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Abstract: A sulfonyl-chloride-modified lignin-based porous carbon-supported metal phthalocyanine
catalyst was prepared and used to replace the traditional Fenton’s reagent for lignin degradation. The
catalyst underwent a detailed characterization analysis in terms of functional group distributions,
surface area, morphological structure, via FT-IR, XPS, BET, and SEM. The catalyst possessed a specific
surface area of 638.98 m2/g and a pore volume of 0.291 cm3/g. The prepared catalyst was studied for
its ability of oxidative degradation of lignin under different reaction conditions. By optimizing the
reaction conditions, a maximum liquid product yield of 38.94% was obtained at 135 ◦C with 3.5 wt%
of catalyst and 15 × 10−2 mol/L H2O2; at the same time, a maximum phenols selectivity of 32.58%
was achieved. The compositions and properties of liquid products obtained from lignin degradation
using different catalyst concentrations were studied comparatively via GC-MS, FT-IR, 1H-NMR, and
EA. Furthermore, the structure changes of solid residues are also discussed.

Keywords: lignin; supported metal phthalocyanine; lignin degradation; liquid products

1. Introduction

Facing the problem of energy shortage and environmental pollution caused by exces-
sive consumption of fossil energy, it is especially important to development and employ
sustainable renewable resources such as renewable biomass resources. According to the
predictions of the International Energy Agency (IEA), bioenergy will account for about 10%
of total primary energy use by 2035, and by 2050, bioenergy will account for around 27% of
the world’s total transport energy [1]. Thus, it can be seen that there is considerable urgency
and demand for biomass renewable energy that can replace traditional fossil energy. One
of the most popular approaches is to utilize industrial waste lignocellulose [2].

Lignin is the most abundant three-dimensional phenolic polymer bearing three aro-
matic structures: syringyl (S), guaiacyl (G), and hydroxyphenyl (H) units. Each unit has
been verified to stem from one of the monolignols: p-hydroxycinnamyl, coniferyl alcohol,
and sinapyl alcohol [3,4]. The three basic monolignols are mainly linked by C-C or C-O
types; however, other chemical bonds are also presented in lignin such as aryglycerol-β-
ether dimer (β-O-4, accounting for 45–50%), biphenyl/dibenzodioxocin (5-5′, accounting
for 18–25%), pino/resinol (β-5, accounting for 9–12%), diphenylethane (β-1, accounting
for 7–10%), aryglycerol-α-ether dimer (α-O-4, 6–8%), phenylcoumaran (β-β′, 0–3%), and
siaryl ether (4-O-5, 4–8%) [5]. Because of this peculiar phenylpropanol structure, and
the recent emergence of biorefineries, lignin attracts global attention and was thought to
be a low-value energy source and a viable means to manufacture chemicals and biofu-
els [6]. However, various strategies have been implemented to transform lignin into small
chemicals via cleavage of C-C and C-O linkages [4].

Among these strategies, liquid phase catalytic degradation of lignin to produce small
chemicals has been found to be an effective measure because of the mild reaction conditions
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and high product selectivity. So far, numerous studies have examined the liquid phase
catalytic degradation of lignin [7,8], including acid-catalyzed [9–12] and base-catalyzed
depolymerization [13,14]. Although acid- and base-catalyzed depolymerization of lignin
have been studied extensively, there are still some drawbacks that need to be faced; for
instance, it is difficult to isolate the homogeneous acid and base catalyst after the reaction is
completed, thus resulting in environmental pollution. Furthermore, carbocation occurring
during acid-catalyzed depolymerization or the quinone structure formed during base-
catalyzed depolymerization favor the production char, and so reduce the selectivity of
aromatic monomers.

In order to avoid the disadvantages of acid- or base-catalyzed depolymerization, re-
searchers gradually started to use Fenton’s reagent for the lignin treatments. G. Bentivenga
et al. found that the application of FeSO4·7H2O/H2O2 could accelerate the degrada-
tion of lignin [15]. Francesc Torrades [16] and co-workers investigated the degradation
of black liquor using [Fe(II)]/[H2O2]; the best conversion of 94.8% was achieved when
[H2O2] = 44.1 mM, [Fe(II)] = 4.655 mM, at 298 K and pH = 3. Phisit Seesuriyachan et al. [17]
reported that only about 10% of lignin was present after the degradation using the syner-
gistic catalysts 7.61 mg/L Fe0, 9.89 mg/L Fe2+, 14.27 mg/L Fe3+, and 376.88 mg/L H2O2 at
pH = 3. Recently, some studies on the treatment of lignin with Fenton-like reagent have
been conducted. For instance, YuYun Lin and co-workers [18] investigated the cleavage
of a lignin model compound into aromatic chemicals using CuFe2O4@rGO-150 and H2O2;
the best yield of guaiacol was 72.6% and the best yield of 2-methoxy-4-propyl phenol was
52.5%. In these systems, OH· was generated from the decomposition of H2O2 by Fe2+

(or other transition metals) catalysis at low pH (−2–3) (Figure 1a); subsequently a large
number of subsequent reactions were triggered by HO· (Figure 1b) [19–22].
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It can be seen from the above that Fenton’s reagent or Fenton-like reagent has feasibility
in the depolymerization of lignin. In our previous literature investigation, we found that
metal phthalocyanines exhibit high catalytic capacity for various types of reactions [23]. Tao
X et al. found that the introduction of metal phthalocyanine can ensure the Fenton’s reagent
maintains high catalytic activity even under neutral or weakly alkaline conditions [24]. In
addition, in the metal phthalocyanine structure, the metal atom (M) binds to the N atom to
form M-N chelate; when the metal atom M is strongly anchored, this kind of structure can
avoid the metal loss and agglomeration. The above advantages of metal phthalocyanine
create possibilities for its further application to replace the traditional Fenton’s reagent. In
the presence of metal phthalocyanine or supported metal phthalocyanine, the generation
of HO· abidesby the principle described in Figure 2 [25,26]:
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Figure 2. The route for HO· generation.

Therefore, in the present study we aimed to synthesize the sulfonyl-chloride-modified
lignin-based porous carbon-supported metal phthalocyanine as a Fenton catalyst to replace
the traditional ferrous ion, and develop a new Fenton process for lignin degradation, taking
this supported metal phthalocyanine as the catalyst and H2O2 as the oxidant. The detailed
experiment process is summarized in Figure 3. This experiment injects new vitality into the
development of Fenton’s reagent; additionally, the research theoretically provides evidence
of the new technology for the resource utilization of lignin.
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2. Results and Discussions
2.1. Characterization of Catalyst
2.1.1. FTIR Analysis

The structural changes of FePc and FePc@SO2Cl-Clig were confirmed using FT-IR
analyses; the results are exhibited in Figure 4.



Molecules 2024, 29, 347 4 of 25

Molecules 2024, 29, x FOR PEER REVIEW 4 of 26 
 

 

The structural changes of FePc and FePc@SO2Cl-Clig were confirmed using FT-IR 
analyses; the results are exhibited in Figure 4. 

