processes, such as neuroinflam-
mation, activation of the HPA axis, neurotransmission, and neurogenesis, even modulating
complex behaviors [88]. In the gut, microbes metabolize complex carbohydrates producing
short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate (more than 95% of
the total SCFAs), which can be utilized as energy. They could act as signaling molecules in-
volved in lipid metabolism and glucose/insulin regulation, important for the maturation of
the microglia [89]. SCFAs could indirectly affect even neurotransmission by modulating the
synthesis of different neurotransmitters with a direct impact on cognition and behavior. In
particular, butyric and propionic acids enhance the synthesis of dopamine, noradrenaline,
and serotonin, eliciting the expression of tyrosine and tryptophan hydroxylase [90]. Over
the years, there has been an increase in scientific reports about the involvement of GM in
the regulation of several physiological functions that have a strong effect on the general
state of health of individuals. Thus, it becomes increasingly clear how important it is to
preserve the delicate balance of GM. Microbial differences can depend on age, sex, body
mass index, host genotype, but the microecological balance is strongly affected by different
lifestyle factors such as dietary patterns, smoking, alcohol, antibiotics, drugs, toxins, and
pathogens [91]. A GM imbalance, namely a dysbiosis, was found in several neurological
disorders including AD, Parkinson’s disease, and major depressive disorder [88,92]. GM
dysbiosis may lead to systemic inflammation, which determines microglia overactivation
and blood brain barrier (BBB) damage, causing the deleterious crossing of pathogens and
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immune cells [93]. Disruptions to gut barrier integrity may spur an influx of lipopolysac-
charide (LPS) into the host systemic circulation [94]. LPS is a highly acylated saccharolipid
and structural component of the outer membrane of Gram-negative bacteria. It is a potent
stimulant of the host immune response and secretion of pro-inflammatory cytokines and
chemokines because it is sensed by the body’s innate immunity, thus alerting it about
potential threats of invasion by pathogens [95]. LPS is detected by toll-like receptors (TLRs)
such as the TLR4 which is a transmembrane receptor that belongs to the pattern recognition
receptor (PRR) family and is expressed in different cells modulating the innate immune re-
sponse (microglia, astrocytes, macrophages, and leukocytes) [96]. Once LPS is detected, the
TLR4 activates the nuclear factor kappa B (NF-κB) pathway, eliciting the production of pro-
inflammatory mediators such as inducible nitric oxide synthase (iNOS), Cyclooxygenase-2
(COX-2), Interleukin-1β (IL-1β), and Tumor Necrosis Factor alpha (TNF-α) by the immune
system cells [97].

The latest research is focusing on the GM dysbiosis found in AD patients in order to
explore how the gut–brain axis is involved in a condition of up-regulated neuroinflamma-
tion. In a study by Cattaneo and co-workers, an increase in the Escherichia/Shigella bacterial
genera was found, which are known for mediating inflammation, in the fecal samples of AD
patients, together with an increase in the expression of proinflammatory cytokines IL-1β
and CXCL2 in the blood [98]. Different studies reported an increase in Escherichia/Shigella,
Bacteroides, and Ruminococcus and a decrease in Eubacterium rectale, Bifidobacterium, and
Dialister in AD patients and aged individuals with cognitive impairment [99–101]. Animal
models of AD confirmed the GM dysregulation associated with AD pathology. In fact, in
a transgenic model of AD, the 5xFAD mice, characterized by the rapid development of
amyloid plaques in the brain, increased levels of Aβ were found also in the gastrointestinal
(GI) system, together with an increase in the Firmicutes/Bacteroidetes ratio [102]. To further
prove the connection between the gastrointestinal system and Aβ burden, it was found
that fecal transplantation from wild-type mice to AD-like mice models was able to improve
cognitive functions, reducing the formation of amyloid plaques and neurofibrillary tangles
and diminishing glial reactivity [103]. Furthermore, the peripheral immune activation
was found to be down-regulated with a decreased intestinal macrophage activity and
lower presence of circulating blood inflammatory monocytes [103]. In a rat model of AD,
obtained by injecting the Aβ1-42 peptide in the hippocampus, an important GM alteration
with an increase in pro-inflammatory bacteria, a reduction in anti-inflammatory bacteria,
and the consequent stimulation of the immune system were found [104]. Moreover, in the
same study, the administration of fructooligosaccharides was able to increase the probiotic
Lactobacillus, the anti-inflammatory Bifidobacterium, and other bacteria which stimulated
the production of acetylcholine, dopamine, serotonin, and norepinephrine in the brain,
thus alleviating cognitive decline in AD-like animals [104]. In fact, some bacterial gen-
era such as Escherichia coli, Bacteroides, Eubacterium, and Bifidobacterium are involved in
the production of neurotransmitters such as acetylcholine, GABA, and glutamate, and
alterations in these were found in AD patients [105,106]. Moreover, metabolomic analysis
on amnestic MCI and AD patients showed the dysregulation of tryptophan metabolism
with a reduction in 5-HTP [74,107]. Interestingly, by using the pharmacological AD-like
mouse model of Aβ1-42 peptide delivery into the lateral ventricle, both an alteration in GM
and the inhibition of cholinergic anti-inflammatory patterns by the reduction in choline
acetyltransferase (CHAT) expression in the colon, and a parallel decrease in the expression
of M1 acetylcholine receptor in hippocampus and forebrain [108], have been shown. This
study underlines the importance of the vagus nerve-mediated cholinergic signaling in
the mediation of gut–brain functional communication and its relevance for the exacerba-
tion of AD pathophysiology. Notably, GM alterations in AD mouse models appear to be
sex-specific. In fact, a study showed increased Prevotella and Ruminococcus but reduced
Sutterella abundance in female mice [109]. In another study, in AppNL-G-F female mice, an
increased abundance of Bacteroides, Alistipes, Turicibacter, Ruminococcus, Romboutsia and
Akkermansia was found, which positively correlated with increased astrogliosis [110]. The
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GM diverges according to gender from early life, showing differences in composition
and alpha-diversity. Notably, boys and girls exhibit significant variances in Actinobacteria,
Firmicutes, and Bacteroidetes phyla, with boys having a higher Bacteroidetes/Firmicutes ratio.
Although it may seem simplistic, the current hypothesis is that dynamic hormonal changes,
such as the early postnatal testosterone rise in males or the onset of puberty in both sexes,
may contribute to these disparities, but ongoing investigations in this field are currently
being conducted [111].

