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Abstract: In recent years, the frequency of strokes has been on the rise year by year and has become the
second leading cause of death around the world, which is characterized by a high mortality rate, high
recurrence rate, and high disability rate. Ischemic strokes account for a large percentage of strokes.
A reperfusion injury in ischemic strokes is a complex cascade of oxidative stress, neuroinflammation,
immune infiltration, and mitochondrial damage. Conventional treatments are ineffective, and the
presence of the blood–brain barrier (BBB) leads to inefficient drug delivery utilization, so researchers
are turning their attention to nano-drug delivery systems. Functionalized nano-drug delivery systems
have been widely studied and applied to the study of cerebral ischemic diseases due to their favorable
biocompatibility, high efficiency, strong specificity, and specific targeting ability. In this paper, we
briefly describe the pathological process of reperfusion injuries in strokes and focus on the therapeutic
research progress of nano-drug delivery systems in ischemic strokes, aiming to provide certain
references to understand the progress of research on nano-drug delivery systems (NDDSs).

Keywords: nanoparticles; ischemic stroke; nano-drug delivery system; blood–brain barrier

1. Introduction

With the improvement of living standards, people’s diets have become more refined,
often high in oil, fat, and sugar. This has increased the burden on cardiovascular health,
leading to a rise in conditions such as hypertension, diabetes, and atherosclerosis [1–4].
These diseases are major contributors to the increasing frequency of strokes year by year.
Strokes have consequently become the second leading cause of death worldwide, attributed
to its narrow therapeutic window, high mortality and disability rates, and high recurrence
rate [5]. Strokes are divided into ischemic and hemorrhagic strokes, with ischemic strokes
(ISs) accounting for 71% of all strokes [6]. ISs are caused by vascular embolism, which leads
to ischemia and hypoxia in brain tissue. The only FDA-approved treatment for an IS is
tissue plasminogen activator (tPA), which is used to treat vascular embolisms by restoring
blood flow through intravenous thrombolysis. However, a reperfusion injury has greater
damage to cerebral neurons, triggering a cascade of events, mainly including, energy
failure, loss of cellular ionic homeostasis, excitotoxicity, mitochondrial function impairment,
reactive oxygen species (ROS) generation, and immune cell infiltration, resulting in neural
inflammation [7–9].

As the world’s most populous country, China accounts for approximately one-third
of global stroke deaths, posing a significant obstacle to people’s lives and health. Conse-
quently, research on stroke treatment has become a prominent focus in China [10]. Currently,
the main clinical modalities used for stroke treatment include surgical thrombolysis and
pharmacological thrombolysis [11]. The intravenous thrombolysis of tPA within 4.5 h is ef-
fective in clinical treatment, and a thrombectomy performed within 24 h also yields benefits.
However, these interventions carry a narrow therapeutic window and entail a certain risk
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of hemorrhage. Effective recovery is achieved in only a small percentage of patients due to
time constraints. The reopening of blood flow can result in a reperfusion injury, substantial
ROS production, and an inflammatory response that damages neurons [12–14]. To date,
many studies report that the inhibition of neuroinflammation is effective in alleviating
secondary injury after IS reperfusion [15,16]. The infiltration of immune cells, such as
microglia, astrocytes, and NK cells, is the main cause of inflammation resulting from a
reperfusion injury in ISs [17,18]. Among them, microglia mainly consist of M1 and M2
types, and it has been indicated that the transition from pro-inflammatory M1 microglia to
anti-inflammatory M2 type is conducive to the recovery of stroke prognosis [19]. Moreover,
the suppression of neuroinflammation and scavenging of ROS are key factors in enhanc-
ing prognostic recovery from strokes. Simultaneously, the salvage of ischemic penumbra
neurons can be accomplished through the use of neuroprotective agents [20]. Edaravone, a
free-radical scavenger commonly used in clinical treatment, can reduce BBB damage and in-
hibit inflammation. However, it faces significant challenges, including difficulty in crossing
the BBB, poor bioavailability, and rapid clearance from the blood, all of which contribute to
low drug efficacy [21]. To address these challenges, researchers have initiated studies in
nanotechnology, aiming to convert drugs into nanoforms to enhance drug utilization and
reduce side effects, thereby achieving the therapeutic goal [22].

For the past few decades, nanotechnology has been developing rapidly, and nano-
drug delivery systems have shown great advantages [23]. Nano-drug delivery systems can
improve the solubility of insoluble drugs, enhance the stabilization, and prolong the half-life
in the body. The precise targeting and control of drug release could also be realized through
additional targeting fragments or surface modifications in nano-drug delivery systems,
ultimately achieving the purpose of increasing efficiency and reducing toxicity [24–28]. The
BBB after an IS is somewhat compromised, with an increase in permeability, but not enough
to fail completely and still have a strong ability to insulate against external substances.
Fortunately, the application of nanotechnology shows large potential and a bright future
for nano-drug delivery, facilitating improved drug utilization across the BBB and into the
brain [29,30]. Interestingly, carriers can also treat diseases, for example, Prussian blue (PB),
which has an ROS-scavenging effect [31]. This review briefly introduces the pathologic
process of reperfusion in ISs and highlights recent studies of NDDSs in treating brain
ischemic reperfusion injuries, aiming to offer references that could help bridge the gap
between laboratory research and clinical application.