 
Figure 4. FT-IR spectra of FePc and FePc @ SO2Cl-Clig. 

The FT-IR spectra revealed that the characteristic peaks of FePc appeared at 1320 
cm−1, 1120 cm−1, and 740 cm−1, which are assigned to the vibration of the phthalocyanine 
ring [27,28]. Similar characteristic bands were exhibited obviously in the spectrum of 
FePc@SO2Cl-Clig, indicating that FePc clung to the surface of SO2Cl-Clig without changes 
in the chemical feature. A new weak signal derived from S-N stretching vibration 
appeared around 900 cm−1 [29], demonstrating that the FePc successfully introduced into 
the surface of SO2Cl-Clig via chemical reaction. 

2.1.2. XPS Analysis 

The surface composition of FePc@SO2Cl-Clig was investigated using X-ray 
photoelectron spectroscopy (XPS), and the spectra are illustrated in Figure 5. The N1s 
spectrum (A1) could be split into two main peaks at 399.2 eV and 401.2 eV, which 
correspond to N of C-N (399.2 eV) and S-N (401.2 eV) [30,31]; for Fe2p spectrum (A2), four 
sets of signals could be captured in the region of 700–730 eV, which is consistent with the 
2p3/2 orbital of Fe2+ (710.7 eV), 2p3/2 orbital of Fe3+ (714.6 eV), 2p1/2 orbital of Fe2+ (723.6 eV), 
and 2p1/2 orbital of Fe3+ (726.3 eV) [28,32,33]. Figure 5-A3 shows the spectrum of S 2p; a 
binding energy around 168.3 eV was observed, which is consistent with S 2p of typical 
sulphonamides [34,35]. It can be inferred from these data that iron phthalocyanine was 
successfully a�ached to the SO2Cl-Clig. Significantly, another sulfur signal at a binding 
energy around 164.2 eV corresponding to sulfoxide (–SO–) was captured, indicating that 
some of the sulfoxide was intact on the surface of the catalyst after acyl chlorination [36]. 

Figure 4. FT-IR spectra of FePc and FePc @ SO2Cl-Clig.

The FT-IR spectra revealed that the characteristic peaks of FePc appeared at 1320 cm−1,
1120 cm−1, and 740 cm−1, which are assigned to the vibration of the phthalocyanine
ring [27,28]. Similar characteristic bands were exhibited obviously in the spectrum of
FePc@SO2Cl-Clig, indicating that FePc clung to the surface of SO2Cl-Clig without changes
in the chemical feature. A new weak signal derived from S-N stretching vibration appeared
around 900 cm−1 [29], demonstrating that the FePc successfully introduced into the surface
of SO2Cl-Clig via chemical reaction.

2.1.2. XPS Analysis

The surface composition of FePc@SO2Cl-Clig was investigated using X-ray photoelec-
tron spectroscopy (XPS), and the spectra are illustrated in Figure 5. The N1s spectrum
(A1) could be split into two main peaks at 399.2 eV and 401.2 eV, which correspond to N
of C-N (399.2 eV) and S-N (401.2 eV) [30,31]; for Fe2p spectrum (A2), four sets of signals
could be captured in the region of 700–730 eV, which is consistent with the 2p3/2 orbital
of Fe2+ (710.7 eV), 2p3/2 orbital of Fe3+ (714.6 eV), 2p1/2 orbital of Fe2+ (723.6 eV), and
2p1/2 orbital of Fe3+ (726.3 eV) [28,32,33]. Figure 5-A3 shows the spectrum of S 2p; a
binding energy around 168.3 eV was observed, which is consistent with S 2p of typical
sulphonamides [34,35]. It can be inferred from these data that iron phthalocyanine was
successfully attached to the SO2Cl-Clig. Significantly, another sulfur signal at a binding
energy around 164.2 eV corresponding to sulfoxide (–SO–) was captured, indicating that
some of the sulfoxide was intact on the surface of the catalyst after acyl chlorination [36].

2.1.3. BET Analysis

To check the structure and morphology, BET analyses including specific surface areas
and pore volume were performed for SO2Cl-Clig and FePc@SO2Cl-Clig.

As shown in Figure 6, a steep slope can be seen when P/P0 was below 0.2. This can
confirm that the two N2 adsorption–desorption isotherms accord with the type I isotherm
adsorption and H4-type hysteresis loop; moreover, this can also imply that a large number
of micro-pores are present in the samples [37,38]. The detailed surface area and pore volume
of SO2Cl-Clig and PcFe@SO2Cl-Clig are listed in Table 1. The sample of FePc@ SO2Cl-Clig
displayed lower surface area and pore volume, that is, the specific surface area and pore
volume of two samples abide by a slight declining trend: SO2Cl-Clig > FePc@ SO2Cl-Clig.
When FePc was loaded on SO2Cl-Clig, the BET surface area decreased from 643.67 m2/g to
638.98 m2/g, while the total pore volume decreased from 0.337 cm3/g to 0. 291 cm3/g. This
drop in the BET surface area and the total pore volume may be because some pores of the
carrier were blocked by the FePc [39]. The pore size distribution curves of SO2Cl-Clig and
FePc@SO2Cl-Clig are displayed in Figure 7. For SO2Cl-Clig, one strong peak and two weak
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peaks can be seen in the range of 0.6–2.0 nm, but regarding FePc@SO2Cl-Clig, two strong
peaks can be observed in the range of 0.85–1.42 nm. The two plots confirmed the large
number of micro-pores, demonstrating that after the treatment by FePc, the pore structure
did not change significantly. Clearly, a peak around 4.84 nm in plot a and another peak
around 3.38 nm in plot b can be observed, which belong to meso-pores. Regarding porous
catalysts, micro-pores mainly provide sufficient activity sites for catalysts. Opportune
meso-pores enable efficient mass transport, and the catalytic performance can be improved
only if the balance is kept between active sites and mass transport [40].
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Table 1. Characterization of the porous texture of SO2Cl-Clig and PcFe@SO2Cl-Clig.

Samples SBET
(m2/g)

SMic
(m2/g)

Vtotal
(cm3/g)

VMic
(cm3/g)

SO2Cl-Clig 643.67 540.79 0.337 0.210
FePc@ SO2Cl-Clig 638.98 603.57 0.291 0.246
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2.1.4. SEM Analysis

SEM analysis was conducted to investigate the morphology changes in SO2Cl-Clig
and FePc@SO2Cl-Clig; the images are displayed in Figure 8.
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As shown in Figure 8a, the pore structure was clearly visible and more uniformly
dispersed on the surface of SO2Cl-Clig before the loading of FePc. It can be seen obviously
from Figure 8b that the sample already had abundant pores; however, when the samples
were magnified 2000 times, as shown in Figure 8c, it was clearly seen that some pores were
blocked by FePc, and this phenomenon confirmed the BET analysis.

2.2. Optimizing the Reaction Conditions

The degradation efficiency of lignin and the composition properties of liquid products
were significantly affected by various reaction conditions, such as reaction temperature,
reaction time, the type of catalyst and content, and the feedstock content [41]. In this study,
the effects of catalyst content, reaction time, and hydrogen peroxide concentration on the
degradation efficiency of lignin were investigated; the results are displayed in Figures 9–11.



