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Abstract: Increased bone marrow adiposity is widely observed in patients with obesity and osteo-
porosis and reported to have deleterious effects on bone formation. Dracunculin (DCC) is a coumarin
isolated from Artemisia spp. but, until now, has not been studied for its bioactive potential except an-
titrypanosomal activity. In this context, current study has reported the anti-adipogenic effect of DCC
in human bone marrow-derived mesenchymal stromal cells (hBM-MSCs). DCC dose-dependently
inhibited the lipid accumulation and expression of adipogenic transcription factors peroxisome
proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) in
hBM-MSCs induced to undergo adipogenesis. To elucidate its action mechanism, the effect of DCC on
Wnt/β-catenin and AMPK pathways was examined. Results showed that DCC treatment activated
Wnt/β-catenin signaling pathway via AMPK evidenced by increased levels of AMPK phospho-
rylation and Wnt10b expression after DCC treatment. In addition, DCC treated adipo-induced
hBM-MSCs exhibited significantly increased nuclear levels of β-catenin compared with diminished
nuclear PPARγ levels. In conclusion, DCC was shown to be able to hinder adipogenesis by activating
the β-catenin via AMPK, providing potential utilization of DCC as a nutraceutical against bone
marrow adiposity.

Keywords: adipogenesis; AMPK; dracunculin; hBM-MSC; Wnt/β-catenin

1. Introduction

Worldwide prevalence of obesity is considered to be one of the main promoters
for several common metabolic diseases such as diabetes, cardiovascular problems, and
cancer [1]. Reported links between obesity progression and the prevalence of various
other diseases have become a big concern for public health. Obesity is characterized
basically with inflammation caused by the hormonal secretions of excessive adipose tissue
formation and consequent lipid accumulation in the body. Formation of the adipose
tissue and accumulating lipid are results of overstimulated adipogenesis, which is an
intricate differentiation process of pre-adipocytes involving several intertwined signaling
pathways resulting in differentiation into mature adipocytes [2]. Maturation of adipocytes is
characterized with intracellular lipid accumulation and adipocyte-specific gene expressions.
Initiation of the adipogenesis is strictly regulated by adipogenic transcription factors of
which peroxisome proliferator activated receptor gamma (PPARγ) and CCAAT/enhancer
binding proteins (C/EBP) are the key factors [3]. Expression and transcriptional activities
of these adipogenic factors, as well as their downstream effector proteins, are mandatory
for the progression of adipogenesis.

Int. J. Mol. Sci. 2022, 23, 653. https://doi.org/10.3390/ijms23020653 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23020653
https://doi.org/10.3390/ijms23020653
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-2304-9304
https://doi.org/10.3390/ijms23020653
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23020653?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 653 2 of 12

In multipotent mesenchymal stromal cells (MSCs), increased adipocyte formation as a
result of adipogenic differentiation promotes a set of bone disorders, osteoporosis being
the most prevalent one [4,5]. Adipogenic tendencies of the bone marrow MSCs against
osteogenic differentiation are the main causes of sponge-like bone formation seen in osteo-
porotic conditions. Several reports have suggested that wingless-type MMTV integration
site (Wnt)/β-catenin is the positive regulator for the osteogenic differentiation of bone
marrow MSCs, simultaneously suppressing the adipocyte differentiation [6]. In healthy
individuals, negative regulation of adipogenesis via canonical Wnt/β-catenin pathway
keeps the balance between adipocyte and osteocytes in bone structure. As the downstream
effector of this canonical pathway, nuclear translocation of β-catenin negatively regulates
the expression of PPARγ and C/EBPα, consequently inhibiting the adipogenesis [7]. There-
fore, regulation of PPARγ and Wnt/β-catenin signaling might be considered as a target to
prevent or control obesity via hindering adiposity.