2. The Pathophysiology of ISs

Multiple complex pathological mechanisms are involved in brain damage caused
by ISs [32–34]. Understanding these complex mechanisms not only deepens our under-
standing of the disorders but also aids researchers in facilitating the translation from the
laboratory to clinical practice. At the onset of an IS, local ischemia and brain hypoxia
lead to metabolic disorders in the intracerebral microenvironment, which then trigger a
series of cascading injury processes, as shown in Figure 1 [35]. IS pathology begins with
cerebral ischemia and hypoxia, culminating in neuronal apoptosis [36]. Energy failure is
due to ischemia and hypoxia, which stimulate neuronal depolarization to release large
amounts of glutamate. This process causes calcium influx and results in mitochondrial
dysfunction [37]. At the same time, the accumulation of glutamate induces cellular neuro-
excitotoxicity, the massive release of reactive oxygen and nitrogen species (RONS), and the
penetration of peripheral immune cells to the brain [17,38,39]. After vascular reperfusion,
oxygen and energy supply are restored, but mitochondrial dysfunction and the inability to
process excess oxygen disrupt the balance between RONS production and clearance [40,41].
Excessive RONS would induce oxidative stress, which damages endothelial cells, and
causes platelet aggregation and adhesion in microvessels, leading to the reformation of
the thrombus and ultimately resulting in cerebral edema and bleeding [42–44]. This in
turn further promotes immune cell infiltration, exacerbating the inflammatory response
and causing neuroinflammation [45]. These reactions interact with each other and do not
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exist singularly. When an IS occurs, thrombolysis within a few hours can alleviate brain
damage; however, secondary damage from cerebral ischemia–reperfusion poses a greater
challenge [46,47].
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Figure 1. Pathologic mechanisms and cascading injury processes in ISs [35]. (a) Calcium overload
leads to neuroexcitotoxicity; (b) Inflammation; (c) Mitochondrial dysfunction leads to oxidative stress;
(d) Apoptosis; Copyright 2023, Elsevier.

Although cerebral neuronal damage in the core area of ischemia is irreversible, the
penumbral area of cerebral ischemia affected by the spread of ROS and immune cell in-
filtration is recoverable [48,49]. Therefore, the semi-dark band in cerebral ischemic is an
important target area for improving prognosis and restoring neurological function [5,50,51].
The cerebral ischemic penumbra can be rescued by suppressing the immune–inflammatory
response and attenuating oxidative stress [52–54]. Some studies have found that administer-
ing exogenous mitochondria to the ischemic area can alleviate mitochondrial dysfunction.
Exogenous mitochondria can use endogenous mechanisms to repair cellular damage,
potentially resulting in therapeutic effects on the nerves after an IS [55–57].

In this section, we mainly focus on excitotoxicity, oxidative stress, and neural inflam-
mation. Other mechanisms of injury will not be discussed further.

2.1. Excitotoxicity

Excitatory amino acids, such as glutamate and aspartate, serving as central neuro-
transmitters, play critical roles in transmitting messages in the nervous system [58,59].
Among them, glutamate is widely distributed throughout the brain and exerts a significant
excitatory effect on central neurons [37]. Under physiological conditions, the brain microen-
vironment maintains homeostasis without excessive glutamate production, which can be
metabolically regulated. However, when an ischemic stroke occurs, because the blood
supply is interrupted, neurons are deprived of energy and oxygen, resulting in decreased
ATP production. This leads to the abnormal functioning of the NA+-K+ ion pump in the cell
membrane [60]. Meanwhile, N-methyl-D-aspartate receptors (NMDAR) regulate ion-gated
pathways by binding glutamate, thereby exerting excitatory effects on neuronal cells [42,61].
Unfortunately, when substantial amounts of glutamate binding to aspartate receptors, it
triggers a significant inward flow of Ca2+, resulting in calcium overload and NO− pro-
duction [62]. NO− reacts with O2− to produce the destructive OONO−, exacerbating BBB
damage and brain injury [63–65]. In conclusion, excitotoxicity arises from uncontrolled
glutamate release and calcium overload, triggering a series of effects that ultimately result
in the death of neurons [66,67]. Thus, excitotoxicity represents an important molecular
mechanism contributing to IS damage [68].
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2.2. Oxidative Stress

As a downstream consequence of an excitatory injury, oxidative stress emerges as
another major molecular mechanism contributing to ISs [23]. Oxidative stress occurs when
the oxidative homeostasis system is disrupted due to the massive release of free radicals [69].
Excessive free radicals cause cellular damage, DNA damage, skeleton disruption, and
lipid peroxidation, ultimately resulting in neuronal damage and brain death [70,71]. In
particular, the free radical blowout after reperfusion exposes neurons to even more severe
challenges [72,73]. In addition, free radicals can stimulate the secretion of cytokines as
well as the expression of adhesion molecules, which mediate inflammatory and immune
responses, thereby exacerbating a brain tissue reperfusion injury [74].

