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Abstract: The quasi-three-dimensional effect induced by functional groups (FGo) and the in-plane
stress and structural deformation induced by grain boundaries (GBs) may produce more novel
physical effects. These physical effects are particularly significant in high-temperature environments
and are different from the behavior in bulk materials, so its physical mechanism is worth exploring.
Considering the external field (strain and temperature field), the internal field (FGo and GBs) and the
effect of distance between FGs and GBs on the bonding energy, configuration transition, and stress
distribution of graphene/h-BN with FGo and GBs (GrO-BN-GBs) in the interface region were studied
by molecular dynamics (MD). The results show that the regions linked by hydroxyl + epoxy groups
gradually change from honeycomb to diamond-like structures as a result of a hybridization transition
from sp2 to sp3. The built-in distortion stress field generated by the coupling effect of temperature and
tension loading induces the local geometric buckling of two-dimensional materials, according the von
Mises stresses and deflection theory. In addition, the internal (FGo and GBs) and external field (strain
and temperature field) have a negative chain reaction on the mechanical properties of GrO-BN-GBs,
and the negative chain reaction increases gradually with the increase in the distance between FGo
and GBs. These physical effects are particularly obvious in high-temperature environments, and the
behavior of physical effects in two-dimensional materials is different from that in bulk materials, so
its physical mechanism is worth exploring.

Keywords: hexagonal boron nitride matrix ceramic; functional groups and grain boundary; temperature;
interfacial bonding; molecular dynamics

1. Introduction

Two-dimensional material is a kind of low-dimensional structure that has attracted
much attention in recent years [1–3]. It consists of one or several layers of atoms arranged
in two-dimensional space or quasi-two-dimensional space with a certain thickness [4–6].
From the point of view of material design, two-dimensional materials can be used as the
basic unit for building fiber, film, and bulk materials [7–9]. Because all atoms in two-
dimensional materials are exposed to the environment, the material design from bottom
to top can be realized by using functional group and defect engineering [10]. In 2021,
J. F. Rocha et al. [11] found graphene oxide microfibers with controlled and homogenous
shapes and tunable diameters by using the three-dimensional hydrodynamic focusing
concept on a microfluidic device. Their research indicates that the 3D hydrodynamic flow
focusing microfluidic device may be extended to one- and two-dimensional materials to
produce controlled hierarchical microfibers, by the controlled combination of different
heterostructures to achieve multifunctional applications [11]. Therefore, graphene oxide
and graphene heterostructures have expanded the functions and application fields of
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graphene [12,13], and laid a solid foundation for the application of new graphene materials
in optoelectronic devices, biomedicine, and environmental and energy technology [14,15].

Graphene heterostructures have aroused great interest in the past decade due to their
novel spatial configuration and unprecedented physical properties [16,17]. Most of these at-
tractive properties are strongly dependent on the different spatial structures of heterostruc-
tures [18], usually including the vertical heterostructures that vertically stack multiple
two-dimensional materials [19] and the in-plane heterostructures [20] that seamlessly stitch
together two different atomic monolayers through covalent bonds [21]. Compared with
vertically stacked heterostructures, in-plane heterostructures are rarely realized due to
requirements of bottom-up synthesis. In addition, a certain number of topological defects
inevitably occur in the process of material synthesis due to polymorphism and different
bonding geometry in planar heterostructures [22,23]. These topological defects affect the
physical and material properties of planar heterostructures [24,25].

In terms of mechanical properties, the existence of topological defects can cause stress
accumulation in the material, which is more significant with the decrease in the structural
geometric dimension [26]. Moreover, comparing the tensile strength of defect-free graphene
sheets with that of existing engineering materials, the former is more than two orders of
magnitude higher than the latter [27]. In addition, single-layer atomic structures are very
prone to out-of-plane deformation, and internal defects inevitably appear at the interface of
graphene/boron nitride heterostructures [28]. These unique mechanical behaviors brought
by dimensional limits and new spatial structures are the key to solving the problems of
reliability and durability in the process of applying graphene materials in engineering.

