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Abstract: In the field of nuclear medicine, the β+ -emitting 43Sc and β− -emitting 47Sc are promising
candidates in cancer diagnosis and targeted radionuclide therapy (TRT) due to their favorable decay
schema and shared pharmacokinetics as a true theranostic pair. Additionally, scandium is a group-
3 transition metal (like 177Lu) and exhibits affinity for DOTA-based chelators, which have been
studied in depth, making the barrier to implementation lower for 43/47Sc than for other proposed
true theranostics. Before 43/47Sc can see widespread pre-clinical evaluation, however, an accessible
production methodology must be established and each isotope’s radiolabeling and animal imaging
capabilities studied with a widely utilized tracer. As such, a simple means of converting an 18 MeV
biomedical cyclotron to support solid targets and produce 43Sc via the 42Ca(d,n)43Sc reaction has
been devised, exhibiting reasonable yields. The NatTi(γ,p)47Sc reaction is also investigated along
with the successful implementation of chemical separation and purification methods for 43/47Sc.
The conjugation of 43/47Sc with PSMA-617 at specific activities of up to 8.94 MBq/nmol and the
subsequent imaging of LNCaP-ENZaR tumor xenografts in mouse models with both 43/47Sc-PSMA-
617 are also presented.

Keywords: theranostics; PSMA-617; prostate cancer; mCRPC; PET; SPECT; TRT; Scandium-43;
Scandium-47; radioisotopes
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1. Introduction

In nuclear medicine, the field of theranostics is predicated upon the use of theranostic
pairs with a combination of complementary diagnostic and therapeutic capabilities that can
be used in tandem. Within a theranostic pair, the diagnostic radiopharmaceutical allows
for imaging and an accurate assessment of the state of the disease under study, while the
therapeutic radiopharmaceutical delivers the desirable radiation to treat the disease effectively.
When conjugated to a tumor-targeting ligand, these radionuclide pairs have demonstrated
high efficacy in identifying, staging, and treating patients with high-risk and advanced tumors
such as in metastatic castration-resistant prostate cancer (mCRPC) [1–4]. The greater the
similarity between these radionuclides regarding chemical, biological, and pharmacokinetic
properties in vivo, the greater the correlation between the acquired image and the delivered
radiotherapeutic dose, providing physicians a more accurate representation of treatment
progression [1–4].

Presently, 68Ga (t1/2 = 67.71(9) min) and 177Lu (t1/2 = 6.647(4) days) are clinically the
most commonly used theranostic pair [5–8]. Other radionuclides frequently evaluated
include the pairs of 131I/123I and 99mTc/90Y [1,9].

43Sc (t1/2 = 3.891(12) h) decays by β+ emission with an 88.1% branching ratio, and the
remaining decays occur through electron capture. Conversely, 47Sc (t1/2 = 3.3492(6) days)
decays entirely through β− emissions. Together, the complementary β+ and β− emissions
of 43Sc and 47Sc enable them to serve as a “true” theranostic pair for cancer therapy. The
scandium true theranostic pair has several distinct advantages over traditionally used
theranostic pairs, such as 68Ga and 177Lu: (1) As both radioisotopes are of the same
element, they benefit from identical radiolabeling and chemical processes, making any
production methods developed applicable to both nuclides; (2) radiopharmaceutical agents
with the same element have identical binding characteristics to the target and in vivo
pharmacokinetics, whereas tumor-targeting compounds labeled with nuclides of two
different elements may have differential biological, chemical, and metabolic properties.
As such, 43Sc positron emission tomography (PET) imaging provides improved fidelity
of the magnitude and location of dosage, reflecting more accurately its radiotherapeutic
counterpart, 47Sc, while PET images from one positron emitter, such as 68Ga, may not be
completely representative of the localization of a β− emitter of a different element such as
177Lu; (3) through the use of longer-lived isotopes, the applications of nuclear medicine can
be further broadened through the expansion of the PET imaging window [10,11]. 43Sc’s
half-life allows for extended imaging of the physiological and biological effects of this
theranostic pair as well as higher-quality images at later time points relative to 68Ga [12];
(4) 47Sc emits a 159 keV γ-ray that is near-optimal for single photon emission computed
tomography (SPECT) imaging [13–15]. While 44Sc has been more commonly investigated
and shown promise in the context of Sc-based theranostics, it has a distinct disadvantage in
the emission of a high-energy γ-ray (1157 keV, 100%) [13,15–18]. This γ-ray has the potential
to down-scatter into the PET energy window, diminishing the quality of its images and
depositing non-localized doses. In contrast, 43Sc provides a better quality of PET imaging
and reduced toxicity to adjacent healthy tissue without high energy γ-ray emissions [19,20].