Natural bioactive substances have been gaining increasing attention due to their
ability to regulate adipogenic differentiation. To date, several types of phytochemicals
have been reported to possess adipogenesis inhibitory properties [8]. Phenolic substances
allocate a big portion of aforementioned bioactive phytochemicals. Artemisia princeps, also
known as Korean or Japanese mugwort, is a plant native to Asia and is reported to possess
adipogenesis inhibitory properties in mouse 3T3-L1 pre-adipocytes among its other in vitro
bioactivities such as antioxidant, antimicrobial, anti-inflammatory and antitumor [9–11].
Several phenolic substances have been isolated from A. princeps as an active component.
Eupatilin and jaceosidin flavonoids inhibited inflammation in mice [12] while 6-acetyl-2,2-
dimethylchroman-4-one [13] and loliolide [14] inhibited the adipogenic differentiation of
human bone marrow-derived mesenchymal stromal cells. Dracunculin, which is the simple
name given to 6-methoxy-7,8-methylenedioxycoumarin, is a known coumarin that can be
found mainly in mugworts. It has been isolated mostly from Artemisia species, tarragon
(Artemisia dracunculus) being the first, which has given this compound its common name,
dracunculin. Although several other coumarins were isolated from Artemisia species and
their bioactivities have been reported, the literature lacks detailed information in terms
of the health beneficial properties of dracunculin. Therefore, in this study, the potential
anti-adipogenic effect of dracunculin (DCC) isolated from A. princeps has been evaluated.
To the best of our knowledge, this is the first report that exhibits the effect of DCC on
adipogenic differentiation.

2. Results
2.1. Effect of DCC on Lipid Accumulation of Adipo-Induced hBM-MSCs

The hBM-MSCs were treated with DCC (Figure 1A) at the concentrations of 1, 5, 10
and 25 µM for 3 days in order to evaluate their cytotoxicity. The cell viability was quantified
by MTT assay after the 3-day treatment. The first statistically significant decrease in the
viability of cells was observed after DCC treatment at a concentration of 25 µM (Figure 1B).
The concentrations below that did not affect the cell viability. As a result, the following
experiments were carried out using concentrations up to 10 µM.

Any effect of DCC on the lipid accumulation of adipo-induced cells was observed by
Oil Red O staining. As shown in Figure 1C, DCC reduced the amount of lipid droplets
in adipocytes on day 12 of differentiation in a dose-dependent manner compared to the
untreated adipocytes that were only fed differentiation medium. The lipid droplet contents
were quantified by the optical density values of retained stain in the adipocytes. At the
most effective concentration (10 µM), DCC treatment significantly lowered the lipid droplet
content by 29.88%. The effect of DCC on lipid droplets was also shown via the fluorescence
staining of perilipin, the protein that coats the lipid droplets in adipocytes. DCC treatment
at 10 µM resulted in significantly less perilipin visible in adipocytes compared to the
untreated control group, as seen in Figure 1D.
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Figure 1. Effect of DCC on the lipid accumulation of adipo-induced hBM-MSCs. (A) The chemical
structure of DCC. (B) Effect of DCC on the cell viability of hBM-MSCs. Viable cell amount was
measured by quantification of MTT dye removed from cells after 3 days of DCC treatment. Cell
viability was given as relative viable cell amount (%) of untreated control. (C) Effect of DCC on the
lipid accumulation of adipo-induced hBM-MSCs on day 12. Intracellular lipid accumulation was
measured by Oil Red O staining. (D) Effect of DCC on the expression of perilipin-1 in adipo-induced
hBM-MSCs on day 12 analyzed by immunofluorescence staining. DAPI staining was used to highlight
the nucleus of viable cells. Scale bar: 50 µm. * p < 0.05 vs. differentiated untreated control group.