2.3. Neural Inflammation

The inflammatory response plays a pivotal role in the pathological events associated
with brain damage and repair processes in ischemic strokes [75]. Various inflammatory
cells participate in the inflammatory reaction. Microglia, astrocytes, neutrophils, NK cells,
and other immune cells constitute the major effector cells during an IS [76,77]. Here, we
take microglia and NK cells as examples. Microglia are intrinsic immune cells residing
in the brain that play an important role in CNS diseases and that can be classified into
M1 and M2 phenotypes [78,79]. M1 microglia secrete massive ROS, pro-inflammatory
factors, and protein hydrolases to promote inflammation and exacerbate neuronal injuries,
whereas M2 microglia secrete anti-inflammatory factors, which attenuate inflammatory
injuries and improve the recovery of brain injuries [75,80]. While the activation of microglia
is initially intended to protect neuronal cells, their overactivation can lead to harmful
inflammation and neuronal death [81]. Numerous studies have shown that facilitating
the conversion of microglia from M1 to M2 types can reduce inflammation and improve
stroke prognosis [52,82–85]. For NK cells, they exacerbate stroke injuries by increasing
local inflammation and neuronal hyperactivation, ultimately resulting in neuronal cell
death [86,87]. The reason for this is that NK cells, which are common immune cells in the
body, are actively recruited into the site of injury when an IS occurs. Simultaneously, NK
cells secrete a large number of cytokines that promote inflammatory damage, ultimately
leading to irreversible brain damage. Although immune cells that initially infiltrate into
brain tissue exacerbate brain damage and neurological dysfunction, they also later play
beneficial roles, such as promoting glial scarring and the phagocytosis of debris, which are
essential for wound healing [88].

3. Advanced NDDSs for ISs

Prolonging the time window of treatment and mitigating a secondary reperfusion
injury are ideal for addressing ISs [89]. Fortunately, recent advances in NDDSs have
emerged, offering promising possibilities for enhancing IS reperfusion therapy [90]. NDDSs
are known for their small size, large surface area, controlled release, targeted modification,
and high ability to penetrate the BBB [91,92]. In addition, NDDSs can be utilized to
load hydrophobic, hydrophilic, and gene-based drugs while also functioning as labeling
probes for tracer imaging of ISs [93,94]. In the realm of advanced NDDSs for an ischemic
stroke (IS), common types include polymers, inorganic nanoparticles, liposomes, and cell
membrane-coated nanoparticles [95,96].

3.1. Polymers

Polymers offer broad prospects for addressing drug delivery for ISs [29]. They ex-
cel as NDDSs for treating CNS disorders due to their exceptional qualities, including
excellent biodegradability, high biocompatibility, and minimal toxicity [97–99]. There are
numerous polymers, among which PLGA, poly(ethylene glycol) (PEG), and poly(lactic
acid) (PLA) are common and the most widely studied [100]. The appropriate modification
of polymeric nanoparticles can enhance brain targeting and achieve drug enrichment in
the target region [100]. PLGA is synthesized from the polymerization of two monomers:
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lactic acid and hydroxyacetic acid. It is an FDA-approved drug excipient known for its
high encapsulation efficiency and excellent biocompatibility [101,102]. Previous studies
by Wang et al. have demonstrated that epidermal growth factor (EGF) and erythropoietin
(EPO) have a stimulatory effect on stem cells, further promoting tissue repair [103,104].
Based on this premise, Wang et al. proceeded to explore the encapsulation of pegylated EGF
in PLGA nanoparticles as well as the formulation of hydrogels through the encapsulation
of EPO within two-phase particles composed of PLGA and poly(sebacic acid). This system,
through the epidermis to the ischemic lesion area, was observed to effectively traverse the
BBB and stimulate the differentiation of endogenous neural stem cells. This ultimately
facilitated the notable restoration of tissue and nerve function in the mice [105]. A prospec-
tive approach to treating ISs could involve preventing neutrophil infiltration. Song et al.
developed a rod-shaped PLGA nanoparticle loaded with piceatannol for targeted interven-
tion in neutrophil–endothelial cell interactions. They drew inspiration from the fact that
neutrophils exhibit a preference for phagocytosing elongated particles and that rod-shaped
PLGA is readily phagocytosed by neutrophils [106] (Figure 2a). This strategy can protect
neurons and attenuate stroke damage to the brain by reducing neutrophil adhesion to
endothelial cells and reducing immune infiltration (Figure 2b). In addition, PLGA can be
used to form nanoparticles containing superparamagnetic iron oxide and Cy7.5, serving a
pivotal role in MRI and fluorescence imaging [107].
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Figure 2. (a) Preparation of rod-like nanoparticles by solvent evaporation and film stretching methods;
(b) Rod-like nanoparticles (Pic@AR5) were specifically phagocytosed by neutrophils, followed by the
release of pisaclitaxel which blocked the Syk pathway and reduced the expression of β2 integrins,
thus preventing the adhesion of most neutrophils to endothelial cells. Meanwhile, a small number of
Pic@AR5-carried neutrophils enter the BBB and release piceatannol in the ischemic zone, inhibiting the
Syk pathway in microglia and attenuating microglia-mediated neuroinflammation [106]. Copyright
2023, Wiley-VCH.