3.3. A Complex Connection: Neurotransmitter Deregulation, Gut–Brain Axis, and
Neurological Disorders

As previously mentioned, the deregulation of neurotransmitters, such as glutamate,
acetylcholine, dopamine, GABA, serotonin, and norepinephrine, is extensively described
in AD [112–115], strengthening the concept of the gut–brain axis and its implication in
neurological disorders. Alterations in these neurotransmitters can be found in patients
suffering from anxiety [116,117] or depression [118], which are some of the NPSs found in
AD patients [12,14]. Anxiety can alter gastrointestinal function, and anxiety is a mental
condition that can be elicited by GM dysbiosis, as demonstrated by a correlation between
intestinal infection and the development of an anxiety disorder [119]. Rodent studies
confirmed the connection between GM alterations and anxiety symptoms. In fact, germ-
free (GF) mice exhibit reduced anxiety-like behaviors together with an increase in the
hippocampal levels of serotonin and a much higher plasma concentration of tryptophan.
Of particular interest was the normalization of anxiety levels following the restoration
of the gut microbial population in these mice [120]. A systematic review by Yang et al.
evaluated a total of 21 studies present in the literature, the aim of which was to reduce
anxious symptoms following the regulation of the intestinal microbiota. In 15 studies,
probiotics were used, while the remaining 6 studies focused on the use of other strategies,
such as, for example, the remodulation of dietary patterns. The authors found that more
than half of the studies reported beneficial effects on anxious symptoms and most of the
beneficial effects were provided by strategies that did not include the use of probiotic
supplementation [121].

There is increasing evidence that depression could be linked to GM alterations,
strengthening the involvement of the gut–brain axis in this mood disorder [74,122–124].
Cross-sectional studies reported an increasing abundance of Actinobacteria and decreased
levels of Bacteroidetes, and mixed results on Firmicutes and Proteobacteria in subjects with
major depressive disorder [125,126]. Probiotics with or without antidepressants showed
some results in alleviating depressive symptoms through the attempt to restore a healthy
GM [127]. Although the authors suggest a possible anti-inflammatory mechanism exerted
by probiotics in alleviating depressive symptoms, there are still some unresolved problems,
such as the implication of BBB damage or intestinal hyperpermeability for the evaluation of
this effect. For example, human and animal studies found that depression was associated
with an increase in intestinal permeability and bacterial translocation, leading to immune
response, thus supporting the “leaky gut” hypothesis [128,129].

In depressed patients, several studies reported an increase in proinflammatory cy-
tokines, such as IL-1, IL-6, IL-8, IL-12, TNF-α, and decreased levels of anti-inflammatory
cytokines, such as IL-10, together with a hyperproduction of reactive oxygen species (ROS)
and reactive nitrogen species (RNS), with resulting damage to cell membranes, proteins,
mitochondria, and DNA [128,130]. Nevertheless, the mechanisms underlying the role of the
gut–brain axis in depression and in other neurological disorders are not fully understood,
and the scientific community, in recent years, has increased its efforts to find more accurate
theories of this relationship.