Molecules 2024, 29, 347 7 of 25

Molecules 2024, 29, x FOR PEER REVIEW 7 of 26 
 

 

Figure 8. SEM images of SO2Cl-Clig and FePc@SO2Cl-Clig ((a). SO2Cl-Clig; (b). FePc@SO2Cl-Clig; (c). 
FePc@SO2Cl-Clig; magnified 2000 times). 

As shown in Figure 8a, the pore structure was clearly visible and more uniformly 
dispersed on the surface of SO2Cl-Clig before the loading of FePc. It can be seen obviously 
from Figure 8b that the sample already had abundant pores; however, when the samples 
were magnified 2000 times, as shown in Figure 8c, it was clearly seen that some pores were 
blocked by FePc, and this phenomenon confirmed the BET analysis. 

2.2. Optimizing the Reaction Conditions 

The degradation efficiency of lignin and the composition properties of liquid prod-
ucts were significantly affected by various reaction conditions, such as reaction tempera-
ture, reaction time, the type of catalyst and content, and the feedstock content [41]. In this 
study, the effects of catalyst content, reaction time, and hydrogen peroxide concentration 
on the degradation efficiency of lignin were investigated; the results are displayed in Fig-
ures 9–11. 

 
Figure 9. Effects of catalyst contents on the liquid product yields and the selectivity of phenolic 
compounds (catalyst contents: 0 wt%, 0.5 wt%, 1.5%, 2.5 wt%, 3.5 wt%, 4.5 wt%; H2O2 concentration: 
15 × 10−2 mol/L; reaction time: 120 min; T = 135 °C pH = 3.0.). 

 
Figure 10. The effects of hydrogen peroxide concentrations on the yield of liquid products and the 
selectivity of phenolic compounds (catalyst contents: 3.5 wt%; H2O2 concentration: 0 mol/L, 2.5 × 

Figure 9. Effects of catalyst contents on the liquid product yields and the selectivity of phenolic
compounds (catalyst contents: 0 wt%, 0.5 wt%, 1.5%, 2.5 wt%, 3.5 wt%, 4.5 wt%; H2O2 concentration:
15 × 10−2 mol/L; reaction time: 120 min; T = 135 ◦C pH = 3.0.).
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Figure 9 illustrates the catalyst content effects on the liquid product yields and phenol
selectivity. As is known, most of the reactions were affected by the activity sites and basic
properties of the catalysts. Keeping this in mind, six different catalyst concentrations
were tried in this work: 0 wt%, 0.5 wt%, 1.5 wt%, 2.5 wt%, 3.5 wt%, and 4.5 wt%. It can
be observed from Figure 9 that with the increase in catalyst content, the yield of liquid
products and the selectivity of the phenols were both higher compared to those of the
non-catalyst degradation. A maximum liquid product yield of 38.94% was observed when
3.5 wt% of catalyst was employed, while the selectivity of the phenols also reached the
highest value of 32.58%. When the catalyst content increased to 4.5 wt%, the liquid product
yield and the selectivity of the phenols both decreased.

These observations implied that the proper amount of the catalyst had a significant
contribution to the yields of liquid products and the selectivity of the phenols. Once the
amount of the catalyst increases beyond the optimum value, the yields of liquid products
and the selectivity of the phenols may decrease. The catalyst not only can offer ample
activity sites, but also facilitate the generation of HO· (hydroxyl) and HOO· (perhydroxyl)
radicals from H2O2, and HO· can weaken the C-O or C-C linkages in lignin, subsequently
resulting in the conversation of lignin into phenolic compounds and other small chemi-
cals [42]. In this study, the maximum proportion of the phenolic compounds was found
with 3.5 wt% of catalyst, suggesting that this amount of catalyst favored the generation
of the amount of available OH·, and so enhanced the breaking of the C-O or C-C bonds
in lignin. When the amount of catalyst exceeded 3.5 wt%, the production of more OH·
contributed to the over-oxidation of the aromatic products and the coupling and condensa-
tion of the intermediates, thereby reducing the yield of liquid products and proportion of
phenolic compounds [18].

Figure 10 illustrates the influence of the amount of hydrogen peroxide on the yield of
liquid products and the selectivity of phenolic compounds. Six different levels (0 mol/L,
2.5 × 10−2 mol/L, 5 × 10−2 mol/L, 10 × 10−2 mol/L, 15 × 10−2 mol/L, 20 × 10−2 mol/L)
were used with 3.5 wt% of catalyst at 135 °C and pH 3.0 for 120 min. Similar changing trends
were observed for the yield of liquid products and the selectivity of phenolic compounds
with the increase in the H2O2 concentration from 0 mol/L to 20 × 10−2 mol/L. The yield
of liquid products and the selectivity of phenolic compounds increased as the hydrogen
peroxide concentration increased from 0 mol/L to 15 × 10−2 mol/L. A maximum yield
of 38.94% and a highest selectivity of 32.58% were obtained when 15 × 10−2 mol/L of
hydrogen peroxide was used, further increasing the hydrogen peroxide concentration and
resulting in a non-obvious change in liquid product yields, but the selectivity of phenolic
compounds obviously decreased.

At a lower H2O2 concentration, the generation of HO· was not enough to induce
the reaction. With the increase in the hydrogen peroxide concentrations, more HO· was
generated; thus, more C-O or C-C linkages were weakened and finally cracked to form
phenols or other chemicals [43,44]. However, when the hydrogen peroxide exceeded the
optimum concentration, the excessive hydrogen peroxide could react with HO· to form
more HO•

2 radicals, which had a weaker activity compared to HO·. Furthermore, the
concentration of HO· was reduced by the reaction with H2O2, which slowed, or even
stopped, the breaking of chemical bonds in lignin (the detailed reactions are described as
Formulas (1) and (2)) [16,45,46]. Therefore, the yield of liquid products and the selectivity
of phenolic compounds did not increase further when 20 × 10−2 mol/L hydrogen peroxide
was used.

H2O2 + HO → H2O + HOO· (1)

HOO·+ HO → H2O + O2 (2)

The yield of liquid products and the selectivity of phenolic compounds achieved at
different reaction times are illustrated in Figure 11. A gradual increase was observed in
the yield of liquid products and the selectivity of phenolic compounds with the increase
in the reaction time to 2 h. When the reaction time was 2 h, the two values reached their
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maximum; with the further increase in the reaction time to 160 min and 200 min, the yield
of liquid products and the selectivity of phenolic compounds declined significantly. When
the reaction time was 200 min, the yield of liquid products and the selectivity of phenolic
compounds exhibited their lowest values of 27.21% and 22.83%, respectively. This indicates
that when the reaction time exceeded the optimal time of 2 h, it was not conducive to
breaking the C-O or C-C linkage in lignin [47]. These variation trends suggest that as the
reaction time increased, more HO· was generated, and the over-oxidation of the phenolic
compounds, as well as the coupling and condensation of intermediates, became more
pronounced [48,49].