Surface modification with PEG prolongs in vivo circulation and decreases the im-
munogenicity of nanoparticles [108]. Curcumin is known as an anti-inflammatory and
antioxidant, but weak hydrophilicity and chemical instability make its application chal-
lenging [109]. Wang et al. used an amphiphilic copolymer consisting of PEG and PLA to
prepare NDDS-encapsulating curcumin, which improves the stability of curcumin in blood
circulation. The NDDS could protect the BBB by inhibiting the decrease in tight junction
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proteins [110]. The results showed that this NDDS inhibited M1 microglia polarization and
inflammatory damage, thereby further promoting the functional recovery of brain tissue in
mice. In another interesting study, PEG was used for modification to prepare pH-sensitive
polymers loaded with rapamycin (RAPA), named RAPA@NPs. A pH-sensitive link was
employed to achieve acid-triggered drug release, Ce6 was selected as the near-infrared
imaging agent, and Gd3+ chelator was chosen for implementing bimodal imaging [111].
The results showed that the prepared RAPA@NPs not only overcame the drawbacks, such
as the poor solubility of RAPA itself, thereby improving the therapeutic efficiency of RAPA,
but also exhibited good biocompatibility and acid-enhanced bimodal imaging capabilities.
RAPA@NPs preferentially aggregated at the ischemic site of the brain and achieved sig-
nificant neuroprotective effects. The study provides a promising NDDS for drug tracking,
treatment, and the early diagnosis of an IS as well as a reference towards the accurate imag-
ing and treatment of other diseases [111]. Similarly, Ding et al. developed PEG coupled
with urokinase (UK), wherein UK: PEG-UK was mixed in a 1:1 ratio [112]. The results
demonstrated that this NDDS provided dual targeting of the macro-vasculature and the
microcirculation, showing excellent neurologic function scores and smaller infarcts in the
MCAO model area.

Dendritic macromolecules are excellent candidates for biological and pharmaceutical
applications [113–115]. Among them, polyamidoamine dendrimer (PAMAM) is the most
widely studied dendrimer [116]. This can be attributed to their controllable size structure,
good water solubility, extensive internal drug-carrying space, and the potential for external
modification [117,118]. However, PAMAM suffers from susceptibility to clearance by the
reticuloendothelial system (RES) and a lack of targeting ability [119]. Despite these limita-
tions, PAMAM can acquire enhanced capabilities through modifying and transforming into
more desirable carriers. Examples include the conjugation of ligands such as PEG, folate
analogs, protein analogs (transferrin, lactoferrin), amino acids, and peptides [120–123].
Successful NDDSs based on PAMAM for the treatment of neuroinflammation and ISs have
been reported, yielding satisfactory therapeutic outcomes [124–127].

Collectively, the excellent properties of polymers allow them to be used as an NDDS, tak-
ing advantage of the microenvironmental characteristics for responsive release [111,128–130].

3.2. Inorganic Nanoparticles

Inorganic nanoparticles possess unique physicochemical properties [90]. They are
characterized by a controllable structure, modifiable surface, and high loading efficiency,
showing great research value in disease treatment and diagnosis [131–133]. For instance,
gold nanoparticles are easy to synthesize and functionalize for versatile applications,
possessing specific physical, electrical, magnetic, and optical properties [134,135]. Silica
and iron have natural properties that allow them to work for MRI tracking [136,137]. Fe3O4
and CeO2 have enzyme-like activities that contribute positively to the removal of excess
ROS [138–140].

Expanding on last paragraph, given the capability of gold nanoclusters to penetrate the
BBB and the anti-inflammatory and antioxidant properties of dihydrolipoic acid, Xiao et al.
synthesized functionalized gold nanoclusters carrying dihydrolipoic acid [141–144]. After
the gold nanoclusters carried the drug through the BBB and into the brain, the dihydrolipoic
acid underwent reduction and exerted its scavenging effects [144]. By regulating microglia
and polarizing them to the M2 type, this NDDS can reduce the inflammatory response
and improve the neuronal survival rate. In addition, the clinical application of gold
nanoparticles for the photothermal therapy of prostate cancer has been carried out [145,146].

Magnetic iron oxide nanoparticles have garnered increasing attention due to their
unique properties [94]. Liu et al. developed co-doped Fe3O4 nanoenzymes to ameliorate
the RONS overload injury caused by an IS [147]. In vitro cellular experiments demonstrated
that Fe3O4 nanoenzymes were effective in ameliorating neuroinflammation caused by ISs,
as well as significantly reducing the infarct volume in both transient and permanent stroke
models. Wang et al. developed an MRI visualization technique to track and visualize
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transplanted stem cells, offering valuable insights to enhance the effectiveness of IS treat-
ment [148]. Similarly, some studies used superparamagnetic iron oxide nanoparticles (SPIO)
to label stem cells for imaging tracking in IS therapy [107,149,150]. In addition, iron oxide
nanoparticles can be loaded with dexamethasone and L-carnosine peptide for targeted
delivery in ISs, which already yield satisfactory experimental results. It demonstrated
the feasibility that iron oxide nanoparticles can be used as an NDDS for the treatment of
ISs [151]. Clinical approval of iron oxide-based MRI contrast agents has been obtained in
Europe and the United States; however, challenges persist in their clinical translation [152].
Overall, iron oxide-based nanoparticles hold excellent potential for application and clinical
translation [153–157].