2.2. DCC Suppresses the mRNA and Protein Expressions of Adipogenic Transcription Factors

Adipogenesis progresses via the activity of transcription factors such as PPARγ,
C/EBP-α and SREBP1c [3]. Therefore, the effect of DCC on both the mRNA and pro-
tein expression levels of these adipogenesis-related transcription factors was determined.
The hBM-MSCs were induced to differentiate along with varying concentrations of DCC
(1, 5 and 10 µM,) and the mRNA and protein expressions of PPARγ, C/EBP-α and SREBP1c
were analyzed by RT-PCR and Western blotting, respectively. The 3-day DCC treatment
with the initial adipogenesis induction dose-dependently decreased the mRNA levels of
tested transcription factors on day 12 of adipogenesis (Figure 2A). Similar results were
obtained from Western blotting. Following DCC treatment, the protein levels of PPARγ,
C/EBP-α and SREBP1c were all lowered in a dose-dependent manner (Figure 2B). In addi-
tion, the effect of DCC on the expression of PPARγ, the main regulator of adipogenesis, was
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evidenced by fluorescence staining. The adipocytes were stained with fluorescent antibody
to highlight the PPARγ levels on day 12 of differentiation. Consistent with the previous
results, PPARγ levels were significantly low in DCC (10 µM)-treated adipocytes compared
with untreated control adipocytes (Figure 2C).

Figure 2. Effect of DCC on adipogenic transcription factor expressions. Analysis of mRNA (A)
and protein (B) expressions in adipo-induced hBM-MSCs was carried out via RT-PCR and Western
blot, respectively, on day 12 of differentiation. (C) Effect of DCC on the expression of perilipin-1 in
adipo-induced hBM-MSCs on day 12, analyzed by immunofluorescence staining. DAPI staining was
used to highlight the nucleus of viable cells. Scale bar: 50 µm. * p < 0.05, ** p < 0.01 vs. differentiated
untreated control group.
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2.3. Effect of DCC on Wnt/β-Catenin, MAPK and AMPK Signaling Pathways

To elucidate the mechanism behind the effect of DCC on the PPARγ-related adipogenic
differentiation, other signaling cascades that were shown to be in crosstalk and differentially
regulating adipogenesis were analyzed. Reports showed that canonical Wnt/β-catenin
signaling has an opposing relation with PPARγ where activation of Wnt/β-catenin subse-
quently downregulates PPARγ signaling and, therefore, adipogenesis is suppressed [6]. In
this context, the protein expression of Wnt/β-catenin signaling components were observed
in adipo-induced hBM-MSCs treated with or without DCC. As seen in Figure 3A, DCC
(10 µM) treatment increased Wnt10b protein levels, which were observed to be significantly
downregulated in the adipo-induced untreated control group shown via fluorescence
staining. The Western blotting results also showed similar results for Wnt10b protein
levels (Figure 3B). However, the downstream effector and transcription factor of β-catenin
levels were not affected by either adipogenesis or DCC treatment. This was also supported
by the axin levels, which the DCC treatment could not decrease, as an indicator of acti-
vated Wnt/β-catenin pathway. On the other hand, DCC treatment slightly elevated Ser552

phosphorylated β-catenin levels. This phosphorylation of β-catenin via AMPK signal-
ing stabilizes the transcription factor and consequently induces its nuclear translocation,
which was previously noted as an adipogenesis suppressing mechanism [15]. Subcellu-
lar fractionation of proteins supported this hypothesis as seen in Figure 3C. Adipogenic
differentiation resulted in a significant increase in nuclear PPARγ levels while the nuclear
Ser552 phosphorylated β-catenin levels diminished. Presence of 10 µM DCC reverted these
adipogenesis induced changes: decreasing nuclear presence of PPARγ transcription factor
while stimulating the β-catenin nuclear translocation.