3.4. Impact of Physical Exercise on the Gut–Brain Axis and Neurological Disorders: An
Overlooked Role

Despite the level of knowledge gathered about the changes occurring in the gut micro-
bial population and risk of AD or neurodevelopmental disorders [72–74,124], as well as
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about the tight relationship between PE and the colonization of health-promoting bacterial
taxa [131], there is only sporadic information concerning the beneficial effects exerted by
PE on the gut–brain axis and AD progression [131,132]. Since many detailed descriptions
either of the gut microbial ecosystem or of the entire genome of gut microorganisms (i.e., the
microbiome) have already been provided [74,124,133], no further explanation of GM and
its communication pathways, main composition, and characteristics will be considered in
this context. Thus, according to the present scenario, the functional contribution of skeletal
muscle (SM) to the equation linking the gut–brain axis, PE, dementia, and NPSs in AD has
been frequently undervalued or neglected. Several pieces of evidence support the view
that non-extreme or strenuous exercise promotes beneficial changes in microbial composi-
tion via, for instance, an increase in the concentration of selected SCFAs such as butyrate
(C4) [134], and that an increase in butyrate-producing bacteria protecting the gastrointesti-
nal epithelium (e.g., Faecalibacterium prausnitzii) is quantifiable in trained animals [135].
Consistently, the GM of exercised individuals has been shown to display increased mi-
crobial diversity and butyrate-producing taxa (e.g., Coprococcus, Roseburia Clostridiales,
Lachnospiraceae, and Erysipelotrichaceae) [136]. Interestingly, well-trained subjects such as
athletes show an increased abundance of Akkermansia muciniphila (A. muciniphila from
Verrucomicrobia phylum) in their GM, which is linked to the fact that colonization by
A. muciniphila is conversely reduced in both depression and AD [74]. Notably, A. muciniphila
is a mucin-degrading bacterium whose colonization of the mucosal layer is associated with
the prevention of an age-dependent decrease in mucus layer thickness and intestinal in-
flammation [137]. Moreover, it is known that obese individuals display a high Firmicutes
to Bacteroides ratio (two most abundant phyla in GM) [138], while PE has been shown
to reduce the gut abundance of the butyrate-producer Firmicutes phylum in a model of
diet-induced obesity [139,140], thus depicting a “gut-mediated” mechanism by which PE
can contribute to obesity prevention. Interestingly, the dichotomy between voluntary and
forced PE is emblematic of the functional impact that PE may have on GM ecology and also
SM physiology. Indeed, in the GM of animals that underwent forced exercise (i.e., treadmill
running), it was found an overgrowth of bacteria such as Ruminococcus gnavus [141], which
is involved in intestinal mucosa degradation and because of that is considered responsible
for intestinal inflammation (e.g., intestinal bowel syndrome and Crohn’s disease) [142].

4. Gut Microbiota-to-Skeletal Muscle Axis

A first point of conjunction between the modulation of GM diversity and SM function
and metabolism can probably be identified in lactate production and in its conversion into
propionate (C3), which, together with butyrate (C4) and acetate (C2), is one of the major
SCFA microbial metabolites in the GI tract [134]. The “lactate-propionate” shuttle can be
considered a bidirectional process involving the gut–muscle axis. Indeed, lactate in the gut
can be produced by probiotic microorganisms such as Lactobacillus and Bifidobacterium and
then converted to SCFAs [143], while, at the same time, it can be also produced through
muscle contraction and transported into the gut from the bloodstream to be utilized by
lactate-utilizing bacteria, providing the energy substrate for PE [144].

Interestingly, excessive lactate content in the gut may have detrimental effects due to
its effect on muscle deterioration and the derangement of heart function through microbiota
dysbiosis (e.g., excessive acidification of the gut) [145,146].

To support the concept of bidirectional communication between GM and muscle and
vice versa, it should be noted that not only PE elicits an increase in gut SCFAs [134] but also
that SCFA supplementation has been shown to improve the atrophy of muscle mass in GF
mice [147], or reduce muscle atrophy in aging mice through butyrate treatment [148]. Both
excessive PE and inactivity are not only detrimental to the integrity of muscle mass (e.g., via
an increase in inflammation and oxidative stress), but also the alteration in GM diversity and
GI dyshomeostasis induced by excessive exercise may contribute to systemic inflammation
(e.g., via the production of bacterial toxins) and negatively impact protein synthesis and
muscle mass [149]. The mutual interchange between GM and SM (the “gut–muscle” axis) is
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particularly well illustrated in the case of gut microbial ecosystem alteration. As a key player
in the endocrine system, the insulin-like growth factor- (IGF-)1 is an anabolic factor critically
involved both in the regulation/stimulation of muscle mass and in muscle atrophy [150].
From a mechanistic point of view, IGF-1 drives SM growth via the phosphatidylinositol 3-
kinase (PI3K)/protein kinase B (Akt)/mTOR signaling pathway that, by increasing glucose
transport, promotes protein synthesis and inhibits SM proteolysis [151]. The lack of GM, as
in GF mice, causes a decrease in IGF-1 muscle expression and muscle atrophy, while either
GM transplantation or SCFAs supplementation in GF mice appear able to induce a partial
recovery of SM atrophy [147]. This is further corroborated by the positive effects observed
after high-intensity exercise in athletes that underwent probiotic supplementation (i.e.,
Lactobacillus plantarum, PS128), which was also shown to increase the abundance of SCFAs
as well as the abundance of the genera Akkermansia, Bifidobacterium, and Lactobacillus [152].
Interestingly, different factors such as non-strenuous PE and prebiotics/probiotics and SCFA
supplementation [153] have in common the ability to improve SM metabolism (e.g., insulin
sensitivity) and preserve SM mass during aging. In agreement, SCFA supplementation
can improve exercise performance (i.e., endurance) in mice, thus demonstrating a direct
effect of GM on muscle energy metabolism via an action mediated by SCFAs [153]. It is also
known that inflammation is one of the major determinants underlying muscle catabolism
and the loss of muscle mass [154], as demonstrated in chronic inflammatory states, such
as obesity and insulin resistance [155]. Notably, restoring specific bacteria species such as
Lactobacillus through probiotic supplementation (i.e., L. reuteri 100-23 and L. gasseri 311476)
has been shown to reduce the muscle expression of atrophy markers and inflammatory
cytokines, which were not affected by supplementation with other bacterial species [156].

