
Supplementary Material 

Added Value of Clinical Sequencing: WGS-Based 
Profiling of Pharmacogenes 
Sylvan M. Caspar 1,2, Timo Schneider 1 , Janine Meienberg 1 and Gabor Matyas 1,3,* 

1 Center for Cardiovascular Genetics and Gene Diagnostics; Foundation for People with Rare Diseases, 8952 
Schlieren-Zurich, Switzerland; caspar@genetikzentrum.ch (S.C.); meienberg@genetikzentrum.ch (J.M.);  

2 Laboratory of Translational Nutrition Biology, Department of Health Sciences and Technology, ETH Zurich, 
8603 Schwerzenbach, Switzerland; 

3 Zurich Center for Integrative Human Physiology, University of Zurich, 8057 Zurich, Switzerland 
* Correspondence: matyas@genetikzentrum.ch; +41 43 433 86 86 

Received: date; Accepted: date; Published: date 

 
 
 
 
 
Supplementary Methods 
We compared whole-genome sequencing (WGS, native 60× and downscaled 30×; Illumina TruSeq 
DNA PCR-Free; sequenced on an Illumina HiSeq X Ten; Illumina Inc., San Diego, CA, USA) and 
whole-exome sequencing (WES; native 100×) using the whole-exome capture platforms Agilent 
(Agilent Technologies Inc., Santa Clara, CA, USA) SureSelect Human all Exon v7 (sequenced on an 
Illumina NovaSeq 5000) and v6 (sequenced on an Illumina HiSeq X Ten) regarding their coverage 
performance for pharmacogenetic profiling. We considered five samples for each technique as well as 
performed alignment (GRCh37/hg19) and variant calling using GENALICE MAP [1] for all samples. 
As previously described [2], we calculated and compared the read coverage from the generated BAM files 
(excluding mapping quality 0) using SeqMonk v1.39.0 (bioinformatics.babraham.ac.uk/projects/seqmonk) 
for the 45 DPWG variants, the coding exons in the 11 current DPWG genes, and an extended set of 
PGx genes, referred to as “Pharmaadme Genes” including the core and extended ADME genes listed 
in pharmaadme.org in addition to the 11 current DPWG genes (Supplementary Figure S2). Coding 
regions were defined according to the Table “RefSeq all” in the track “NCBI RefSeq” from the UCSC 
Table browser (genome.ucsc.edu/cgi-bin/hgTables). Genes with frequent copy number loss and such 
located on chromosome Y were excluded from the analysis. Exons/variants were defined as 
incompletely covered if at least one position was covered <21×. In addition, we performed our read-
coverage calculations restricted to genes, exons or variants having a complete 150-mer mappability =1 
[3,4]. 

 
 
Supplementary Table S1. Overview of detected sequence variants (see separate multi-sheet Excel 
table). 
 
 
Supplementary Table S2. Overview of sequence variants, which currently are implemented in our 
PGx-profiling pipeline (see separate Excel table). 
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Supplementary Figure S1. Distribution of the number of detected sequence variants with current treatment 
recommendations according to the Dutch Pharmacogenetics Working Group (DPWG) guidelines, based on our 
in-house WGS cohort of 547 genomes. 
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Supplementary Figure S2. Read coverage calculations for whole-genome sequencing (WGS, 60× and 30×) and whole-exome sequencing (WES, Agilent SureSelect Human All Exon 
v6 and v7). Bars represent the percentage of completely covered (i.e. ≥21× at each nucleotide position) genes, exons or DPWG variants, as means of five samples each (error bars 
indicate 95 % confidence intervals). “Pharmaadme Genes” (n = 286) contains all core and extended pharmacogenetically-relevant genes listed in pharmaadme.org as well as the 11 
DPWG genes (CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A5, DPYD, F5, SLCO1B1, TPMT, UGT1A1, VKORC1).  
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Supplementary Figure S3. Frequency of CYP2D6 star alleles detected by the software tool Aldy in our in-house cohort of 547 short-read WGS (60× PE150, PCR-free) samples. 
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Supplementary Figure S4. Overview of (a) used whole-genome sequencing samples and (b) required inputs for 
the compared CYP2D6 variant callers. Abbreviations: BAM: binary alignment map; GDF: GATK-
DepthOfCoverage format; VCF: variant call format. 
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