To further support the reciprocal effect of DCC on the activation of Wnt/β-catenin
and AMPK pathways, the activated AMPK protein levels were analyzed with or without
the use of compound C, a known AMPK inhibitor. As shown in Figure 4A, adipo-induced
hBM-MSCs exhibited a significant downregulation of AMPK activation, presented as
totally diminished phosphorylated AMPK levels in comparison with the same AMPK
levels. DCC (10 µM) treatment notably relieved the adipogenic suppression of AMPK
activation and increased the phosphorylated AMPK levels while not affecting total AMPK
level. Next, the effect of DCC on the MAPK activation was examined. Results showed
that the phosphorylation of p38, JNK and ERK1/2 was significantly stimulated during
adipogenesis (Figure 4B). However, DCC (10 µM) treatment was only able to decrease the
ERK1/2 phosphorylation—it was not able to result in any significant change in p38 and
JNK phosphorylation. The antagonistic relationship between AMPK and ERK1/2 might
be the reason behind the DCC-mediated downregulation of ERK phosphorylation as the
reports indicated that some anti-adipogenic phytochemicals act via AMPK-induced MAPK
suppression [16,17].

Next, the effect of DCC on AMPK activation was investigated. The hBM-MSCs were
treated with compound C in the presence or absence of DCC (10 µM). Only compound
C-treated hBM-MSCs showed significantly decreased phosphorylated AMPK levels after
6 and 12 h of treatment (Figure 4C). Treating DCC along with compound C relieved the
inhibitory effect of compound C on AMPK phosphorylation in a time-dependent manner.
After 12 h of treatment, the DCC and compound C-treated group exhibited normal activated
AMPK levels compared with the pre-treatment (0 h) hBM-MSCs.
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Figure 3. Effect of DCC on Wnt/β-catenin signaling pathway. Analysis of the protein expression
levels of Wnt/β-catenin signaling pathway components (A,C) was carried out by Western blotting
while Wnt10b expression levels were also observed via immunofluorescence staining (B) in adipo-
induced hBM-MSCs on day 12. β-actin (for whole cell and cytosolic fraction) and lamin B1 (for
nuclear fraction) were used as internal loading control. DAPI staining was used to highlight the
nucleus of viable cells. Scale bar: 50 µm. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. differentiated untreated
control group.
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Figure 4. Effect of DCC on activation of AMPK (A) and MAPK (B) signaling pathways. Compound
C was used as a negative control for the inhibition of AMPK activation (C). Analysis of protein
expression was carried out by Western blotting of adipo-induced hBM-MSCs on day 12. β-actin was
used as internal loading control. * p < 0.05, *** p < 0.001 vs. differentiated untreated control group.
### p < 0.001 vs. 0 h group.

3. Discussion

DCC is a coumarin derivative, also named as 7,8-Methylenedioxy-6-methoxycoumarin [18].
It has been known as a phytochemical for decades and is mainly isolated from Artemisia
spp. Although Artemisia spp. are known to possess anti-adipogenic properties and DCC is
a common phytochemical, the literature lacks studies on the bioactive potential of DCC.
Like other coumarins similar to DCC in terms of structure, DCC is expected to possess some
bioactive properties. To the best of our knowledge, the only bioactive property reported
for DCC is its antitrypanosomal activity [19]. The current study proposes, for the first
time, that DCC possesses bioactive potential to suppress adipogenic differentiation of bone
marrow cells in vitro by activation of Wnt/β-catenin and AMPK pathways.
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Increased adipogenic differentiation of bone marrow cells is suggested to be one of
the causes for obesity-related bone complications such as osteoporosis [1]. Formation of
adipocytes is characterized by accumulation of intracellular lipid droplets as a marker for
mature adipocytes. In this study, DCC was shown to decrease the lipid accumulation of
hBM-MSCs when they were induced to undergo adipogenesis compared with the untreated
group that differentiated into mature adipocytes with substantial lipid accumulation. This
result indicated that DCC treatment hindered adipogenesis at some point that the adipo-
induced hBM-MSCs were not able to mature and accumulate lipid droplets.