2.3. Analysis of Liquid Products
2.3.1. GC-MS Analysis

The reaction process and the properties of liquid products were mainly examined
under five different catalyst concentrations (0.5 wt%, 1.5 wt%, 2.5 wt%, 3.5 wt%, 4.5 wt%).
The liquid products obtained were extracted with ethyl acetate, and the ethyl acetate-
soluble aqueous phases are shown in Figure 12. The product distributions were detected
via GC-MS, and the results are displayed in Figure 13.
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Figure 13. GC-MS of the depolymerization products from different catalyst concentrations ((a): 0.5 wt%,
(b): 1.5 wt% (c): 2.5 wt%, (d): 3.5 wt%, (e): 4.5 wt%. H2O2 concentration: 15 × 10−2 mol/L; reaction
time: 120 min; T = 135 ◦C; pH = 3.0).

All the samples exhibited different colors in Figure 12, and when the content of catalyst
increased, the colors turned from light yellow to dark brown. From Figure 13 we can see
that the degradation products obtained when using diverse catalyst concentrations had
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obvious differences. The products detected mainly included phenolic compounds, esters,
and aldehydes, etc. The detailed information for the degradation products is summarized
in Table 2.

Table 2. GC-MS analysis results for bio-oils using different catalyst contents.

Retention
Time/s

Compound Name
Catalyst Concentrations (wt%)
Quantitative Content (Area %)

0.5 1.5 2.5 3.5 4.5

5.712 Propanoic acid, 3-mercapto-, methyl ester - 0.14 - - 0.35
5.958 Propanoic acid, ethyl ester 5.54 17.42 65.18 51.59 59.06
8.344 Acetic acid, butyl ester 0.33 0.92 3.28 2.65 2.92
8.489 Acetosyringone 0.82 0.84 1.49 1.38 1.88
10.753 Cyclohexanone - 0.17 0.11 0.08 -
12.449 2-Anthracenamine 0.08 - - - -
13.431 Phenol 0.16 0.24 3.11 4.22 3.70
13.734 1,2,4-trimethoxybenzene - 0.14 0.46 0.41 0.49
15.611 Eicosyl nonyl ether - 0.09 - - -
16.818 Phenol, 2-methoxy- - 0.61 0.72 1.56 0.61
16.923 Mequinol 0.13 - - - -
18.42 formic acid - - 0.16 0.10 0.14
19.095 2-Isopropylpyrazine - - 0.08 - -
19.765 Dodecane - 0.13 - - -
20.154 Formic Acid, 4-methoxyphenyl ester - 0.08 - - -
20.408 Benzofuran, 2,3-dihydro- 13.72 48.16 - - -
20.44 Benzaldehyde, 3,4-dimethyl- - - 0.74 1.23 0.24
21.202 Benzonitrile, 2-(4-methylphenyl)- - - - - 0.11
21.375 Benzene, 1,3-bis(1,1-dimethylethyl)- 0.16 0.94 0.27 0.16 0.40
21.655 Naphthalene, 2,6-bis(1,1-dimethylethyl)- 0.27 1.05 2.56 5.78 5.41

21.985 (S)-(−)-2-Amino-3-phenyl-1
-propanol - - - 0.09 -

21.991 Dodecane, 1-iodo- - 0.40 - - 0.11
22.004 1,4-Benzenediamine, N,N′-bis(1-methylethyl)- 0.18 - - - -
22.363 Octane, 2,3,6,7-tetramethyl- - 0.07 - - -
22.666 Ethanone, 2-(2-benzothiazolylthio)-1-(3,5-dimethylpyrazolyl)- - - - - 0.09
22.737 Acetaldehyde, bis(1-methylethyl)hydrazone 0.11 0.27 - - -
22.809 Benzaldehyde, 2,4,5-trimethyl- - - - - 0.07
23.198 Linoleic acid, ethyl ester - - 0.18 0.17 -
23.204 Undecanoic acid - - - 0.18
23.21 Hexadecane, 1-iodo- - - -- -
24.119 Phenol, 2,6-dimethoxy- - - 2.15 10.78 0.90
25.186 Tetradecane 0.12 0.68 - - -

25.556 [1,2,4]Oxadiazole,
5-(4-tert-butylphenoxymethyl)-3-(thiophen-2-yl)- - - - - 0.224

25.632 Benzaldehyde, 4-hydroxy- 0.29 - - - -
25.798 Benzaldehyde, 3-hydroxy-4-methoxy- 0.47 5.38 - - -
26.872 desaspinidol - - 0.52 0.84 0.69

27.049 3-Ethyl-2,6,10-
trimethylundecane - 0.33 - - -

27.072 Dimethyl phthalate - - 0.34 0.20 0.12
27.472 2-Heptanone, 3-propylidene- - - - 0.12 -
27.753 Tetradecane, 2,6,10-trimethyl- - 0.25 - - -
27.982 Octacosane, 1-iodo- 0.362 1.62 - - -
27.993 Hexacosane - - - - 0.18
27.999 2,3-Dimethoxyphenol - - - 0.08 -
28.056 Phenol, 3,4-dimethoxy- - - - 0.18 -
28.062 Pentadecane - 0.69 - - -
28.073 Nonahexacontanoic acid - - - - 0.20
28.216 Vanillin - - - - -
28.545 2,4-Di-tert-butylphenol 3.01 10.12 15.73 14.84 17.08
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Table 2. Cont.

Retention
Time/s

Compound Name
Catalyst Concentrations (wt%)
Quantitative Content (Area %)

0.5 1.5 2.5 3.5 4.5

29.075 Eicosane - 1.11 - - 0.07
29.083 Decane, 3,8-dimethyl- 0.29 - - - -
29.311 Vanillin 0.11 0.42 - - -
30.351 Hexadecane 0.21 0.54 - - -
30.362 Pyrrolidine, 1-(1-cyclohexen-1-yl)- -- - - - 0.11
30.366 Benzaldehyde, 4-(methylthio)- - 0.20 - 0.07 -
31.089 Eicosane - 0.42 - - -
31.118 3-Methoxy-4-[3-oxo-3-(pyrrolidin-1-yl)propoxy]benzaldehyde - - - - 0.28
31.93 Dotriacontane - 0.51 - - -
31.966 Tetracosane, 1-iodo- 0.19 - - - -
32.073 Octadecane - 0.55 - - -
32.104 Docosane, 1-iodo- 0.14 - - - -
32.514 Heneicosane 0.78 3.09 - - -
32.554 Hexanoic acid, 4-tridecyl ester - - - 0.83 1.04

Table 2 shows that some chemicals accounted for more of the total integral area, such
as propanoic acid ethyl ester, acetic acid butyl ester, acetosyringone, phenol, 2,6-bis(1,1-
dimethylethyl)- naphthalene, and 2,4-di-tert-butylphenol. Those chemicals were watched
in the products obtained when different catalyst concentrations were chosen. When the
catalyst concentration was 0.5 wt%, the main compound was 2,3-dihydro-benzofuran,
which shared 13.72% of the total integral area. The second compound was propanoic
acid ethyl ester, which accounted for 5.54% of the total integral area. Next was 2,4-di-
tert-butylphenol, which made up 3.01% of the total integral area. Regarding the catalyst
concentration of 1.5 wt%, the compound 2,3-dihydro-benzofuran made up most of the
total integral area, that is 48.16%; this was followed by propanoic acid ethyl ester and
2,4-di-tert-butylphenol, which accounted for the total integral area of 17.42% and 10.12%,
respectively. The compounds 3-hydroxy-4-methoxy-benzaldehyde and heneicosane shared
5.38% and 3.09% of the total integral area. Regarding the catalyst concentration of 2.5, 3.5,
and 4.5 wt%, the compound propanoic acid ethyl ester all shared most of the total integral
area, that is 65.18%, 51.59%, and 59.06%, respectively; next was 2,4-di-tert-butylphenol,
which accounted for the total integral area of 15.73%, 14.84%, and 17.08%, respectively.