CeO2 nanoparticles are effective free radical scavengers [158,159]. Li et al. developed
CeO2 nanoparticles loaded with butylphthalide (NBP-CeO2 NPs), which have neuro-
protective effects for ISs [160]. The results of long-term experiments demonstrated that
NBP-CeO2 NPs can promote vascular repair and improve the behavioral functions of mice.
The combination of free radical scavenging and neurovascular repair can significantly
reduce reperfusion injury, and this treatment approach holds promise for applications
in ISs. He et al. developed CeO2 nanoparticles encapsulated with zeolitic imidazolate
framework-8-capped (CeO2@ZIF-8). Compared to bare CeO2, the CeO2@ZIF-8 exhibited
higher stability and longer blood circulation time under physiological conditions [161].
Moreover, due to its peroxidase-like properties, ZIF-8 enhances the free radical scavenging
ability of CeO2@ZIF-8 compared to free CeO2, showing excellent preventive and thera-
peutic effects in neuroprotective therapy for ISs. Liao et al. introduced the concept of
mitochondrial microenvironmental regulation and developed an NDDS based on CeO2-
targeting mitochondria [162] (Figure 3). Mitigating oxidative stress injury can be achieved
by regulating the mitochondrial microenvironment to promote ischemic recovery.
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In addition, manganese-based nanoparticles, including MnO2 and Mn3O4, have also
received much attention in ISs [52,163,164]. In the news from 2023, during the European
Congress of Radiology (ECR) in Vienna, Austria, the GE Healthcare Group announced
that the completion of Phase I subject recruitment for its pioneering manganese-based
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macrocyclic magnetic resonance imaging (MRI) contrast agent in early clinical development
program. To sum up, the integration of inorganic nanoparticles into ischemic treatment ap-
proaches holds great potential for enhancing therapeutic outcomes through the modulation
of cellular processes and microenvironmental factors.

3.3. Liposomes

Liposomes, discovered by Bangham in 1965, are enclosed vesicles composed of or-
dered lipid bilayers [165]. The bilayers consist mainly of amphiphilic phospholipids with
aqueous spaces inside. Thus, components with hydrophilic properties can be encapsulated
in the aqueous cavity of the liposome, while components with hydrophobic properties can
be encapsulated in the lipid bilayer [166] (Figure 4). Compared to other NDDSs, studies
on liposomes are relatively well established. Due to their excellent biocompatibility, high
safety profile, and noteworthy therapeutic efficacy, numerous liposome formulations have
received FDA-approval, signifying the progression from laboratory investigation to clinical
application [167,168]. Undoubtedly, the successful translation of liposomes from the lab-
oratory to the clinic has garnered considerable attention from researchers across diverse
fields, fostering further in-depth investigations into liposomes [169,170].
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Plain liposomes are easily cleared by the reticuloendothelial system (RES), while
PEGylated liposomes extend the drug’s circulation time in the bloodstream and mitigate
the risk of recognition and clearance by immune cells [171]. Thomas et al. prepared a
PEGylated liposome loaded with atorvastatin, which could accumulated at the ischemic
lesion area effectively, reducing infarct volume and promoting neurological recovery [172].
The use of PEGylated liposomes for delivering neuroprotective agents also improves
drug bioavailability in vivo. Notable examples include citicoline [173], lycopene [174],
FK506 [175], and plasminogen activators [176]. In addition, the addition of some FC
fragments, transferrin, and other kinds of ligands or stimuli-responsive fragments to
liposomes can achieve active targeting and responsive release [177–179]. To address the
phenomenon of neutrophil infiltration into the ischemic zone during an IS, resulting in
the release of neutrophil extracellular traps (NETs) and subsequent neuronal damage,
Sun et al. developed a smart liposome with ischemic lesion targeting and ROS-responsive
release [180]. The results showed that the smart liposome could regulate NETs and promote
microglia transformation to the M2 type to treat ISs, resulting in a cerebral infarction
area approximately one-fourth that of the saline group. Li et al. investigated methods to
enhance the delivery efficiency of the commercially available drug ginkgolide B (GB) by
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developing a liposomal formulation that binds GB to high-lipophilic docosahexaenoic acid
(DHA) (Lipo@GB-DHA) [181]. The results indicated that when compared with the free GB
group, the amount of GB in the target ischemic hemisphere in the Lipo@GB-DHA group
was 2.2 times higher than that in the free GB group. Additionally, the Lipo@GB-DHA
group showed a smaller infarct area, better inhibition of neuronal apoptosis, and improved
recovery of neurological function. Yao et al. developed a pH-responsive fluorescent
liposome probe and established a correlation between fluorescent imaging and neurologic
deficiency scores. The approach provided a novel approach for assessing the extent of ISs
in different acidic microenvironments [182]. Noteworthly, the transnasal administration of
liposomes have achieved good therapeutic results in rat IS models [183,184].

In conclusion, substantial advancements have been achieved in utilizing liposomes
as an NDDS. However, problems such as instability, leakage or poor targeting, and the
sudden release of drugs remain to be solved in liposomes [185]. These issues highlight
the critical need for the development of advanced technologies aimed at enhancing the
properties of liposomes.

3.4. Cell Membrane-Coated Nanoparticles

Targeted nanomedicines hold promising potential in stroke therapy. However, some
of them are intrinsically foreign and face the risk of being removed by the RES [186]. In
order to address this obstacle, the researchers proposed a cell membrane-coated strategy.
Cell membrane-coated nanoparticles possess the unique advantage of imparting biological
characteristics by hiding traditional nanoparticles in natural cell membranes [187]. By selecting
different kinds of cell membranes to modify the outer layers of NDDSs, NDDSs with enhanced
surface functionality can be created to achieve diverse goals [188] (Figure 5). Cell membranes
from different sources have different functional characteristics, as shown in Table 1. However,
cell membranes still have some limitations [189]. Fortunately, it is possible to modify some
targeting proteins or peptides on the membrane surface to further improve the targeting
performance and ultimately achieve better therapeutic effects [190,191].
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Table 1. A summary of the key features of various cell membranes.