The adipogenesis of mesenchymal stromal cells is regulated by a web of different
signaling cascades and transcription factors [3]. The main adipogenic transcription factors
that initiate and progress the adipocyte formation are PPARγ and C/EBP-α. PPARγ
activation can stimulate the beginning of adipogenesis by itself via a positive feedback loop
and crosstalk between C/EBP-α and its upstream activators, C/EBP-β and C/EBP-δ [20].
The adipogenic differentiation tendencies of hBM-MSCs, instead of osteoblastogenesis, are
also regulated by this cascade very similarly to adipose tissue. Activation of this signaling
cascade occurs at the early stages of adipogenic differentiation. Hence, in the current study,
DCC was introduced to the cells during the initial induction of adipogenesis. The results
showed that DCC inhibited the mRNA and protein levels of PPARγ and C/EBP-α, as well
as adipocyte-specific SREBP1c, showing that DCC was able to suppress adipogenesis by
interfering with the transcription factor signaling cascade.

Another known regulator of adipogenesis is Wnt/β-catenin signaling, which down-
regulates PPARγ and C/EBPα cascade when activated [6]. It has been shown that the
activation of Wnt receptors negatively regulates the adipogenesis via suppression of the ac-
tivity of PPARγ by nuclear translocation of β-catenin. Results showed that DCC treatment
significantly increased the Wnt10b protein expression, which was suppressed in untreated
adipocytes as an indicator of activated Wnt pathway. However, DCC was not able elevate
the β-catenin protein levels as expected. This showed that DCC was able to activate the
Wnt pathway in a non-canonical way. Therefore, Ser552 phosphorylated β-catenin levels
were examined. When phosphorylated at Ser552 via AMPK, β-catenin is stabilized and
accumulated in the nucleus, which consequently suppresses the PPARγ signaling [15]. DCC
treatment significantly increased Ser552 phosphorylated β-catenin levels in adipo-induced
hBM-MSCs but did not affect the total β-catenin levels, indicating that DCC was able to
activate β-catenin transcriptional activity through AMPK. This was further supported
by the nuclear levels of phosphorylated β-catenin and PPARγ. Adipocytes expressed a
high amount of PPARγ compared with a minimal presence of phosphorylated β-catenin
in the nucleus. However, DCC treatment reverted the nuclear protein profile of adipo-
induced hBM-MSCs. DCC-treated cells showed increased levels of nuclear phosphorylated
β-catenin and diminished PPARγ. This supported the suggestion that DCC hinders the
adipogenesis via activated β-catenin signaling.

AMPK is also known as a negative regulator for adipogenesis via different ways,
which include suppression of MAPK activation on ERK1/2 and activation of β-catenin via
phosphorylation. The stimulation of AMPK activation by DCC treatment was shown in
this study. The presence of DCC significantly increased the AMPK phosphorylation, which
was suppressed during adipogenesis. In addition, DCC was able to revert the effects of
AMPK inhibitor compound C, further suggesting strong AMPK activation activity for DCC.
Abiola et al. [21] suggested a reciprocal crosstalk between AMPK and Wnt10b activation.
They reported that activation of Wnt/beta-catenin signaling by means of elevated Wnt10b
protein in skeletal muscle cells resulted in activated AMPK pathway and suppressed MAPK
activation. These results are consistent with the findings of the current study, which explain
the Wnt10b stimulation by DCC treatment along with AMPK-mediated non-canonical
β-catenin activation. However, future studies are needed to determine the detailed mecha-
nism of action for DCC to show where and how DCC interferes with the crosstalk between
AMPK and Wnt/β-catenin signaling, which resulted in suppressed adipogenesis. An-
other coumarin derivative, 6-acetyl-2,2-dimethylchroman-4-one, previously isolated from
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A. princeps shares similarities with DCC in structure and was shown to inhibit adipogenic
differentiation via similar pathways to further support the AMPK activating ability of
DCC [13].

In conclusion, DCC inhibited the adipogenic differentiation and lipid accumulation
of hBM-MSCs through activation of AMPK-mediated Wnt/β-catenin signaling in vitro.
Future studies are expected to further examine its potential to be utilized as a natural
bioactive agent against bone marrow adiposity.