It is worth noting that as the catalyst concentration increased to 3.5 wt%, the total pro-
portion of the phenolic compounds reached a maximum. The kind of phenolic compound
also changed, and the obtained phenolic compounds included phenol, 2-methoxy-phenol,
2,4-di-tert-butylphenol, 2,3-dimethoxyphenol, 3,4-dimethoxy-phenol, and 2,6-dimethoxy-
phenol. 2,4-di-tert-butylphenol accounted for the maximum proportion of total integral
area, that is, 14.84%; 2,6-dimethoxy-phenol accounted for 10.78% of the total integral area.
The compounds 2,3-dimethoxyphenol and 3,4-dimethoxy-phenol accounted for relatively
less of the total integral area, and could only be identified in the case of 3.5 wt% catalyst
treatment. Regarding 2,4-di-tert-butylphenol, with the increase in the catalyst content from
0.5 wt% to 4.5%, its proportion increased from 3.01% to 17.08%, indicating that this catalyst
encouraged the production of 2,4-di-tert-butylphenol. Regarding phenol, with the increase
in the catalyst content from 0.5 wt% to 4.5%, its proportion increased from 0.16% to 4.22%
first and then declined to 3.7% when 4.5 wt% of catalyst was used. When 0.5 wt% and
1.5 wt% of catalyst was used, there was no 2,6-dimethoxy-phenol, and when the amount
of catalyst increased from 2.5 wt% and 3.5 wt%, the proportion of 2,6-dimethoxy-phenol
increased to 2.15% and 10.78%, respectively. However, when the catalyst concentration
further increased to 4.5 wt%, the proportion of 2,6-dimethoxy-phenol declined to 0.9%. The
proportions of 0.61%, 0.72%, and 1.56% for 2-methoxy-phenol could be observed when
the catalyst was 1.5 wt%, 2.5 wt%, and 3.5 wt%, respectively. When the catalyst concen-



Molecules 2024, 29, 347 12 of 25

tration was further increased to 4.5%, its proportion decreased to 0.61%. As discussed
above, the greater catalyst content can accelerate more HO· generated from H2O2, and the
excessive HO· can result in the over-oxidation of the phenols (Figure 14a, taking phenol
for instance) [49], thereby increasing the proportion of the phenols reduced when the cata-
lyst concentration further increased. The identified aromatic monomers are summarized
in Figure 14b.
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2.3.2. FT-IR and 1H-NMR Analysis

In order to further confirm the components of the degradation products, FT-IR analysis
and 1H-NMR analysis were conducted; the spectra are displayed in Figures 15 and 16,
respectively.
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15 × 10−2 mol/L; T = 135 ◦C; pH = 3.0).

As shown in Figure 15, the products had relatively similar chemical groups, and the
position of each vibrational peak was basically the same. These results imply that the
main composition categories of the products were alike. The wide band at 3480 cm−1 was
assigned to the combination and overlap of the stretching vibrations of O-H, =C-H, and
N–H in aromatic or aliphatic groups, implying the presence of phenols or benzene in the
products. At 2938 and 2841 cm−1, the weak vibration peaks of aliphatic C-H were generated
by the asymmetric stretching vibration of C-H and symmetric stretching vibration of methyl
and methylene, respectively, indicating the formation of saturated aliphatic hydrocarbons
from lignin depolymerization [50]. The small and broad bands around 1702 cm−1 were due
to the stretching vibration of C=O from ketone or carboxylic acid derivatives. The peaks
around 1590 and 1505 cm−1 were assigned to the vibrations of C=C bonds in the aromatic
skeleton. These results showed that the aromatic skeleton structure of lignin was well
retained in the products [51], and these aromatic skeletons mainly existed in the form of
phenols or phenol derivatives. The signals appearing at 1273 and 1120 cm−1 were regarded
as Ar-O linkages of methoxy groups containing the phenols. Ester groups were confirmed
by the peak at 1028 cm−1 [52].
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However, some differences could be found in products obtained with different quan-
tities of catalysts: (1) The intensity of the peak at 3480 cm−1 was relatively higher for the
products obtained with 3.5 wt% catalysts, suggesting that, under this condition, more β-O-4
linkages were cracked to yield phenolic compounds. (2) The intensity of the peaks at 1273,
1120, and 1028 cm−1 was also higher in products with 3.5 wt% catalyst compared to that in
the products with 0.5 wt% to 2.5 wt% catalysts, verifying the above analysis results. (3) The
intensity of the peaks at 1273, 1120, and 1028 cm−1 in products with 3.5 wt% catalysts
was somewhat similar to that in the products with 4.5 wt% catalysts, according to GC-MS
analysis. With the increase in catalyst content from 3.5 wt% to 4.5 wt%, the proportion
of the phenolic compounds only dropped slightly from 32.58% to 22.29%. As a result, a
similar FT-IR spectrum was gained. (3) The intensity of the peaks at 1028 cm−1 enhanced
gradually in the products using 0.5 wt% to 2.5 wt% catalyst, and was finally similar to that
of the products with 3.5 wt% and 4.5 wt% catalyst. According to the GC-MS results, when
0.5 wt% and 1.5 wt% catalyst were used, the proportion of major ester compounds was
5.54% and 17.64%, respectively; when the amount of catalyst increased to 2.5 wt%, 3.5 wt%,
or 4.5 wt%, the proportion of major ester compounds increased to about three or four times.
This well explained the FT-IR changes for the intensity of the peaks at 1028 cm−1.