Short-line stacking of topological defects or other special defects (functional groups,
etc.) produces local stress fields, and its amplitude has a certain random distribution
in actual material samples [29]. For graphene heterostructures with a large number of
these independent and random defects, the strength is determined by the weakest part of
the material.

It has been confirmed [30] that the interface region is one of the important factors
affecting the physical properties of graphene/boron nitride (G-BN) configurations. How-
ever, it is not clear at present what influence the coexistence of FGo and GBs has on the
physical properties of the interface region (key point) of G-BN configurations, and most
importantly, what effect the coupling of temperature and strain rate has on the bonding
energy and configuration transition of G-BN with FGo and GBs configurations. Consid-
ering temperature, strain rate, FGs type, FGs density, and the effect of distance between
FGs and GBs on the bonding energy, the configuration transition and stress distribution of
GrO-BN-GBs interface regions were studied by molecular dynamics. This could provide a
reference and theoretical basis for the optimal design of two-dimensional materials with
high mechanical properties.

2. Results and Discussion
2.1. Validation

To verify the simulation, Tables 1 and 2 show the results of previous work compared
with the three mechanical values (fracture stress, strain, and Young’s modulus) of graphene
and boron nitride in this study. As shown in Tables 1 and 2, the comparison shows that the
calculation method and the selection of potential function were very reasonable, and the
results obtained were very consistent with previous work [31]. The failure stress and the
strain of the pristine graphene were 123 GPa and 0.204, respectively. In addition, the failure
stress and the strain of the pristine h-BN were 125 GPa and 0.207, respectively. The Young’s
modulus of the pristine h-BN (921 GPa) was in good agreement with the experimental
result (881 GPa [32]) and the simulation result (930 GPa [28]).
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Table 1. Comparing the Young’s modulus, failure strength, and strain values of pure graphene
obtained by the present study and by previous experimental and computational works.

Various Types Assessment Method (Potential) Failure Strain Failure Strength (GPa) Young’s Modulus (GPa) References

Single-layer MD (Tersoff) 0.204 123 919 Present study
Single-layer MD (Tersoff) 0.201 131 930 Eshkalak et al. [28]
Single-layer MD (Tersoff) 0.208 127 925 Fan et al. [33]

Experimental 0.130 90 1000 Zhao et al. [31]

Table 2. Comparing the Young’s modulus, failure strength, and strain values of pure boron nitride
obtained by the present study and by previous experimental and computational works.

Various Types Assessment Method (Potential) Failure Strain Failure Strength (GPa) Young’s Modulus (GPa) References

Single-layer MD (Tersoff) 0.207 125 921 Present study
Single-layer MD (Tersoff) 0.200 131 930 Eshkalak et al. [28]
Single-layer MD (Tersoff) 0.210 128 923 Fan et al. [33]

Experimental - - 881 Bosak et al. [32]

2.2. Coupling Effect of GBs and FGs at High Temperature

Under the complex high-temperature environment, the mechanical behaviors of h-BN
matrix ceramic, such as strength and constitutive relation, are quite different from those in
the normal temperature environment, and show obvious temperature dependence. The
h-BN matrix ceramic used as external protection or structure undergoes complex thermal
and mechanical coupling. Therefore, temperature dependence of interfacial bonding, me-
chanical properties, and configuration transition in Gr/h-BN containing grain boundaries
and functional groups were investigated. The eight types of FGo density, including R = 15%
epoxy (O1), R = 15% hydroxyl (OH1), R = 10% epoxy + R = 5% hydroxyl (O1 + OH1),
R = 5% epoxy + R = 10% hydroxyl (O2 + OH2), R = 30% epoxy (O3), R = 30% hydroxyl
(OH3), R = 20% epoxy + R = 10% hydroxyl (O3 + OH3), and R = 10% epoxy + R = 20%
hydroxyl (O4 + OH4), are created in the right Gr region of GrO-BN-GBs configurations. The
fracture strength and strain of GrO-BN-GBs configurations with different cases at different
temperatures are shown in Figure 1.