Illustrative of the GM-to-muscle functional communication is the degree of GM di-
versity between young adults and older people (often suffering from dysbiosis) and the
different liability to develop sarcopenia, which is an age-associated clinical condition char-
acterized by the progressive loss of muscle mass and strength, as well as by a reduction in
muscle fibers and a consequent decrease in physical performance [157]. Sarcopenic indi-
viduals show a reduced abundance of SCFA-producing bacteria such as Faecalibacterium
prausnitzii [158]. The mechanistic influence of SCFAs on muscle metabolism is complex and
may engage different direct and indirect routes. Butyrate can regulate insulin homeostasis
(i.e., insulin sensitivity), promoting not only an increase in energy expenditure and muscle
fatty oxidation [159] but also the inhibition of intramuscular lipid accumulation [148]. Also,
SCFAs such as acetate and propionate have a favorable impact on both insulin-dependent
and insulin-independent muscle glucose uptake [160], also eliciting (i.e., by acetate treat-
ment) an increase in glucose transporter 4 (GLUT4) gene (Glut4) expression in SM [161].
In particular, acetate treatment has been shown to induce a higher expression of myosin
heavy chain type I-isoform (MHCI) and MHC type-IIa isoform (MHCIIa), consequently
increasing muscle oxidative capacity and endurance performance in mice [162]. However,
while direct SCFAs administration can increase muscle fatty oxidation and endurance
exercise, the dietary modulation of gut microbial composition may have opposite effects
on muscle contractile capacity. In an ingenious study, one cohort of mice received a low
microbiome-accessible carbohydrate (LMC) diet, while a second cohort was fed with a
high microbiome-accessible carbohydrate (HMC) diet [163]. After a 6-week diet regimen,
animals fed an LMC diet exhibited lower exercise capacity, reduced muscle mass (of the
tibialis anterior), and decreased concentration of fecal and plasma SCFAs, while endurance
capacity was restored by fecal microbiota transplantation (FMT) from HMC-fed donor mice
and just one serving of fermentable fibers [163]. SCFAs can reach the ileum and colon and
engage G protein-coupled receptors (GPCRs) 41 and 43, also known as the class of free fatty
acids sensing receptors (FFARs), FFA2 (i.e., GPCR43) and FFA3 (i.e., GPCR41) [164,165].
Since both FFA2 and FFA3 are also expressed in adipose tissue (AT) and pancreatic β-cells,
FFA2 and FFA3 also have a role in the regulation of insulin secretion and in the reduction
in susceptibility to insulin resistance [166,167]. Importantly, the FFA2 receptor is involved
in hormonal gut release, as evidenced by the control exerted on glucagon-like peptide 1
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(GLP-1) secretion in response to SCFAs [168]. As further demonstrated, propionate is able
to stimulate both peptide YY (PYY)- and GLP-1-signaling by FFA2 receptors expressed on
colonic enteroendocrine L-cells, an effect repressed in FFA2 KO mice [169]. Apart from the
modulation/suppression of appetite, the insulinotropic GLP-1 hormone is also involved in
lowering glycemia (i.e., glucose metabolism) and in the regulation of insulin and glucagon
secretion [170]. The GLP-1 receptor (GLP-1R) is expressed in many tissues, including the
ENS, and in SM, where it participates in glycogen synthesis and in the potentiation of
glucose uptake [171]. Remarkably, GLP-1 agonists and antidiabetic drugs such as exendin-4
have been shown to slow down SM atrophy via the recruitment of GLP-1R-mediated
suppression of muscle atrophic factors [172]. A recent study also provided evidence that
the in vivo overexpression of GLP-1 in SM is able to increase endurance capacity, as well
as increase glycogen synthesis, glucose uptake, and the percentage of type I slow-twitch
oxidative fibers [173]. Interestingly, this study corroborated the hypothesis that the GLP-
1-dependent phosphorylation of AMP-activated protein kinase (AMPK) and increase in
oxidative capacity represent possible mechanistic explanations underlying the improve-
ment in endurance performance following GLP-1 overexpression [173]. However, AMPK
phosphorylation can also be induced in SM by SCFAs such as acetic acid [174], thus acti-
vating AMPK targets such as peroxisome proliferator-activated receptor γ coactivator-1-α
(PGC-1α), in turn promoting fatty acid oxidative metabolism [161,174]. An increase in
exercise performance was also shown as a result of Lactobacillus plantarum (L. plantarum)
supplementation, which increased muscle weight and exercise endurance and increased
gastrocnemius type I fibers [175]. The development of GLP-1 resistance is observed in
obese patients with type 2 diabetes, in which not only adiposity but also dysbiosis can play
an instrumental role [176]. In other terms, GM is a major link between GLP-1 secretion,
muscle function, and the beneficial effects of PA. Indeed, PE potentiates the effects of
GLP-1 agonists via GM-derived SCFAs [177], and, as reminded, SCFAs can control and/or
potentiate GLP-1 secretion [168] (Figure 3).
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5. Skeletal Muscle-to-Gut Microbiota Axis