Clearly, the proton signals were mainly distributed in four regions: δ0.8–1.9 ppm,
δ3.3–4.0 ppm, δ6.0–8.0 ppm, and δ9.5–11 ppm. The peaks occurring at δ0.8–1.9 ppm
were assigned to methyl and methylene mainly from the aliphatic chain. The next strong
signal, appearing at δ3.3–4.0 ppm, was attributed to the protons from methoxy [47,53]. It
is obvious that a relatively high proportion of methoxy protons could be captured with
3.5 wt% catalyst. On the one hand, this phenomenon confirms the presence of a high area of
methoxy chemicals such as 2,6-dimethoxy-phenol, 2-methoxy- phenol, and acetosyringone.
On the other hand, the presence of the compounds 2,6-dimethoxy-phenol and 2-methoxy-
phenol can concurrently prove the breaking of guaiacol and syringol sub-aromatic units of
lignin under the action of the catalyst. The presence of aromatic protons was verified by
the signals between the regions of 6.0 and 8.0 ppm [54], which exhibited the presence of the
aromatic compounds such as phenol, 2-methoxy-phenol, acetosyringone, 2,6-dimethoxy-
phenol, and 2,4-di-tert-butylphenol. The relatively high proportion of aromatic protons
was observed in the case of 3.5 wt% catalyst, which is in agreement with the GC-MS results.
The weak peaks observed at δ9.5–11 ppm were attributed to the protons form aldehyde
or acidic groups, which validated the GC-MS analysis of the emergence of formic acid,
3,4-dimethyl-benzaldehyde, etc.

2.3.3. Elemental Analysis

The elemental compositions in the liquid products were investigated and the results
are shown in Table 3.

Table 3. The elemental compositions of liquid products obtained from different catalyst contents.

Samples Elemental Composition (wt%) HHV
(MJ/kg)C H O N

Lignin 61.3 6.4 29.1 1.7 20.5
0.5 wt% catalyst 63.2 6.9 26.7 0.9 23.3
1.5 wt% catalyst 65.5 6.8 25.2 0.7 24.9
2.5 wt% catalyst 66.9 6.8 24.7 0.6 27.1
3.5 wt% catalyst 69.2 7.0 21.8 0.7 30.2
4.5 wt% catalyst 68.6 7.2 22.4 0.6 29.0

The elemental analysis results showed that the content of carbon increased in liquid
products compared to that in lignin. The highest carbon content was obtained when 3.5 wt%
catalyst was used, and the hydrogen content increased slightly compared to that in lignin.
The oxygen content decreased compared to that in lignin, and the lowest oxygen content
of 21.8% was found in the products with 3.5 wt% catalyst. This result implies that the
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deoxygenation or decarbonylation were improved by the catalyst [54]. Additionally, the
‘higher heating value’ (HHV) was enhanced in products, with lignin showing HHV of
20.5 MJ/kg. The value of HHV increased to 23.3–30.2 MJ/kg in the products and the
highest HHV of 30.2 MJ/kg was found in the products with 3.5 wt% catalyst. As is known,
the higher content of carbon can result in a higher HHV value [55].

2.4. Characterization of the Solid Residue Fractions
2.4.1. FT-IR Analysis

To investigate the changes in the chemical structures of lignin before and after the
FePc@SO2Cl-Clig treatment, FT-IR analyses of lignin and residues were performed and the
results are depicted in Figure 17.
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(reaction time:120 min; H2O2 concentration = 15 × 10−2 mol/L; T = 135 ◦C; pH = 3.0).

The peaks occurring around 3400–3500 cm−1 were assigned to O-H stretching vibra-
tion. The weak peaks at 2938 cm−1 and 2839 cm−1 issued from C-H stretching vibrations
in methyl and methylene groups [56]; the signals around 1705 cm−1 were attributed to the
ester groups; and the weak peak at 1630 cm−1 corresponded to C=O stretching of carbonyl.
The bands at 1591, 1504, and 1425 cm−1 were attributed to the skeletal vibrations of the
benzene ring, and the peaks appearing at 1121 cm−1 and 1152 cm−1 corresponded to the
C-O-C stretching vibration [57];

As is well known, the solid residues were mainly generated from the decomposition
of the lignin and polycondensation of the intermediates. In comparison, some dramatic
changes can be discovered for the solid residues: (1): The intensity in the region corre-
sponding to the skeletal vibrations of the benzene ring slightly declined. The presence of
this region pointed to the fact that the solid residues retained the core structure of lignin;
furthermore, the weaker intensity of these peaks indicated the degradation of lignin after
FePc@SO2Cl-Clig treatment. (2) The weak peak observed in lignin at 1630 cm−1, corre-
sponding to C=O stretching of carbonyl, disappeared in solid residues, suggesting that
the de-carbonylation reaction occurred during the degradation of lignin. (3) The typical
signals for C-O-C stretching vibrations at 1121 cm−1 and 1152 cm−1 became weaker, re-
spectively, indicating that the β-O-4 ether bond cleaved during the degradation process
under the action of FePc@SO2Cl-Clig. (4) The band at 1220 cm−1 in lignin shifted to a lower
wavenumber of 1216 cm−1 in the solid residues, indicating some new structures generated
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during the degradation process. (5) Some new peaks were observed in solid residues at
1281 cm−1 and 1034 cm−1, which also indicated that the new structures were formed; this
was because, during degradation, the small intermediate molecules reacted with the chains
of lignin and generated new chain structures [58].

2.4.2. 1H-NMR Analysis

In order to gain further information about the structure changes of lignin and solid
residues, 1H-NMR analysis was conducted, and the results are displayed in Figure 18.
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As can be seen from Figure 18, lignin exhibited strong peaks as compared to the
solid residues. For lignin, the strong signals mainly occurred at four regions: the signals
corresponding to methylene groups of the aliphatic chain were observed at the region from
1 to 1.3 ppm; the methoxyl group signals occurred around 3.7 ppm; the signals appearing
at 4–5.3 ppm were assigned to H-α and H-β in β-O-4 substructures; and the typical signals
corresponding to aromatic protons were observed in their regions of 6.5–7.5 ppm [59,60].
However, for solid residues, the signals for methoxyl groups around 3.7 ppm and the
typical signals corresponding to aromatic protons between 6.5 and 7.5 ppm diminished
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significantly. Furthermore, the signals assigned to β-O-4 substructures almost disappeared
compared with lignin. The findings further confirmed the FT-IR results, also indicating that
the breaking of β-O-4 linkages was improved by FePc@SO2Cl-Clig.

2.4.3. GPC Analysis

To investigate if the degradation of lignin increased under the treatment of FePc@SO2Cl-
Clig, the molecular weights of lignin and solid residues obtained at different reaction times
(40 min, 80 min, 120 min, 150 min) were measured with the assistance of GPC analysis.
The reported data including weight-average (Mw) and number-average (Mn) molecular
weights and polydispersityare (Mw/Mn) of lignin and solid residues, which are listed
in Table 4.

Table 4. Weight-average (Mw) and number-average (Mn) molecular weights, and polydispersity
(Mw/Mn) of lignin and solid residues (catalyst: 3.5 wt%; reaction time:40 min, 80 min, 120 min,
150 min; H2O2 concentration = 15 × 10−2 mol/L; T = 135 ◦C; pH = 3.0).