Figure 1 shows that the fracture strength and strain of the GrO-BN-GBs configuration
with different cases decreased as the temperature rises from 300 K to 1200 K. In considering
the FGo density (R), the fracture strength and strain of the GrO-BN-GBs configuration
with the FGo density (R = 15%) were the highest values, compared with the mechanical
properties of the GrO-BN-GBs configuration with FGo density (R = 30%). Obviously, the
presence of FGo leads to weaker mechanical properties in GrO-BN-GBs configurations.
The fracture strength and strain of the OH1 model (R = 15%) were 65.44 GPa and 0.1444,
respectively, while the fracture strength and strain of OH1 were reduced to 41.58 GPa and
0.0835, respectively, when the temperature was increased from 300 K to 1200 K. When
compared with the R = 15%, the presence of the highest FGo density (R = 30%) resulted in
a 41.52% and 46.19% reduction in the fracture strength and strain, respectively. In addition,
the weakest values of fracture strength and strain were in the O3 model, compared with
the three types of FGo (OH3, O4 + OH4, O3 + OH3). When the temperature was 600 K, the
fracture strength and strain of the O3 model were 40.24 GPa and 0.0931, respectively. In
addition, the fracture strength and strain of the OH3 model were 47.04 GPa and 0.1033,
respectively. The highest fracture strength and strain values were obtained in the OH1 and
OH3 models, while the lower fracture strength and strain values were achieved in the O1
and O3 models. The FGo types exerted a remarkable influence on the fracture strength and
strain of the GrO-BN-GBs configurations.

To investigate the disparate impact of FGo types on mechanical values of GrO-BN-
GBs configurations at different temperatures, the temperature dependence of interfacial
bonding energy is presented in Figure 2.
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Figure 1. The fracture strength and strain of GrO-BN-GBs configurations with different cases at
different temperatures: (a) the FGo density is R = 15%, and (b) the FGo density is R = 30%.

Figure 2. Temperature-dependent energy required for breaking bonds connected with FGo (interfacial
bonding energy).

The temperature dependence of interfacial bonding energy of FGo (EInter−bonding) was
computed as shown in the following Equation (1):

EInter−bonding = Etotal
GrO−BN−GBs

− (EBN + EGrO + EGBs) (1)
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where Etotal
GO−BN−GBs is the total energy of the GrO-BN-GBs configuration, EGrO is the energy

of the Gr region, EBN is the energy of the h-BN region, and EGBs is the energy of GBs in the
GrO-BN-GBs nanostructure.

The fracture energy of a single FGo (Esingle
GO ) can be calculated from the total interfacial

bonding energy of FGo by Equation (2):

Esingle
GrO = δEInter−bonding/NGrO (2)

where NGO is the number of FGo in GrO-BN-GBs nanostructure, and δ is the constant of
the FGo type.

Finally, the normalized fracture energy (EFGo−nor) is calculated by following Equation (3):

EFGo−nor =
EFGo−i
Emax

FGo−i
(3)

where EFGo−i is the i type of FGo in the GrO-BN-GBs nanostructure, and Emax
FGo−i is the max

value of fracture energy, i = 1, 2, 3 or 4.
According to the theory of statistical thermodynamics, the kinetic energy (EK) and

temperature (T) of all atoms in the system generally meet the Equation (4):

EK =
N

∑
i=1

1
2

miv2
i =

3
2

NkBT (4)

where N is the total atomic number of the GrO-BN-GBs nanostructure, m is the atomic
mass, and kB is the Boltzmann constant.

It can be seen from Equation (4) that with the increase in temperature, the total kinetic
energy of the system increases, which leads to the thermal vibration of atoms inside the
system becoming more intense at high temperatures. Therefore, the freedom probability of
the atoms is greater. The temperature-dependent fracture bonding energy (ET

FGo−nor(T))
can be improved by Equation (5):

ET
FGo−nor(T) = Eb + Ev (5)

where Eb is the elastic deformation energy, and Ev is the thermal vibration energy by
Equation (6).

Ev = Ev(Θ, T) (6)

where Θ is the characteristic temperature (such as Einstein temperature or Debye tempera-
ture), which essentially reflects the characteristic frequency of the thermal vibration and is
a quantity independent of temperature.