The reciprocal modulation between GM and SM is particularly corroborated when
data can clearly demonstrate the effects of both PA and PE on the gut microbial ecosystem.
As a whole, exercise is able to drive compositional changes to the gut microbial ecosystem,
although significant differences may depend on the exercise intensity and duration, fre-
quency, diet, and metabolic status of the subjects [178]. GM diversity changes with aging,
but regular PE has been shown to induce the remodeling of gut microbial composition
and abundance also in overweight individuals, as indicated by a large screening study
performed on data including about 900 elderly subjects [179]. Notably, exercise training
per se improves cardiometabolic/cardiorespiratory fitness in terms of higher peak oxy-
gen (O2) capacity (VO2 max/kg), and such an increase in exercise/endurance capacity is
responsible for more than 20% of the overall increase in microbial richness induced by
PE, as well as the increase in butyrate production [136]. Well-trained running athletes
were shown to develop a GM enrichment of the Veillonella genus after their marathon
performance [180]. In the same study, the subsequent transplantation of isolated Veillonella
in mice was shown to increase their endurance performance [180], an effect ascribed to
the ability of the Veillonella genus to use lactate, which could be further metabolized into
propionate and acetate, thus affecting endurance running. Exercise training, not only in
elite athletes but also in sedentary subjects that start a period of PE, induces drastic changes
in GM composition, functionality, the diversity of gut microorganisms, and increases the
production of SCFAs [181,182]. Exercise training does not only modify the richness of GM
composition but directly affects the production of SCFAs via increasing the abundance
of SCFA-producing bacteria such as Ruminococcaceae and Prevotella [183]. The intestinal
intra-epithelial lymphocytes (IELs) are considered as the sentinels of intestinal mucosal
immunity [184], and some studies have demonstrated that PE can increase, at an IEL level,
the secretion of anti-inflammatory cytokines such as IL-10 [185].

It is now well acknowledged that SM is an endocrine organ secreting multiple bioactive
peptides following endogenous and exogenous stimuli, such as muscle contraction and
diet-derived nutrients [186]. For instance, it is now recognized that during PE and muscle
contraction, there is a robust increase in IL-6 in the bloodstream [187]. IL-6 is one of the
first identified myokines, and, as far as we know, an increase in IL-6 in the bloodstream
is associated with obesity and type 2 diabetes (i.e., insulin resistance) [188]. Additionally,
it is associated with AMPK-dependent fat oxidation and glucose uptake after muscle
contraction [189]. Notably, the increase in IL-6 after muscle contraction produces a direct
stimulatory effect on GLP-1 secretion from enteroendocrine L-cells, improving glucose
metabolism and insulin sensitivity [190]. Both SCFAs and PE can induce the transcription
and expression of PGC-1α in muscle. PGC-1α expression is triggered by muscle contraction
and is required for muscle fiber type switching towards the oxidative phenotype, thus
adapting muscle capacity and metabolism to endurance exercise [161,174,191].

5.1. Irisin and BDNF Are Paradigmatic Myokines Linking Physical Activity to the Shaping of
Gut Microbiota

Irisin is a recently described PGC-1 alpha dependent molecule. Indeed, PGC-1α is re-
quired for the gene expression and synthesis of a transmembrane protein called fibronectin
type III domain-containing protein 5 (FNDC5), the cleavage of which produces a peptide
named irisin [192]. Acting in a hormone-like fashion, the role of irisin is particularly in-
triguing in this context. Indeed, irisin secretion is elicited by muscle contraction, and, for
this reason, irisin is considered an exercise-induced myokine; its level in the bloodstream
depends almost entirely on muscle tissue [192]. However, beyond its stimulatory effects on
energy metabolism (thermogenesis), adipose tissue (browning white fat depots), and bone
(increase in bone mineral density), irisin can be regarded as a bridge between the muscle and
brain. Irisin can be found in the brain (both neurons and glial cells) and in different brain
areas including the hippocampus, cortex, hypothalamus, and cerebellum [193–195]. Sur-
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prisingly, endurance exercise induces the neural expression of the PGC-1α/FNDC5/irisin
pathway, which, in turn, can promote adult hippocampal neurogenesis (AHN) via an
increase in brain-derived neurotrophic factor (BDNF) [194]. BDNF signaling is involved in
synaptic plasticity (e.g., long-term potentiation, LTP), and this neurotrophin is required
for cognitive function, especially within the hippocampus [196]. Notably, BDNF is also
secreted upon training exercise and for this reason is also considered a brain-targeting
myokine, as illustrated by exercise-induced BDNF expression in the hippocampus and
improvements in neuroplasticity and spatial memory [197,198]. Several studies have also
uncovered an important irisin-mediated neuroprotective potential by showing, for instance,
that irisin treatment protects the BBB [199] or hippocampal neurons from apoptosis [200]
under different ischemic injuries in rats (e.g., middle cerebral artery occlusion), and that
the increased expression of BDNF can mediate these neuroprotective effects [201].