Samples Mw (g/mol) Mn (g/mol) Mw/Mn

Lignin 66,671 36,726 1.81

Residues (40 min) 62,256 36,208 1.72

Residues (80 min) 41,063 27,202 1.51

Residues (120 min) 31,421 25,633 1.22

Residues (150 min) 33,468 14,597 2.29

During the degradation process of lignin, small molecule chemicals, superpolymers,
or char could all be formed by a range of reactions. In this process, the degradation of
lignin and the polycondensation of intermediates take place simultaneously and compete
with each other. The cleavage of β-O-4 results in the reduction in the molecular weight;
conversely, the formation of superpolymers or char may result in an increase in the molec-
ular size [61]. As can be seen from Table 4, lignin had an Mw of 66,671 g/mol and the
polydispersityare value was 1.81. In comparison, a distinct reduction in the molecular
weight for solid residues was observed; the value of Mw fell by almost half for the solid
residues obtained at 80 min and 120 min. However, the molecular weight showed a slight
increase to 33,468 g/mol for the solid residues obtained with 150 min reaction time. This
can be explained because the polycondensation gradually became the major reaction at this
stage. At the same time, the polydispersity index of solid residues declined to 1.51 and 1.22
when the reaction time was 80 min and 120 min, demonstrating that the molecular weight
distributions of solid residues were relatively narrow at this two stage. The index then
increased to 2.29 with the extension in reaction time to 150 min. This phenomenon also
confirmed that the polycondensation reaction was dominant at this stage. In addition, the
low polydispersity index values (<3) manifested that lignin molecularly belongs to a kind
of uniform-sized polymer [62]. All these changes validate that the lignin was subjected to
the cleavage of the ether bonds when using FePc@SO2Cl-Clig as a catalyst.

2.4.4. SEM Analysis

SEM analysis was performed to investigate the native microstructure alteration of
lignin during the degradation process at different reaction times (40 min, 80 min, 120 min,
150 min); the results are depicted in Figure 19.
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As can be seen from Figure 19a, the original lignin had a relatively smooth and tight
surface structure. When the reaction time was increased to 40 min (Figure 19b), the smooth
surface was slightly destroyed; some shallow pits were observed and a small amount of
dross was deposited on the surface. This observation indicated that the degradation of
lignin begins on the surface. At the same time, this GPC analysis result made it clear that
when the reaction time was 40 min, the Mw value only fell slightly to 62,256 g/mol; with
a further increase in reaction time to 80 min (Figure 19c), the surface damage intensified
and some deeper pits arose. Magnification of this figure (Figure 19d) shows that more
fragments attached on the surface or in the pits. This phenomenon demonstrated that
at this stage the main reaction was depolymerization. When the reaction time continued
to increase to 120 min (Figure 19e), slight caking could be captured. This implies that
the coupling and polycondensation reaction gradually began to become obvious with the
increase in the reaction time. When the reaction time was further increased to 150 min
(Figure 19f), conglomerations could be observed. The longer time promoted the coupling
and polycondensation to a much greater extent. Combined with the GPC analysis, this also
explained why the weight average of solid residues increased after the reaction time of 2 h.

3. Experimental
3.1. Materials

The key experiment reagents are listed as follows:
Lignin (prepared in the lab); iron chloride hexahydrate (FeCl3·6H2O), hydrogen per-

oxide (H2O2), thionyl chloride (SOCl2), 4-nitrophthalic acid (C8H5NO6), urea (CO(NH2)2),
sodium sulfide (NaS2·9H2O), and N,N-dimethylformamide (C3H7NO) were provided by
Aladdin. Potassium hydroxide (KOH, purity of ≥98%), sodium hydroxide (NaOH, purity
of ≥97%), sulfuric acid (H2SO4, concentration of 98%), and ethanol (C2H5OH, 99.9%) were
provided by JiKun Chemicals Company (Nanning, China).

3.2. Experimental Procedure
3.2.1. Catalyst Preparation
Manufacture of Sulphonyl Chloride Derivative of Lignin-Base Carbon

Lignin used in this work was refined from black pulping liquor with H2SO4 (concen-
tration: 65%) and then dried at a constant temperature of 105 ◦C for 12 h. The sulphonyl
chloride derivative of lignin-base carbon was synthesized via three steps: carbonization,
sulfonation, and acyl chlorination. First, carbonization of lignin was conducted in a tube
furnace under the protection of N2. Lignin and KOH were placed in a nickel disc in pro-
portion and then placed in a tube furnace; the tube furnace was heated to 550 ◦C with
the ramp rate of 15 ◦C/min and finally maintained for 90 min. After the reaction, the
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obtained black sample (named Clig) was washed and filtered with hot water, then dried
at 105 ◦C for 12 h. Second, sulfonation of Clig was conducted in a three-necked round-
bottom flask under the protection of N2. Clig and H2SO4 were mixed in the round-bottom
flask in proportion, and the reaction was kept for 6 h at 150 ◦C. The final black sample
(named SO3H-Clig) was washed and filtered with water, and finally dried at 105 ◦C for 12 h.
Third, the sulphonyl chloride derivative was synthesized using the method in a previous
report [63]; SO3H-Clig and an overabundance of SOCl2 were added to the mixed solvents
of N,N′-dimethylformamide (DMF) and water. The reaction was performed at 90 ◦C for
24 h; then the residual SOCl2 and solvent were removed by distillation. The solid products
(named SO2Cl-Clig) were washed and dried for the next application. The synthesis method
of SO2Cl-Clig is described in Figure 20.

Molecules 2024, 29, x FOR PEER REVIEW 21 of 26 
 

 

Lignin used in this work was refined from black pulping liquor with H2SO4 (concen-
tration: 65%) and then dried at a constant temperature of 105 °C for 12 h. The sulphonyl 
chloride derivative of lignin-base carbon was synthesized via three steps: carbonization, 
sulfonation, and acyl chlorination. First, carbonization of lignin was conducted in a tube 
furnace under the protection of N2. Lignin and KOH were placed in a nickel disc in pro-
portion and then placed in a tube furnace; the tube furnace was heated to 550 °C with the 
ramp rate of 15 °C/min and finally maintained for 90 min. After the reaction, the obtained 
black sample (named Clig) was washed and filtered with hot water, then dried at 105 °C 
for 12 h. Second, sulfonation of Clig was conducted in a three-necked round-bo�om flask 
under the protection of N2. Clig and H2SO4 were mixed in the round-bo�om flask in pro-
portion, and the reaction was kept for 6 h at 150 °C. The final black sample (named SO3H-
Clig) was washed and filtered with water, and finally dried at 105 °C for 12 h. Third, the 
sulphonyl chloride derivative was synthesized using the method in a previous report [63]; 
SO3H-Clig and an overabundance of SOCl2 were added to the mixed solvents of N,N′-di-
methylformamide (DMF) and water. The reaction was performed at 90 °C for 24 h; then 
the residual SOCl2 and solvent were removed by distillation. The solid products (named 
SO2Cl-Clig) were washed and dried for the next application. The synthesis method of 
SO2Cl-Clig is described in Figure 20. 

 
Figure 20. The synthesis route of SO2Cl-Clig. 