Figure 2 shows the temperature-dependent energy required for breaking bonds con-
nected with FGo. The lower values of ET

FGo−nor(T) were in the O1 model, compared with
OH1, O2 + OH2, and O1 + OH1. In addition, the highest values of ET

FGo−nor(T) were in the
OH1 model. Clearly, the interfacial bonding ability of the hydroxyl groups is higher than
that of the epoxy groups, and the results were consistent with the results of the previous re-
search [34,35]. In addition, ET

FGo−nor(T) values decreased with the increase in temperature.
As a result, the interfacial bonding ability between the FGo and the matrix was relatively
reduced when the temperature was from 300 K to 1200 K. The result was accordant to the
temperature dependence of fracture strength and strain, as previously discussed. Moreover,
the FGo is more likely to overcome the interfacial binding energy and get out of the inherent
equilibrium position, which leads to instability of the GrO-BN-GBs configuration. The
more tiny defects that appear in the atomic lattice, the greater the degradation of facture
strength and strain.
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2.3. Coupling Effect of GBs and FGs at Different Strain

Ceramic-based materials are also subjected to various dynamic loads or sudden change
in strain rate. The influence of sudden change of strain rate on the dynamic mechanical
properties of GrO-BN-GBs nanostructures needs to be deeply and systematically studied,
as shown in Figure 3. Figure 3 shows the fracture strength and strain of the GrO-BN-GBs
configuration with FGo density R = 15% at different strain rates (0.0001, 0.0005, 0.001, 0.005
and 0.01 ps−1) and temperatures (from 300 K to 1200 K). The results show the fracture
strength and strain increased in the GrO-BN-GBs configuration with the increase in the
strain rate. Obviously, the effect of the tensile strain rate on the change of fracture strength
and strain was small when the strain rate was in the range of 0.0001 and 0.001 ps−1.
However, the effect of the strain rate on the mechanical properties of the GrO-BN-GBs
configuration suddenly strengthened when the strain rate was larger than 0.001 ps−1. The
value 0.001 ps−1 seems to be a threshold value in the mechanical properties of GrO-BN-GBs
configurations.

An important conclusion is that fracture strength and strain values strongly depend on
the interfacial bonding energy of atoms. The dynamic load-induced kinetic energy rapidly
increases when the strain rate is larger than the threshold value 0.001 ps−1. Then, the kinetic
energy of atoms per unit area is greater, especially in the region with weak interfacial bonds.
Kinetic energy cannot be uniformly distributed in the whole GrO-BN-GBs configuration,
and the chances of uniform dissipation of kinetic energy are reduced, resulting in the energy
difference between regions and between atoms. However, when the strain rate is less than
the threshold value 0.001 ps−1 and the energy difference between regions and between
atoms is small, according to the formula (4), the kinetic energy of atoms per unit time is
lower. Therefore, it is difficult for atoms to overcome the binding energy, break away from
the inherent equilibrium position, and lose stability.

The relationship between fracture strength (σT) and the critical energy release rate (ET)
can be expressed by these Equations (7)–(9):

σT =

√
ETGT

πl
(7)

where l is the crack length, and GT is the temperature-dependent elastic modulus.

KT = σT
√

πl (8)

where KT is critical fracture toughness.

ET =
K2

T
GT

(9)
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Figure 3. The fracture strength and strain of the GrO-BN-GBs configuration with FGo density R = 15%
at different strain rates: (a) temperature = 300 K, (b) temperature = 600 K, (c) temperature = 900 K,
and (d) temperature = 1200 K.

According to Equation (4), the strain rate increases the total kinetic energy of the GrO-
BN-GBs nanostructure, and the temperature increases the thermal vibration amplitude
of the atoms in the GrO-BN-GBs nanostructure. The strain rate and temperature have a
coupling effect on the mechanical properties of the GrO-BN-GBs nanostructure. When
the temperature is lower, the temperature effect is not obvious, and the probability of
atoms leaving the equilibrium position to form defects is small. The thermal vibration
amplitude of atoms increases with the temperature increases. The greater the energy
difference generated between regions, the greater the stress concentration.