Cell Membrane Source Key Features Function Reference

Red blood cell (RBC)
Immune evasion
Easy to extract

Surface expression of CD47
Prolonged circulation [192]

Platelet
Specific targeting of damaged tissue

Adherence to inflammatory neutrophil
Surface expression of CD47, CD55 and CD59

Injury sites targeting [193]

White blood cell (WBC)

Specific targeting of inflammatory tissue
Endothelial adherence

Adhesion at tumor sites
Penetration of the BBB

Tumor and inflammatory site targeting [194–196]

Cancer cell
Immune evasion

Homologous targeting
Anti-tumor ability

Tumor targeting [197]

Stem cell
Immune evasion

Tumor-specific properties
Homing ability

Tumor targeting
Inflammatory damage targeting [198,199]

Bacteria Promoting adaptive immunity Tumor anaerobic targeting [200–202]

3.4.1. RBC Membrane-Coated Nanoparticles (RBC-NPs)

It is well known that RBCs are abundantly present within the blood and lack nucleus
and mitochondria [189]. Consequently, the RBC membrane is easily extracted. The lifespan
of RBCs in the body is about four months. During this time, the surface expression of
the CD47 protein, which serves as a “do-not-eat-me” signal, prevents RBCs from being
removed by the RES [203]. These characteristics of RBCs offer potential prerequisites for
the development of RBC-NPs [204].

RBC-NPs were first reported by Zhang et al. in 2011 [205]. Compared with NPs
coated with hydrophilic polymer PEG, which showed long circulation in vivo, the RBC-
NPs retained RBCs’ biological properties, showing a longer circulation time. After that,
researchers proposed diverse approaches to modify targeting peptides or ligands on the
RBC membrane, which could not disrupt the RBC membrane but improve the brain
targeting ability [206–208].

Shi et al. developed an engineered RBC-NP named Mn3O4@nanoerythrocyte-T7
(MNET) with smart oxygen regulation and free radical scavenging [209] (Figure 6a).
Hemoglobin (HB) in RBCs underwent oxygen uptake and release, functioning like an
oxygen sponge. Meanwhile, Mn3O4 NPs showed high biocompatibility and multiple
antioxidant enzyme activities. By combining the advantages of RBCs, Mn3O4, and T7 pep-
tides, the rescue of the ischemic microenvironment was finally realized using MNET. More
excitingly, MNET could be used for continuous treatment via the oxygen spongy effect of
HB. During an IS, the oxygen spongy function of HB can provide oxygen to the hypoxic area
and reduce ischemic injury (Figure 6b). Oxygen reperfusion after thrombolysis causes the
production of free radicals, and HB could play an important role in absorbing excess oxygen
and reducing oxidative stress. Liu et al. also developed an integrated approach for acute
ISs inspired by the oxygen spongy properties of HB [210]. They corrected abnormalities in
glucose metabolism and provided energy to neurons by releasing methoxatin, which acts
to activate the cellular Akt/GSK-3β pathway. It can be observed that the oxygen balance
of the microenvironment and glucose metabolism are important for neuronal recovery.
Lv et al. designed an erythrocyte membrane delivery system (SHp-RBC-NP/NR2B9C) with
cerebral ischemic region-targeting and ROS-responsive release capabilities [211]. Based
on the fact that ROS are released in large quantities from the ischemic region during the
pathogenesis of an IS, phenylboronic acid with ROS-responsive release capabilities was
added to the SHp-RBC-NP/NR2B9C. It was verified in the rat MCAO model that the SHp-
RBC-NP/NR2B9C could successfully reach the ischemic lesion, release the neuroprotectant
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NR2B9C in the ischemic ROS microenvironment responsively, and reduce the volume of
cerebral infarcts.
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In conclusion, RBC-NPs, as the earliest membrane-coated NDDS studied, have tremen-
dous possibilities through modification [212]. They have aroused researchers’ interest, and
more researchers have begun to exploit the feasibility of fabricating hybrid RBC-NPs.

3.4.2. Platelet Membrane-Coated Nanoparticles

Platelets have a shorter lifespan compared to erythrocytes and are present in the blood
in smaller numbers than erythrocytes [213]. Platelets, in addition to CD47, exhibit other
expression clusters, such as CD55 and CD59, on their membrane surface, preventing phago-
cytosis and clearance by immune cells, consequently enhancing immune evasion [214]. In
addition, platelets are known for their role in recognizing and repairing vascular damage
and responding to inflammation. Consequently, nanoparticles encapsulated in platelet
membranes can be directed toward the site of the injury for targeted delivery [215].