4. Materials and Methods
4.1. Materials

The isolation of DCC from A. princeps and the chemical characterization of the DCC
were carried out as reported [22]. The NMR data of DCC used for identification is given
in Figure S1. The human bone marrow-derived mesenchymal stromal cell (hBM-MSC)
line, and cell culture (Mesenchymal Stem Cell Growth Medium, C-28009) and differenti-
ation medium (Mesenchymal Stem Cell Adipogenic Differentiation Medium 2, C-28016)
were purchased from PromoCell (Heildelberg, Germany). Other reagents used in cell
culture, maintenance and differentiation including phosphate buffer saline (PBS) were
purchased from Gibco BRL (New York City, NY, USA) unless otherwise noted. 3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT), dimethyl sulfoxide (DMSO),
and isopropanol were purchased from Sigma-Aldrich (St. Louis, MO, USA). The AccuPrep
Universal RNA extraction kit was purchased from Bioneer (Daejeon, Korea). The Cell
Script All-in-One cDNA synthesis premix was obtained from CellSafe (Yongin, Korea). The
NE-PER nuclear protein extraction kit, BCA protein assay kit for total protein quantification,
and primary antibody against JNK were from Thermo Fisher Scientific (Waltham, MA,
USA). Polyvinylidene fluoride membrane and enhanced chemiluminescence kit for the pro-
tein band detection were from Amersham Biosciences (Amersham, England, UK). Primary
antibodies against PPARγ (#2443), CCAAT/enhancer-binding protein (C/EBP) α (#2295),
p38 (#8690), phospho(p)-p38 (#4511), ERK (#4695), p-ERK (#4370), AMPK (#2603), and
p-AMPK (#2531) were obtained from Cell Signal Technology (Danvers, MA, USA) while
sterol regulatory element-binding protein 1c (SREBP1c) antibody (ab3259) was from Abcam
(Cambridge, England, UK). Other primary secondary antibodies for Western blotting were
purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). For the immunocyto-
chemical fluorescence staining, Alexa Fluor 488-conjugated secondary antibody (A-11008)
was from Invitrogen (Waltham, MA, USA) while perilipin-1 (ab3526) and PPARγ (ab9256)
primary antibodies were from Abcam. Solutions, buffers, and reagents (#12727) for the
fluorescence staining were purchased from Cell Signal Technology.

4.2. Cell Culture and Differentiation

The hBM-MSCs were differentiated into adipocytes as previously reported [14]. Briefly,
hBM-MSCs were grown to confluence, and the culture medium was swapped with differ-
entiation medium two days later (day 0). The differentiation medium was changed with a
fresh one every third day until most of the cells exhibited mature adipocyte characteristics
by accumulating lipid droplets on the twelfth day of differentiation (day 12). DCC was
introduced to differentiating cells on day 0 until the next medium change (day 3). One
group of differentiated cells were not treated with DCC as a control group while another
group of cells were not induced to differentiate (kept with growth medium) nor treated
with DCC as a blank group.

4.3. Assessment of Cytotoxicity

The cytotoxic concentrations of DCC were assessed by traditional MTT assay. The
hBM-MSCs were grown in 96-well plates to approximately 80% confluency. Next, cells
were treated with increasing concentrations of DCC in growth medium and incubated for
72 h. After incubation, growth medium was replaced with a fresh one containing 20 µL
MTT (1 mg/mL) instead of DCC, and the cells were kept at 37 ◦C in a 5% CO2 incubator for
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4 h. The wells were then aspirated and supplied with 100% DMSO. The absorbance values
of the wells at 540 nm were measured on a MultiSkan GO microplate reader (Thermo Fisher
Scientific). The cytotoxicity of DCC was measured as a relative percentage of cell viability
compared to the untreated group.