The Argonne National Laboratory has previously conducted preliminary investi-
gations into the production of 47Sc using their Low-Energy Accelerator Facility (LEAF)
through the 48Ti(γ,p)47Sc reaction using natTiO2 targets, achieving typical yields between
111 and 185 MBq and > 1110 GBq/mg [21]. At the University of Chicago Cyclotron Facil-
ity, bombardment of enriched 42CaCO3 targets by the IBA Cyclone 18/9 system’s 9-MeV
deuteron beam produced 43Sc through the 42Ca(d,n)43Sc reaction, providing the foundation
for future routine production of 43Sc at other medical cyclotron facilities.

Small-molecule prostate-specific membrane antigen (PSMA) inhibitor, PSMA-617, in
conjunction with various radionuclides, namely 68Ga and 177Lu, has shown great promise
in the diagnosis and treatment of mCRPC with PSMA overexpression, making labeled
43/47Sc an ideal candidate for preclinical studies. These studies will lay the foundation for
further studies into potential radioscandium conjugation with other TRT ligands [5–8,17].
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This work aims to establish a method to produce 43Sc and 47Sc, label it with PSMA-
617 as 43Sc/47-Sc-PSMA-617, and investigate its utilization in a preclinical PSMA-positive
prostate cancer model via PET and SPECT imaging studies. The results of this proof-of-
concept study, a precursor to the full-fledged development of scandium theranostics, are
herein described.

2. Results and Discussion

2.1. Cyclotron-Based Production of 43Sc
2.1.1. Beam-Stop as a Target Holder

The synthesis of 43Sc can be accomplished through various production routes, with
the 42Ca(d,n)43Sc reaction being favorable due to its high yields at beam energies less
than 10 MeV and the relative affordability of 42Ca compared to the 43Ca utilized in the
43Ca(p,n)43Sc reaction [14,22–24]. Moreover, most cyclotrons geared towards PET-isotope
production are offered with the deuteron beam capability, making it a feasible production
route for many medical facilities.

In this study, an IBA Cyclone 18/9 cyclotron with deuteron capabilities was utilized.
While the cyclotron lacks a solid target station, it is outfitted with two beam stops: water-
cooled, aluminum, conically shaped stops capable of withstanding the maximum current of
the accelerator. To produce the nuclide, one of the beam stops was converted into a solid
target irradiation station through the design and fabrication of a solid target holder insert,
consisting of a backing aluminum disk (5 mm thickness) with a thin aluminum ring (1.5 mm
thickness) held against the disk with screws. The insert had a diameter of 16 mm and was
designed to fit snugly into the beam stop to ensure proper cooling (see Figures 1 and 2).
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blue, also exemplifying that the target-holder insert is loaded from the front of the beam stop (i.e., 
where the beam enters the beam stop when inserted) and cooling is provided by the back of the 
beam stop along the edges of the stepped cone. 

Figure 1. Schematic drawing of the target holder showing the backing disk and the ring that is joined
to the backing to hold the 42Ca powder. The holder’s location within the beam stop is marked in blue,
also exemplifying that the target-holder insert is loaded from the front of the beam stop (i.e., where
the beam enters the beam stop when inserted) and cooling is provided by the back of the beam stop
along the edges of the stepped cone.