For the time being, the evidence that irisin can provide many of its multiple beneficial
effects due to a mechanism(s) involving changes in the GM is only indirect, but nevertheless
noteworthy. Until recently, the protective anti-inflammatory potential of irisin was never
investigated in morbid medical conditions in which gut dysbiosis plays a pathogenetic role,
such as ulcerative colitis (UC). By studying the effects of irisin administration in a mouse
model of UC, an improvement in the inflammatory status involving decreases in IL-12 and
IL-23 plasma levels [202], both interleukins involved in the amplification and differentiation
of the T-helper (Th) type 1 (Th1) and type 17 (Th17) lymphocyte response [203,204], and the
reversal of gut microbial communities that were found abnormally represented in UC mice
(e.g., Bacteroides and Lactobacillaceae) were shown. Another recent study has demonstrated
that irisin administration can improve the integrity of the gut mucosal barrier and can
counterbalance the gut dysbiosis induced in rats that underwent an experimental model of
myocardial ischemia–reperfusion injury [205]. Equally illustrative of the capacity demon-
strated by irisin to attenuate intestinal damage is one study in which irisin administration
was used to reduce injury to epithelial cells, as well as apoptosis and oxidative stress in
a mouse model of acute pancreatitis [206]. Interestingly, not only irisin but also BDNF
has been shown to have a prominent role in the modulation of GM biodiversity and in
the homeostasis of the intestinal mucosal barrier. Indeed, BDNF KO mice (BDNF−/−)
and wild-type mice (BDNF+/+) were shown to basically differ from each other in the ul-
trastructure of their colonic epithelium, which was impaired in mice lacking BDNF [207].
BDNF−/− mice displayed a selective decrease in epithelial tight junction proteins, such as
zonula occludens-1 and occludin, which expand the vulnerability of the intestinal mucosal
barrier [207].

5.2. Irisin and BDNF as “Ideal” Players Connecting Physical Activity and Risk of Developing AD

Both endurance (i.e., aerobic) and resistance (i.e., strength) exercise up-regulate FNDC5
gene expression and irisin circulating levels in mice and humans [208,209], and train-
ing exercise has been systematically used to investigate the relationship between PA,
FNDC5/irisin, and BDNF expression within the hippocampus [194]. Remarkably, FNDC5
neural expression is reduced in the hippocampus of AD-like mice, in which the adenovirus-
associated brain delivery of FNDC5/irisin has been shown to offset memory deficits and
improve neural plasticity (e.g., LTP) [210]. Thus, this study elegantly suggests that the
positive effects provided in AD patients by PE can be mediated by irisin signaling. Not less
important, in a study on cultured astrocytes, it was shown that irisin exerts a neuroprotec-
tive effect against β-amyloid-induced toxicity and cell injury, and that the neuroprotection
provided by irisin regarding neuron viability could be attributed to the blockage of the
astrocyte release of pro-inflammatory cytokines such as IL-1β and COX-2 via a decrease in
the NF-κB pathway [211]. In agreement with this, age-associated cognitive decline has been
shown to be counteracted by exercise-induced activation of the PGC-1α/FNDC5/irisin
signaling pathway [212]. BDNF levels in the cerebrospinal fluid (CSF) have been shown to
predict the progression from the MCI status to AD diagnosis [213], and PA-elicited irisin-
BDNF activation is essential for AHN [194]. Remarkably, a study published in 2018 [214]
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provided a striking demonstration that the stimulation of AHN is necessary but not suffi-
cient to rescue the cognitive deficits exhibited by the AD-like 5xFAD mouse model, while
inducing AHN. In parallel, simulating training exercise through a pharmacological increase
in brain BDNF levels can produce an improvement in cognitive function (i.e., working and
spatial memory) in AD-like mice. It should also be noted that adult neurogenesis can be
tightly regulated by changes in GM composition. For instance, a diet-induced alteration in
GM and a reduction in SCFA production can lead to a decrease in neural stem cells and
neural progenitor cells (which are the “engine” of adult neurogenesis in specialized niches
such as the ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ) of the
hippocampal dentate gyrus), while SCFA-treated mice showed increased brain plasticity
and neurogenesis [215,216], including BDNF expression [217]. Hence, if GM can regulate
neurogenesis and BDNF levels along the GM–brain axis through the parasympathetic
system and the vagus nerve pathway [218], we also know that exercise training does not
only change GM diversity [179,181,183] but also directly increases BDNF expression in the
hippocampus [197,198,219]. The crosstalk between BDNF and irisin in the brain appears to
be tightly regulated. Indeed, BDNF expression appears down-regulated in the brains of
APP/PS1 transgenic AD-like mice [220]. In the same study, Aβ1-42 oligomers decreased
FNDC5 expression in neuro-2a (n2a) mouse neuroblasts and induced a suppressive effect
on BDNF expression that was reversed by FNDC5 overexpression, and intranasal BDNF de-
livery was shown to reduce Aβ aggregation and cognitive decline in the brains of APP/PS1
AD-like mice [220].

From this view, the growing body of evidence supporting the beneficial effects of
PE against the risk of developing AD can be explained at multiple levels of mechanistic
interaction by which training exercise appears to affect the downstream gut microbial
ecosystem and upstream neural plasticity, anti-inflammatory signaling pathways, neu-
rotrophin expression, and neurogenesis via the production of myokines such as irisin and
BDNF. Exercise training can modify selected bacterial strains, as evidenced in overweight
women assigned to aerobic exercise in which weight loss was associated with an increase
in Bifidobacterium and Lactobacillus populations [221]. Notably, probiotic supplementation
with Lactobacillus plantarum and Bifidobacterium bifidum in AD-like mice that underwent con-
comitant exercise training was demonstrated as an effective strategy to improve memory
performance and increase hippocampal BDNF expression [222].