A precedent for biomimetic platelet membrane-coated nanoparticles, which mimic
platelets and evade the immune system, was established by Zhang et al. in 2015 [193].
Since then, there has been a growing focus on platelet membrane-coated nanoparticles.
For example, Cui et al. selected GB, a neuroprotective agent with anti-inflammatory and
antioxidant properties, and coated GB with platelet membranes (PM-GB) [216]. Because
platelet membranes could target inflammatory injuries, the concentration of GB at the injury
site increased, resulting in improved drug delivery to the lesion. The results demonstrated
that PM-GB was suitable for the treatment of ISs by inhibiting oxidative stress and reducing
iron-related cell death. Zhao et al. designed a platelet membrane-coated nanoparticle with
multi-function for the therapy of ISs [217] (Figure 7a). To be specific, when a platelet mem-
brane adheres to inflamed neutrophils, platelet membrane-coated nanoparticles can then
follow the neutrophils into the inflamed area. The platelet membrane-coated nanoparticles
consisted of T7 peptide, PHis (an acid-responsive fragment), and MiRNA-Let-7c drugs.
Based on the multiple functional fragments, this NDDS could be BBB targeting and swell
to release miRNA to inhibit M1 cell polarization. Li et al. developed platelet-derived
bio-nanobubbles with integrated diagnostic capabilities using platelet vesicles [218]. In
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addition to platelet vesicles, the formulation also includes γ-Fe2O3 and the NO precursor
(L-arginine). The results showed that it could increase the flow of blood to the lesion site,
prolong the treatment window through the vasodilatory effect of NO, and provide auxiliary
diagnostic imaging [219] (Figure 7b). After that, Li further conducted the therapeutic
mechanism of PAMNs. The results illustrated that it can rapidly dilate vessels and improve
vascular flow, which is beneficial for the early-stage therapy of ISs (Figure 7c).
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To sum up, the properties of platelets allow for platelet membrane-coated nanoparticles
to be widely used for vascular embolism disease [220–226].

3.4.3. WBC Membrane-Coated Nanoparticles

WBCs are important blood cells of the body’s immune system, encompassing various
types, such as NK cells, neutrophils, macrophages, and lymphocytes. As the body’s
guardians, WBCs protect the body from disease and arrive at the injury site immediately
when an IS occurs [227]. In contrast to RBCs and platelets, WBCs have nuclear structures
and are less abundant, rendering their membrane isolation relatively challenging. To be
noted, natural WBC membranes without modification have the capability of targeting
inflammatory sites and tumor tissue [228,229].

Here, we mainly discuss membranes from neutrophils and macrophages to fabricate
NDDSs. Neutrophils are virtually absent from the brain, but after an IS occurs, neutrophils
rapidly increase in numbers and enter the ischemic lesion area in a short time [230]. The
utilization of magnetic probes coated with neutrophil membranes holds promise for imag-
ing neuroinflammation in ISs [231]. Neutrophil membranes or extracellular vesicles can
be used to intracerebrally target, both of which have satisfactory effects in ISs [232,233].
Feng et al. treated ISs with neutrophil membrane-encapsulated Prussian blue nanoenzyme
(MPBzyme@NCM) [234] (Figure 8a). The results showed that MPBzyme@NCM could
polarize microglia from the M1 phenotype to the M2 phenotype, reduce inflammatory
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responses, and protect injured brain tissue (Figure 8b). This strategy showed promise in
extending its potential application to other CNS illnesses.
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cell proliferation [234]. Copyright 2021, American Chemical Society.

Macrophages are immune cells with the capabilities of pathogen recognition and
phagocytic clearance. At the onset of an inflammatory response, macrophages exhibit a
tendency towards inflammation and migrate to the inflammatory site to phagocytose and
eliminate pathogens [235,236]. Based on these remarkable features, macrophage membrane-
coated nanoparticles were widely applied in delivery studies [237]. Li et al. developed
mesoporous SiO2 nanoparticles loaded with the neuroprotectant FTY-720 (MnO2 + FTY)
and then wrapped MnO2 + FTY with macrophage membrane vesicles to treat ISs [52]
(Figure 9a). In this system, macrophage membranes confer nanoparticles with the ability
to target inflammatory lesions. MnO2 nanoparticles have broad surface and CAT prop-
erties, which can effectively scavenge excess ROS and promote O2 conversion, thereby
reducing inflammatory responses and rescuing dying neurons. FTY-720 reverses the pro-
inflammatory microenvironment (Figure 9b). Su et al. used macrophage membranes to
encapsulate curcumin for treating ISs, yielding promising therapeutic outcomes. This
study offers valuable insights in combining the traditional Chinese medicine and modern
technology [238].

In conclusion, the utilization of WBC membrane-coated nanoparticles emerges as
a highly promising avenue for the treatment of both inflammation and cancer. Despite
the significant advancements made in this field, further exploration is warranted to fully
harness the capabilities of WBC membrane-coated nanoparticles.
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3.4.4. Cancer Cell Membrane-Coated Nanoparticles