To form the target, 42Ca powder was pressed and sandwiched between two graphite
foils, which were held against the aluminum backing disk with the ring before insertion
into the beam stop. A small amount of diffusion pump oil is also applied to the sides and
outer edge of the target holder to increase the heat transfer from the target-holder to the
water-cooled beam stop.
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2.1.2. Target Materials and Preparation
42CaO was prepared through the calcination of 94.37–96.30% isotopically enriched

42CaCO3 at 900 ◦C. The isotopic composition of the calcium material, along with potential
impurities due to irradiation, is provided in Table 1. The resulting 42CaO material was
pressed into a cylindrical pellet with a diameter of approximately 7 mm. Target masses were
adjusted based upon the expected amount of activity necessary for subsequent experiments
and ranged from 4.6–22.4 mg. Targets were stored in a container wrapped in parafilm to
minimize CO2 reabsorption.
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Figure 2. Photographs of the target holder and a representative 42CaO target.

Table 1. Isotopic breakdown of the 42Ca from Oak Ridge National Laboratory and Isoflex USA
utilized in this study. All potential reaction cross-sections from deuteron bombardment are presented.

Calcium
Isotope

Abundance
(ORNL)

Abundance
(Isoflex USA) Reaction Product Half-Life

IAEA ENDF
Cross-Section at 9 MeV

(×10−27 cm−1)

40Ca 5.01% 3.03%

40Ca(d,p)41Ca
40Ca(d,n)41Sc
40Ca(d,α)38K

9.94 × 104 y
596.3 ms
924.4 ms

369.00
41.68
30.70

42Ca 94.37% 96.30(±0.30)%

42Ca(d,p)43Ca
42Ca(d,n)43Sc
42Ca(d,α)40K

Stable
3.89 h

1.25 × 109 y

266.74
104.73
60.08

43Ca 0.06% 0.10%

43Ca(d,p)44Ca
43Ca(d,n)44Sc

43Ca(d,2n)43Sc
43Ca(d,α)41K

Stable
3.97 h
3.89 h
Stable

105.31
128.42
228.04
65.85

44Ca 0.55% 0.55%

44Ca(d,p)45Ca
44Ca(d,n)45Sc

44Ca(d,2n)44Sc
44Ca(d,α)42K

162.61 d
Stable
3.97 h

12.36 h

84.75
262.34
264.24
24.45

46Ca 0.001% <0.01%

46Ca(d,p)47Ca
46Ca(d,n)47Sc

46Ca(d,2n)46Sc
46Ca(d,α)44K

4.54 d
3.35 d

83.79 d
22.13 m

215.50
155.62
620.39

7.11

48Ca 0.01% 0.02%

48Ca(d,p)49Ca
48Ca(d,n)49Sc

48Ca(d,2n)48Sc
48Ca(d,α)46K

8.72 m
57.18 m
43.67 h
105 s

40.09
93.64

1116.59
2.12
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Once the pellet had been prepared, the backing aluminum disk of the target holder
was placed onto a jig that holds all pieces in place. On top of the disk, a first graphite foil
was placed. Then, the 42Ca pellet was carefully slid onto the graphite foil and a second foil
was placed over it. Finally, the retaining aluminum ring was set on top of the outermost
foil and the M3 screws were threaded into the backing disk to hold the entire assembly
together. The excess graphite was trimmed off with a razor blade, the diffusion pump oil
was applied to the target body, and the target was inserted into the beam-stop, as shown in
Figure 1.

2.1.3. Target Irradiation

The target was irradiated with a 9 MeV deuteron beam for a duration of approximately
8 h. Over several iterations, a variety of beam currents were used, ranging from 1–8 µA.
After bombardment, the beam-stop/target-assembly was allowed to cool for one hour
before the beam-stop was removed.

The target holder was manually removed from the beam-stop. The dose rates of the
beam-stop were between 1–2 R/h (10–20 mGy/h) on contact. Typical body doses were
10–25 mR after removal of the target holder and disassembly. The graphite/calcium/graphite
layers of the target are easily and quickly separated from the target holder and placed in a
PTFE beaker. A summary of target masses and resulting yields are shown in Table 2.