5.3. Irisin, BDNF, and the Anxiety–Depression Spectrum: Muscle–Gut–Brain Axis and
Non-Cognitive Symptoms in Alzheimer’s Disease

As outlined in the introductory section, NPSs such as anxiety (e.g., excessive worry,
irritability) and depression (e.g., social withdrawal) are frequently observed and diagnosed
during AD progression. Although a strong pathogenetic explanation for the incidence
of NPSs in AD is yet to be provided, the functional connection between the muscle, gut,
and brain we delineated (i.e., muscle–gut–brain axis) can suggest some novel points of
discussion and future matters for investigation. It is worth considering that both irisin
and BDNF have been shown to possess an anti-depressive potential, and this has received
substantial and repeated confirmation. In brief, irisin and BDNF plasma levels are reduced
in depressed subjects [223,224], and the direct brain infusion of irisin or BDNF has been
shown to suppress depression-like behaviors in a similar fashion [225]. The impact of resis-
tance exercise training in depressed subjects has been addressed by systematic reviews and
large meta-analysis studies that have further validated the idea of a significant association
between PE and a decrease in depressive symptoms, as well as the idea of exercise training
as an adjuvant therapy for depression [226,227]. Moreover, while the role of alterations
in GM composition in depression pathogenesis is currently recognized [228], and fecal
microbiome transplantation is documented as a feasible non-pharmacological adjunctive
therapy for depression [229], it is interesting to ascertain whether exercise can reshape the
GM community and produce positive effects in depressed subjects. A recent randomized
controlled trial has reported an alteration in the profile of the gut microbial population with
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a parallel improvement in depressive symptoms in young adolescents who underwent a
program involving an exercise training intervention [230]. Some of the bacterial genera
that were increased in depressed adolescents following a program of exercise intervention
(e.g., Coprococcus and Blautia from Firmicutes phylum) [230] have also been described to be
depleted in depression [231], although a decrease in butyrate-producing genera such as
Coprococcus has been found in patients with Lewy body dementia [232] and in AD-like
mice [233]. Moreover, an increase in Blautia has been found to be causally associated with a
reduced risk of AD [234], and a 12-week mixed exercise training was reported to produce
an increase in some genera such as Blautia, Dialister, and Roseburia [235].

If depression is associated with metabolic diseases [236], and regular exercise is an anti-
depressant factor for patients with major depression, and irisin is an exercise-dependent
myokine showing an anti-depressant activity [224,225], then irisin can achieve its anti-
depressant effects via the regulation of mechanisms involved in energy metabolism. The fact
that irisin could improve depression-like symptoms by impinging on energy metabolism,
and, in particular, by increasing levels of enzymes involved in glucose metabolism, trans-
port (i.e., type I and type II hexokinase), and uptake in astrocyte cells has been previously
reported [237]. Defective glucose metabolism and insulin resistance (IR) are associated
with depression [238], and recent reports have evidenced that the risk of major depressive
disorder can be reliably predicted either by longitudinal time-spaced measures of IR or by
using impaired glucose metabolism as biomarker to implement a machine learning-based
model of prediction [239]. Exercise-induced irisin can impact the function of GLUT4 and
improve glucose uptake and IR by stimulating GLUT4 translocation towards the membrane
of SM cells (i.e., myocytes) [240]. Considering also that both high-intensity interval training
and moderate-intensity continuous training can increase irisin secretion and GLUT4 mRNA
expression [241], one of the mechanisms by which irisin can achieve its anti-depressant
action is through an improvement in glucose uptake. In a recent scoping review [242]
focused on key bacteria involved in glucose metabolism, the authors identified 45 bacterial
taxa for which there is evidence of an inverse relationship with hyperglycemia (fasting
glucose) and IR. In particular, A. muciniphila, Bifidobacterium longum, Clostridium leptum
group, Faecalibacterium prausnitzii, and Faecalibacterium were the taxa selected as relevant
for the study of prevention strategies against metabolic diseases [242]. For instance, Fae-
calibacterium prausnitzii is a butyrate-producing bacteria inversely associated with type
II diabetes, also described as a therapeutic option to decrease fasting glucose and IR in
diabetic patients [243]. Thus, SCFA-producing bacteria (such as A. muciniphila) might be a
mechanistic link between exercise-inducing irisin and BDNF and the positive impact on
NPSs in AD. From this view, future investigations should redirect their aims at determining
additional mechanisms by which irisin contributes to glucose homeostasis by decreas-
ing hyperlipidemia, fasting glucose, and IR via its action on SCFA-producing bacteria to
improve depressive symptoms in AD patients (Figure 4).
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6. Conclusions and Limitations

NPSs, such as depression and apathy, commonly occur in AD patients and are as-
sociated with accelerated progression of the pathology, as well as poorer quality of life
and increased caregiver burden. Interestingly, regular PE and aerobic training have been
found to have neuroprotective benefits in delaying the onset and progression of AD, likely
through enhancing vascularization and neurogenesis, increasing brain volume, elevating
neurotrophic factors, reducing inflammation and oxidative stress, and improving cognitive
functions such as executive functions. In recent years, gut dysbiosis has been investi-
gated in AD patients since it may contribute to neuroinflammation and cognitive decline
through diverse mechanisms, including increased gut permeability, higher production of
LPS and pro-inflammatory cytokines, and the dysregulation of neurotransmitter function
and tryptophan metabolism. Studies in animal models of AD also support a role for GM
in modulating amyloid pathology and cognitive function. Importantly, the GM and SM
engage in a bidirectional communication via SCFAs and metabolites like lactate, with
microbe-derived SCFAs playing an important role in regulating muscle mass, metabolism,
and performance through multiple mechanisms, including modulating insulin sensitiv-
ity, glycogen synthesis, glucose uptake, fiber composition, and mitochondrial function.
Changes in GM composition through diet or probiotics can therefore impact muscle health
and PE capacity.