4.4. Lipid Droplet Staining

The Oil Red O staining was employed to demonstrate the cellular lipid accumulation
as a marker of mature adipocyte. On day 12, the differentiated hBM-MSCs were washed
with PBS and fixed on 6-well plates by addition on 10% formaldehyde for 1 h. After 1 h, the
wells were aspirated and supplied with 0.5% Oil Red O staining solution (wt/v, dissolved
in 3:2 isopropanol and distilled water). Staining was carried out by keeping the cells at
room temperature for 1 h, after which the wells were aspirated again, washed with PBS
and photographed using a microscope. Quantification of the Oil Red O stain bound by
cellular lipid droplets was carried out via elution of the stain from cells through addition
of 100% isopropanol. The wells were then measured for their absorbance at 500 nm on a
MultiSkan GO microplate reader. The lipid accumulation was given as the stain absorbance
percentage relative to the differentiated untreated control group.

4.5. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

The reverse transcription-polymerase chain reaction was performed using the total
RNA isolated from the hBM-MSCs on day 12. Total RNA was extracted from cells with an
AccuPrep Universal RNA extraction kit. The cDNA was synthesized from equal amounts
of total RNA (2 µg) from each well. Reverse transcription was performed through the
application of Cell Script All-in-One cDNA synthesis kit using a T100 thermocycler (Bio-
Rad, Hercules, USA) with 42 ◦C for 60 min and 72 ◦C for 5 min settings. This was followed
by standard PCR analysis consisting of 30 cycles of denaturing at 95 ◦C for 45 s, annealing
at 60 ◦C for 1 min and extending at 72 ◦C for 45 s. The PCR reaction was carried out via
Lune Universal PCR mix and following its instructions. The primers for the PCR analysis
used were given in a previous report [14]. Finally, the PCR bands of the specific proteins
were obtained after electrophoresing on 2% agarose gel and imaging with CAS-400SM
imaging system (Davinch-K, Seoul, Korea).

4.6. Western Blot Analysis

The Western blot was carried out to detect the protein levels of specific proteins in
hBM-MSCs on day 12. The homogenized cellular total protein lysates were obtained using
RIPA buffer and vigorous pipetting. The lysates were then centrifuged at 4 ◦C for 15 min
(13,000× g), and the supernatants were used for Western blot. Nuclear proteins were
extracted from total cell lysates using a NE-PER nuclear extraction kit. The protein amounts
of each well were assessed by BCA assay kit, and equal amounts of protein (20 µg) were
loaded onto sodium dodecyl sulfate–polyacrylamide gel (4% stacking and 10% separating
gels) for electrophoretic separation of the proteins. Next, the proteins were transferred
to polyvinylidene fluoride membranes, which were then blocked with 5% skim milk in
TBS-T buffer (v/v) for 1 h at room temperature. Blocked membranes were kept overnight at
4 ◦C with primary antibodies. Membranes were washed and hybridized with horseradish
peroxidase-conjugated secondary antibodies. The hybridized protein bands were then
visualized using enhanced chemiluminescence kit with a CAS-400SM imaging system.

4.7. Fluorescence STAINING

The cellular perilipin-1, PPARγ, and Wnt 10b proteins were visualized by immunoflu-
orescence staining in hBM-MSCs on day 12. The hBM-MSCs were treated with the fixation,
washing, and permeabilization reagents of the Immunofluorescence Application Solutions
Kit according to its protocol. Next, cells were introduced to perilipin-1, PPARγ and Wnt10b
primary antibodies. The cells were stained with Alexa Fluor 488-conjugated anti-rabbit
secondary antibodies for visualization. For normalization, viable cells were also stained
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with DAPI (#8961; Cell Signaling Technology) containing ProLong Gold Antifade reagent.
Stained cell images were taken using an Olympus fluorescence microscope equipped with
a digital camera, and the images were then processed with the Multi Gauge software.

4.8. Statistical Analysis

The numerical data are given as mean of three separated results ± SD (n = 3). The
statistically significant difference between two groups was decided according to the results
of one-way analysis of variance followed by Duncan’s multiple range post hoc test. SAS
(v9.1) software was used for statistical analysis and calculation of p-values. The meaningful
significance was determined at p < 0.05.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23020653/s1.
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