2.4. Interfacial Distance Effect

The fracture strain and strength of the GrO-BN-GBs configurations with FGo and GBs
followed a general trend with the change of temperature and strain rate. When the distance
between GBs (in the interface region) and FGo changes, what is the impact on the interfacial
bonding and mechanical properties of the GrO-BN-GBs under multiple physical fields? The
GrO-BN-GBs configurations with different distances between FGo and GBs are shown in



Int. J. Mol. Sci. 2022, 23, 1433 8 of 16

Figure 4. In this simulated work, the distance between FGo and GBs was divided into two
parts: (a) the distance between FGo and GBs was less than 3 Å, belonging to the adjacent
region, and (b) the distance between FGo and GBs was greater than 20 Å, belonging to the
remote region. The four kinds of FGo were created in each region, including R = 15% epoxy
(O1), R = 15% hydroxyl (OH1), R = 10% epoxy + R = 5% hydroxyl (O1 + OH1), and R = 5%
epoxy + R = 10% hydroxyl (O2 + OH2).

Figure 4. The GrO-BN-GBs configurations with different distances between FGo and GBs: (a) the
distance between FGo and GBs was less than 3 Å, belonging to the adjacent region (Gro-BN-GBs-a),
and (b) the distance between FGo and GBs was greater than 20 Å, belonging to the remote region
(Gro-BN-GBs-b).

Figure 5 shows the fracture strength and strain of the GrO-BN-GBs configurations
with different distances between FGo and GBs at different temperatures (from 300 K to
1200 K). In considering the FGo type in different regions, the highest mechanical values
were obtained in the OH1 model, followed by O2 + OH2 model and O1 + OH1. In addition,
the worst fracture strength and strain were achieved in the O1 model. In considering
the different distances between FGo and GBs, the highest fracture strength and strain of
the GrO-BN-GBs configurations were found in the “adjacent region” when the distance
between FGo and GBs was less than 3 Å. Nevertheless, the lowest values of the mechanical
properties of the GrO-BN-GBs configurations were found in the “remote region” when
the distance between FGo and GBs was greater than 20 Å. The mechanical values of the
adjacent and remote regions followed a regular trend when the temperature rose from
300 K to 1200 K. The appearance of FGs destroyed the sp2 hybridization in the GO-BN-GBs
configurations. The original sp2 hybridization gradually changed to a hybridization state
of sp2 + sp3. With the shortening of the distance between FGo and GBs, FGo increased the
initial strain of atoms near grain boundaries, and then took atoms near grain boundaries
out of their equilibrium position. A negative effect on the mechanical properties of the
GrO-BN-GBs configurations was produced with the increase in temperature. However, the
appearance of the negative effect was delayed when the distance between functional FGo
and GBs increased.
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Figure 5. The fracture strength and strain of the GrO-BN-GBs configurations with FGo density
R = 15%: (a) the GrO-BN-GBs-a model when the distance between FGo and GBs was less than 3 Å
and (b) the GrO-BN-GBs-b model when the distance between FGo and GBs was greater than 20 Å.

2.5. Stress Distribution and Configuration Transition

In order to understand more clearly the coupling effects of FGo and GBs on the
mechanical properties and interfacial bonding of GrO-BN-GBs configurations at different
temperatures, the stress distribution and configuration transition of the simulated model,
including before cracking, after reaching the strain limit, and after cracking, is shown in
Figure 6. The stress distribution of the GrO-BN-GBs configuration was analyzed by von
Mises stresses. Von Mises stresses can be described by the Equation (10):

σVon−mises =

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2

2
(10)

where σ1, σ2, and σ3 are defined as the first, secondary, and tertiary principal
stresses, respectively.