PE can reshape the GM composition as well through increasing microbial diversity, the
abundance of butyrate-producing bacteria, and SCFA production, which in turn contribute
to improving cardiorespiratory fitness and endurance performance. Exercise also induces
the secretion of myokines like IL-6 from SM that can stimulate GLP-1 secretion from the gut,
while both SCFAs and PE up-regulate PGC-1α expression in muscle to promote an oxidative
phenotype that supports endurance exercise. The myokine irisin may exert neuroprotective
effects possibly by increasing BDNF expression, and recent evidence indicates that irisin
may help to restore GM dysbiosis and improve intestinal barrier integrity in various disease
models. Additionally, BDNF signaling appears important for maintaining colonic epithelial
integrity, suggesting that exercise-induced myokines like irisin and BDNF may contribute
to modulating gut–brain interactions.

In conclusion, exercise could reduce AD risk even by upregulating the production of
myokines such as irisin and BDNF that can stimulate hippocampal neurogenesis, modulate
inflammation, and reshape the GM to increase beneficial bacteria and SCFA production—
effects that potentially synergize to improve cognition, neural plasticity, and gut–brain
interactions in AD. Finally, exercise-induced irisin and BDNF could help to alleviate NPSs
in AD by improving glucose metabolism and IR, and by modulating gut bacteria involved
in glucose regulation, especially SCFA-producing bacteria which are often reduced in
depression. This knowledge can be of great value in different clinical settings in which
very innovative non-pharmacological strategies of intervention can be implemented in
real-life situations. For instance, eligible AD patients could be recruited in specific exercise-
focused rehabilitation programs with the parallel quantification of irisin blood levels and
GM analysis longitudinally at different time points. Meanwhile, the same AD patients
could be screened for the expression of NPSs and the use/prescription of antipsychotic
medications, with a focus on gender-specific differences that, compared with other fields of
medicine [244–246], are currently often neglected.

However, given the large availability of mouse data over studies performed on human
subjects, it should be observed that conclusions, perspectives, and interpretations are
inevitably based on results obtained using animal models and laboratory rodents. Thus,
caution should be taken in making general assumptions, as well as in translating findings
from animal models to humans. For this reason, we hope that additional investigation on
human subjects in the next future could help us to gain further insights into the mechanisms
involved in the functional crosstalk between gut–muscle–brain and muscle–gut–brain that
we discussed here.



Int. J. Mol. Sci. 2023, 24, 14686 20 of 31

Considering the potential limitations in the use of PE to improve brain health, it is
essential to recognize that although exercise has shown promise for enhancing cognitive
function, its efficacy can vary widely among individuals. Factors such as age, baseline
cognitive status, and the presence of neurodegenerative diseases can influence the extent of
cognitive benefits derived from PE. Additionally, the optimal type, intensity, and duration
of exercise required to achieve specific cognitive outcomes remain an area of ongoing
research and debate. Moreover, adherence to exercise regimens over the long-term can
be challenging for many individuals, particularly older adults, and those with cognitive
impairments, which can limit the potential benefits. Indeed, one important limitation lies
in the difficulty of implementing rigorous exercise protocols, particularly among elderly
individuals and AD patients, due to mobility deficits and cognitive impairments limiting
adherence to well-organized exercise regimens. Thus, a comprehensive approach that
considers not only the biological mechanisms but also the practical aspects of exercise
interventions, especially in vulnerable populations, is particularly required to yield a more
exhaustive understanding of the intricate interplay between PE, neurodegenerative dis-
eases, aging, and the GM. New knowledge on this subject can inspire the development of
tailored interventions, taking advantage of the tight molecular and functional interplay
between PE and GM, with the aim to delay cognitive decline and positively impact NPSs in
AD patients. Global efforts to prevent AD and dementia underscore the need for accessible,
cost-effective strategies adaptable to different socio-economic and cultural environments.
While modifiable risk factors have been identified, research has predominantly focused on
high-income countries, despite the growing dementia crisis in low- and middle-income na-
tions. A multidomain preventive approach, inspired by successful models for other chronic
conditions, holds promise for addressing the intricate nature of cognitive impairment and
offers scalability, supported by eHealth tools and personalized interventions [247]. Interna-
tional collaboration is the key to identifying preventive strategies, potentially including
pharmacological interventions, to address the global dementia challenge.

From this view, the combination of PE with the use of wearable technologies, and
the concomitant assessment of PE-derived messengers (e.g., irisin and BDNF), together
with the monitoring of GM dysbiosis and probiotic/SCFA supplementation can represent a
disease-modifying strategy for adjuvant therapy within the future perspective, with hopes
to slow down cognitive decline and reduce the use of antipsychotic medications.
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