The Synthesis of Iron Amino Phthalocyanine (FePc-NH2) 

Iron amino phthalocyanine was synthesized through two steps: first, iron tetranitro 
phthalocyanine was prepared according to a previous method [64]; second, the prepared 
iron tetranitro phthalocyanine was ammoniated by the reaction with sodium sulfide no-
nahydrate (NaS·9H2O) at 65 °C for 4 h to finally yield the objective product [65]. In this 
reaction, the molar ratio of iron tetranitro phthalocyanine and NaS·9H2O was 1:15. The 
final reaction mixture was treated with 0.5 M HCl and 1.0 M NaOH. The obtained blue-
green product (named FePc-NH2) was washed with water and ethanol, and dried at 65 °C 
for 12 h. The detailed synthesis route of FePc-NH2 is described in Figure 21. 

 
Figure 21. The synthesis route of iron amino phthalocyanine. 

Synthesis of Sulfonyl-Chloride-Modified Lignin-Based Porous Carbon-Supported Iron 
Phthalocyanine 

Figure 20. The synthesis route of SO2Cl-Clig.

The Synthesis of Iron Amino Phthalocyanine (FePc-NH2)

Iron amino phthalocyanine was synthesized through two steps: first, iron tetranitro
phthalocyanine was prepared according to a previous method [64]; second, the prepared
iron tetranitro phthalocyanine was ammoniated by the reaction with sodium sulfide non-
ahydrate (NaS·9H2O) at 65 ◦C for 4 h to finally yield the objective product [65]. In this
reaction, the molar ratio of iron tetranitro phthalocyanine and NaS·9H2O was 1:15. The final
reaction mixture was treated with 0.5 M HCl and 1.0 M NaOH. The obtained blue-green
product (named FePc-NH2) was washed with water and ethanol, and dried at 65 ◦C for
12 h. The detailed synthesis route of FePc-NH2 is described in Figure 21.
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Synthesis of Sulfonyl-Chloride-Modified Lignin-Based Porous Carbon-Supported
Iron Phthalocyanine

The above prepared SO2Cl-Clig and FePc-NH2 were added to a mixture of DMF and
H2O and sonicated for 2 h; then, the mixture was stirred for 72 h at 120 ◦C [30]. Finally,
the reaction mixture was filtered off, and the solid residues were washed with water and
acetone, and dried at 65 ◦C to yield a black-blue powder (named FePc@SO2Cl-Clig). The
synthesis route of FePc@SO2Cl-Clig is displayed in Figure 22.
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3.2.2. Treatment of Lignin with FePc@ SO2Cl-Clig

The final experiment was performed in a 150 mL reactor. First, the appropriate
amount of FePc@SO2Cl-Clig catalyst (catalyst-to-lignin ratio from 0 wt% to 4.5% wt%)
was dispersed in a combined solvent of water and acetonitrile; second, the appropriate
amount of lignin (1 g) was added to the above mixture, and the pH of the mixture was
adjusted to the designed value (pH = 3.0 in this work) with sulfuric acid. Subsequently,
the mixture was vibrated for 20–30 min to fully disperse the FePc@SO2Cl-Clig and lignin.
Finally, the mixture was transferred into the reactor; simultaneously, H2O2 (from 0 mol/L
to 20 × 10−2 mol/L) was added to the reaction mixture and the mixture was stirred at
135 ◦C for 40–200 min. After the reaction finished, the solid residues and liquid products
were gained by centrifugal separation; the liquid products were extracted by ethyl acetate
and then used for analysis.

3.3. Characterizations

The type of chemical functional group of the catalyst was recorded using Fourier
transform infrared spectroscopy (FTIR) on Nicolet IS10 (Waltham, MA, USA). Element
compositions and speciation were detected by X-ray photoelectron spectroscopy (XPS) on a
thermo EscaLab 250 Xi (Norristown, PA, USA). The BET surface area was tested using N2
adsorption/desorption isotherms (Quantachrome autosorb IQ-C analyzer, Boynton Beach,
FL, USA). The surface structure of catalysts was recorded using a Hitachi s-3400 Scanning
Electron Microscope (Hitachi, Tokyo, Japan).

Chemical distributions of degradation products were investigated via GC/MS chro-
matograms using an Agilent (Santa Clara, CA, USA) 6890A/5973N series instrument fitted
with a HP-5MS (30 m × 0.25 mm × 0.25 um) column. A quantity of 2 µL of sample was
injected into the system at 40 ◦C. The column was maintained at 40 ◦C for 2 min; the
first ramp was for 5 ◦C/min to 150 ◦C and maintained for 2 min, followed by a ramp for
8 ◦C/min to 280 ◦C, which was held for 5 min. Chemical structures and distributions of
degradation products were characterized by 1H-NMR determinations on an Agilent DD2
800 MHz NMR spectrometer (Santa Clara, CA, USA)with deuterated dimethyl sulfoxide
(Dimethyl sulfoxide-d6) as the standard solvent, and FTIR on a Nicolet IS10 (Waltham, MA,
USA). Element analysis (EA) was used to analyze the element compositions of the products.

The solid residues were characterized via FTIR on a Nicolet IS10 (Waltham, MA, USA).
1H-NMR determinations were carried out on an Agilent DD2 800 MHz NMR spectrometer
(Santa Clara, CA, USA) with deuterated dimethyl sulfoxide (Dimethyl sulfoxide-d6) as
the standard solvent. GPC analysis was conducted using a 1260 Infinity II GPC/MDS
instrument (Santa Clara, CA, USA) with DMF as mobile phase, and SEM analysis was
conducted on a Hitachi s-3400 Scanning Electron Microscope (Hitachi, Tokyo, Japan).

The liquid product yield was calculated as follows:

liquid product (wt%) = Wliquid/Wlignin × 100% (3)
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where Wlignin and Wliquid represent the weight of lignin and the weight of liquid products,
respectively.

The selectivity of the phenols was presented as the ratio of the peak area of the
corresponding products to the total area of the liquid products.

4. Conclusions

In this study, sulfonyl-chloride-modified lignin-based porous carbon-supported metal
phthalocyanine catalyst with a high surface area of 638.98 m2/g and a pore volume of
0.291 cm3/g was manufactured and employed for lignin degradation via Fenton reaction.
The catalyst exhibited good ester and phenol selectivity according to GC-MS analysis. The
highest liquid product yield of 38.94% and the highest phenol selectivity of 32.58% were ob-
served at 135 °C with 3.5 wt% of catalyst and 15 × 10−2 mol/L H2O2 for 120 min. The main
phenols were phenol, 2-methoxy-phenol, 2,4-di-tert-butylphenol, 2,3-dimethoxyphenol,
3,4-dimethoxy-phenol, and 2,6-dimethoxy-phenol. The analysis results for liquid products
showed that (1) the composition of liquid products was different under various catalyst
concentrations; and (2) the highest calorific value of 30.2 MJ/kg was acquired with 3.5 wt%
catalyst. The analysis results for solid residues showed that (1) the MW of residues was
almost half that of the lignin; and (2) the degradation of the lignin started on the sur-
face. These findings offer a significant theoretical reference for lignin degradation using a
lignin-based porous carbon-supported metal phthalocyanine catalyst via Fenton reaction.
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