Figure 6 shows the stress distribution and configuration transition of the simulated
model, including before cracking, after reaching the strain limit, and after cracking. Con-
sidering the different distances between FGo and GBs, at certain times, the lowest amount
of von Mises stresses was obtained in the GrO-BN-GBs configurations when the distance
between FGo and GBs was less than 3 Å, while the highest value of von Mises stresses
was obtained in the GrO-BN-GBs configurations when the distance between FGo and
GBs was greater than 20 Å. With the increasing strain, the von Mises stresses were clearly
concentrated around the GBs in the GrO-BN-GBs-a model, and ultimately, failure and
defect occurred around the GBs. The increased von Mises stresses at the FGo may be the
cause of increased stress at the GBs interface. In addition, the distance between FGo and
GBs in the Gro-BN-GBs-a model was greater than that in the GrO-BN-GBs-b model. The
von Mises stresses contour appeared in the GBs and FGo region. It was confirmed the FGo
increased von Mises stresses in the GrO-BN-GBs-b model, generating a stress concentration
phenomenon. Therefore, if the distance between FGo and GBs is too close, there will be a
von Mises stresses coupling effect.
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The geometric effect also occurred in the GrO-BN-GBs models when the temperature
rose. The displacement increment of deflection (d) corresponding to the GrO-BN-GBs
model describes the geometric effect.

In this work, the stress and strain in GrO-BN-GBs models were divided into two
parts: the Go and h-BN domains. The stress and strain in the Go and h-BN domains of the
GrO-BN-GBs models can be calculated by the Equations (11)–(14):

σGo = EGo(εGo + δGoσloading) (11)

σhBN = EhBN(εhBN + δhBNσloading) (12)

εGo =
σGo
EGo
− δGoσloading (13)



Int. J. Mol. Sci. 2022, 23, 1433 11 of 16

εhBN =
σhBN
EhBN

− δhBNσloading (14)

where δhBN and δGo are the Possion ratios of the h-BN and Gr domains; εGo is the strain
of the Gr domain, and εhBN is the strain of h-BN domain; EhBN and EGo are the Young’s
modulus of the h-BN and Go domains; σloading is the tension loading.

Geometric effect and deflection (d) caused by the strain of the h-BN and Gr domains
can also be calculated by the Equations (15) and (16):

d1 =

√
(x1 + x1εGo)

2 − x1 = x1

√
ε2

Go + 2εGo (15)

d2 =

√
(x2 + x2εhBN)

2 − x2 = x2

√
ε2

hBN + 2εhBN (16)

where d1 and d2 are the displacement increments of deflection in the Gr and h-BN domains,
respectively. x1 and x2 are the lengths of the Gr and h-BN domains, respectively.

Figure 7 shows the configuration transition of the simulated model, including before
cracking, after reaching the strain limit, and after cracking. The deflection increment
(d) increased, with the temperature increasing from 300 K to 900 K. The (d) of the GrO-BN-
GBs-a model at a temperature of 300 K was lower than that of the GrO-BN-GBs-a model at
a temperature of 900 K. A geometric effect was found in the GrO-BN-GBs configuration,
which originated from the coupling effect between FGs and grain boundaries. The built-in
distortion stress field generated by the coupling effect of temperature and tension loading
induce the local geometric buckling of two-dimensional materials. The deflection value
(d) perpendicular to the stretching direction decreased with the increase in strain, and the
GrO-BN-GBs configuration gradually changed and was “flattened” from the geometric
effect (see Figure 7a–d), indicating that the potential energy of the configuration was
released during the stretching process. It was also confirmed that temperature and strain
would have a weakening effect on the von Mises stresses and deflection value (d) of the
GrO-BN-GBs configuration.
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3. Materials and Methods

In the Y direction, Gr and h-BN are divided into left and right parts. Each part is
rotated by certain mismatch angles (θ) and then connected by Equation (17).

θ = θR + θL (17)

where θR and θL are the rotation angles of the left and right parts, respectively.
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When θR = θL, symmetric GBs are formed in this simulated model. The periodic
length (Lp) can be described by translation vector pairs on both sides of the GBs. The
expression of the mismatch angles and translation vectors on the GBs of G-Hybrid can be
described by the following Equations (18)–(20):

θ = tan−1[
√

3mL(mL + 2nL)] + tan−1[
√

3mR(mR + 2nR)] (18)

LR = α0

√
n2

R + nRmR + m2
R (19)

LL = β0

√
n2

L + nLmL + m2
L (20)

where α0 is the unit vector of the h-BN lattice, and β0 is the unit vector of the Gr lattice.
n and m are the translation vector of the system. nR and mR are the translation vector of
h-BN, and nL and mL are the translation vector of Gr. I- and IV-type GBs of the Gr-BN
configuration are shown in Figure 8.