Cancer cells exhibit immune evasion and homology-targeting capabilities; thus,
nanoparticles encapsulated within cancer cell membranes can be used for targeted ther-
apy [197,239,240]. This strategy has been widely used in cancer homologous-targeted
therapy and cancer vaccine development [241–245]. Apart from cancer, He et al. found that
cancer cell membrane-coated nanoparticles could be applied to IS treatment. As shown in
Figure 10, they developed a novel biomimetic nanoplatform, termed MPP/SCB, by cloak-
ing a succinobucol-loaded pH-sensitive polymeric nanovehicle with a 4T1 cell membrane.
They drew inspiration from the BBB-penetrating ability of 4T1 cancer cells during brain
metastasis. The primary factors contributing to this phenomenon include the heightened
affinity of certain adhesion molecules highly expressed on the membrane of 4T1 cells, en-
abling adhesion to leukocytes, endothelial cells, and platelets [246]. MPP/SCB significantly
improved microvascular reperfusion in the ischemic hemisphere, leading to a remarkable
69.9% reduction in infarct volume and demonstrating superior neuroprotective effects
compared to uncamouflaged PP/SCB. Although MPP/SCB show negligible biotoxicity,
the potential presence of numerous tumor antigens on cancer cell membranes poses an
unknown risk that warrants further investigation and validation. Their findings highlight
the potential of cancer cell membrane-coated nanoparticles for the targeted therapy of
cerebral ischemic lesions in ISs and inspire us to explore additional functions of cancer cell
membranes beyond their interaction with cancer cell homologous targets.
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3.4.5. Other Cell Membrane-Coated Nanoparticles

Stem cells, characterized by their capacity for self-renewal and differentiation, exhibit
the proficient recognition and repair of damaged tissues, homing ability, inflammation sup-
pression, and tumor-targeting abilities [247]. Stem cell studies in treating ISs are extensive,
with a predominant focus on the transplantation of stem cells or the administration of stem
cell-derived vesicles and trophic cytokines [248–253]. At present, fewer studies have been
conducted on stem cell membrane-coated nanoparticles for IS therapy [254]. We notice
that there was a study using stem cell membrane-coated nanoparticles as a delivery plat-
form, which leveraged the SDF-1/CXCR4 pathway to enhance targeted drug delivery in
ISs [255]. By encapsulating glyburide-loaded PLGA within stem cell membranes, Ma et al.
significantly improved stroke treatment efficacy [256]. This innovative approach not only
underscores the importance of the SDF-1/CXCR4 axis in cell migration and homing but
also offers a promising strategy for enhancing intracerebral drug delivery.

Bacterial membrane-coated nanoparticles have been broadly used for targeted tumor
therapy, antimicrobial therapy, vaccine development, and so on [257–261]. Although it has
been reported that anaerobic bacteria can cross the BBB to treat gliomas [262], we did not
find any reports of treating ISs with nanoparticles coated with bacterial membranes.

4. Summary and Perspective

ISs are the second leading cause of death in the world, which is attributed to the
narrow therapeutic window and the complexity of the disease progression involving mul-
tiple mechanisms, including neuro-excitotoxicity, oxidative stress, neuroinflammation,
mitochondrial damage, and so on. Understanding how an IS occurs is a necessary pre-
requisite for attempting to resolve the disease. Thrombolysis is the preferred treatment
to prevent neuronal damage. The prognosis after thrombolysis is key to restoring normal
limb function.

With the rapid development of nanotechnology, polymer nanoparticles, inorganic
nanoparticles, and liposomes, membrane-coated nanoparticles have gradually emerged in
diagnosing and treating numerous diseases, including ISs [263–266]. Some have success-
fully transitioned from the laboratory to clinical applications. However, there are still some
problems that limit their application. In general, polymers increase drug stability and can be
surface modified to enhance targeting or improve biocompatibility. However, the relatively
high cost and complex preparation process limit their mass production. Some inorganic
nanoparticles exhibit exceptional photothermal and imaging properties, but as exogenous
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materials, they still encounter challenges related to unknown cytotoxicity and complex
degradation issues. Among them, magnetic nanoparticles show promising prospects, and
functionalized magnetic nanoparticles are the trend of future development. Additionally,
optimizing their multifunctional imaging capabilities holds significant potential for ad-
vancing the clinical diagnosis and treatment of diseases [267,268]. Liposomes have notably
progressed compared to other nanoparticles, boasting advantages such as low toxicity and
high biocompatibility. Various drugs have been successfully delivered using liposomes.
However, liposomes are expensive, which can exacerbate the financial burden on patients.
Membrane-coated nanoparticles have emerged as a novel approach for targeted drug deliv-
ery in recent years. It is characterized by the use of biomimetic membranes, where the drug
is camouflaged as an endogenous substance. This strategy helps evade the RES clearance,
thereby extending the drug’s half-life. Moreover, membrane-coated nanoparticles tend to
exhibit targeting capabilities, enhancing the efficacy of precise therapy. The experimental
results have yielded promising outcomes, suggesting a bright future ahead. However, these
findings are still in their infancy, necessitating further investments. The translation from
the laboratory to clinical settings necessitates the careful consideration of immune rejection,
particularly regarding proteins or genes carried by biomembranes sourced from different
origins. In addition, the fusion of multiple membranes is emerging as a trend. Challenges
such as difficulty in scale-up production, uncertainty in variant proteins in membranes,
and ensuring the controllable preparations necessitate ongoing research. Nevertheless, it is
undeniable that membrane-coated nanoparticles have inherent advantages and hold broad
potential for application.

Overall, an IS is a complex pathophysiological process, in which the interference of
the BBB and other factors significantly impacts drug delivery. NDDSs struggle to deliver
drugs effectively within the brain. Most studies involving NDDSs are still in the laboratory
stage, and the translation of NDDSs into clinical practice remains a daunting challenge.
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