The graphene/h-BN with FGo and GBs (GrO-BN-GBs) was constructed, shown in
Figure 8. The three types of FGo, including epoxy (–O), hydroxyl (–OH) and combination of
their type were created at the right Gr region of the GrO-BN-GBs configuration. In addition,
the classical configuration of GO, that is, the FGs proportion in GO, is approximately
20–30%, according to experimental reports [30]. The density of FGs in the GO-BN-GBs
configuration can be defined as R (Equation (21)).

R =
Nη

Nc
(21)

where Nc is the total number of carbon atoms in the GrO-BN-GBs configuration, and Nη is
the number of carbon atoms connected to the FGo.

The whole work cases were realized by employing a large-scale atomic/molecular
large-scale parallel simulator (LAMMPS, Sandia National Laboratories, Germantown,
MD, USA) [28].

In this simulation, the atomic trajectory was integrated by the Verlet algorithm. Next,
we set the time step to 0.5 fs. The whole work was divided into three aspects: the first step
was to run 400 ps in the NPT system at 300 K and 1 atm. The Nosé–Hoover method was
chosen to control pressure and temperature. Then at 300 K, it was converted to an NVT
ensemble, running for 150 ps; ultimately, whole work ran at the simulated temperature for
another 600 ps to generate atomic trajectory information for data analysis. The strain rate
of the GO-BN-GBs configuration was 0.0005 ps−1.
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Figure 8. The Gr-BN-GBs configuration in the presence of GBs and FGs: (a) plane-view perspective
of a portion of a GO-BN-GBs-1 with hydroxyl configuration; (b) plane-view perspective of a portion
of a GO-BN-GBs-1 with hydroxyl + epoxy configuration; (c) plane-view perspective of a portion of a
GO-BN-GBs-1 with epoxy configuration.

The reaction force field potential (ReaxFF) was used to capture the bond dynamics
and interatomic interactions between hydrogen, oxygen, and carbon atoms, together with
the parameters proposed by V. Akarsh et al. [36,37]. The Tersoff potential was applied to
describe the short-range interactions of N, B, and C atoms [38]. The interactions of boron
and oxide are described by Tersoff parameterization, which was studied by L. Deng [39].
The interactions of nitrogen and oxide are described by charge-optimized many-body
(COMB) potential, which was studied by T. Liang et al. [40]. The number of hydrogen-
nitrogen and hydrogen-boron bonds were very high, and only the reaction self-consistent
force field can be used to accurately simulate this [41].

4. Conclusions

Presented herein is the investigation of the mechanical properties, interfacial bond-
ing, and configuration transition of graphene/hexagonal boron nitride coupled by grain
boundaries and functional groups under the conditions of high temperatures and strain
fields. It was found from the simulation results that the presence of grain boundaries
and functional groups can significantly decrease the fracture strength and strain. This is
mainly due to configuration transition (from sp2 hybridization to sp2 + sp3 hybridization
at the regions linked by functional groups) and the initial strain effect of functional groups.
The initial strain effect increases with the decrease in the distance between functional
groups and grain boundaries. The lowest amount of von Mises stress was obtained in the
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GrO-BN-GBs configuration when the distance between the functional groups and grain
boundary was less than 3 Å. In contrast, the highest value of von Mises stress was obtained
in the GrO-BN-GBs configuration when the distance between the functional groups and
grain boundary was larger than 20 Å. In addition, by comparing the different functional
group types, the temperature-induced reduction in failure strength, failure strain, and in-
terfacial bonding energy becomes more obvious for the graphene/hexagonal boron nitride
coupled by grain boundaries and epoxy groups. A similar observation was obtained for
the strain-rate effect, although the strain-rate less than 0.001 ps−1 had little effect on the
mechanical properties, the strain-rate greater than 0.001 ps−1 had a stronger effect on the
mechanical properties. Furthermore, the built-in distortion stress field generated by the
coupling effect of temperature and tension loading induces the local geometric buckling
of two-dimensional materials. Our work provides an understanding of how to control
mechanical responses and stability through the grain boundary and functional groups in
high temperatures and external loads, which can contribute to new spatial configurations
and unprecedented physical properties.
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