Table 2. Representative 43Sc experimental yields as a function of target mass, beam current, and
irradiation time. Grey shading indicates use of the 96.30% enriched 42CaO from Isoflex USA. No
shading indicates the use of 94.37% enriched material from ORNL.

Target Mass
(mg)

Beam Current
(µA)

Irradiation Time
(h)

EOB Yield
(MBq)

16.4 1 8 163.54

9.3 2 10 185.37

5.8 3 10 163.54

4.6 3 7.5 159.10

18.2 5 7.5 663.04

21.9 4 8.0 839.90

16.4 4 8.0 685.24

19.3 4 8.0 715.95

19.0 4 8.0 694.12

7.0 4 8.0 247.53

13.3 4 10.0 654.53

16.5 4 9.0 433.27

13.4 4 8.0 408.85

12.3 4.2 8.0 515.04

22.4 6 7.72 1229.14

14.5 6 8 1083.36

13.4 7.75 8.12 1162.91

17.0 7.25 8 1224.70

13.4 8 8 1569.54

17.0 8 8 1627.26

17.2 8 8 1326.45

14.5 8 8 1087.80

17.6 8 8 1211.88
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To verify the purity of 43Sc activity obtained from the irradiation process, a Raymon10
cadmium zinc telluride (CZT) detector was used to obtain a gamma spectrum of a 962.0
MBq-irradiated target at 12 inches shortly after being removed from the target holder
(Figure 3). The resulting spectrum clearly shows the expected 511 keV peak from positron
annihilation and 43Sc’s characteristic 372.8 keV gamma ray with no detection of contamina-
tion. No change of the spectrum’s characteristic shape was observed with any downstream
purification or separation chemistry.
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2.1.4. Comparison to Theoretical Yield Calculations

Theoretical end-of-bombardment (EOB) yields of 43Sc from the 42Ca(d,n)43Sc reaction
were calculated through the numerical solving of Equation (1), where NA is Avogadro’s
number, I is the incident particle flux, AT is the atomic weight, λ is the decay constant, t is
the beam time, E is particle energy, E0 is the incident particle energy, Ee is the exit particle
energy, σ(E) is the cross-section, and S(E) is the mass stopping power [25].

Yield =
NA I
AT

(
1 − e−λt

)∫ E0

Ee
σ(E)

dE
S(E)

(1)

Cross-sections were obtained from TENDL simulations in the EXFOR database, as ex-
perimentally determined cross-sections are not presently defined for this energy range [26].
Mass stopping power was derived from simulations performed in ATIMA, as deuteron
stopping power is not presently defined in calcium or calcium oxide. Theoretical EOB
activity yields were compared to experimental yields with an average difference of 20.7%,
as shown in Figures 4 and 5. Most theoretical yields were shown to be overestimates of
the experimentally obtained activity. This overestimate of the yield of the 42Ca(d,n)43Sc
reaction is consistent with the current literature, which shows TENDL to significantly
overestimate the reaction’s cross-section in the presently measured deuteron energy range
(~3–7 MeV) [23].
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Deviation of the experimental yield from the theoretical yield was also seen to generally
increase with target mass, as shown in Figure 5; however, this correlation may also be
the result of the theoretical yield’s dependence on the simulated stopping power in the
numerical calculation rather than originating from the experiment results. Combined
with the aforementioned discrepancies in cross-section in the literature, this suggests that
there is a possibility that the observed differences in theoretical and experimental yield
are the consequence of a lack of developed characterization of the 42Ca(d,n)43Sc cross-
section and the interactions of deuterons in calcium oxide. The discrepancy between
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experimental and theoretical yields may also be the result of the culmination of a multitude
of unevaluated uncertainties, such as well-counter accuracy and activity loss originating
from the makeshift target holder. The current workflow requirements imposed by the
daily routine cyclotron operation did not allow for more detailed measurements of these
potential activity losses associated with the non-traditional use of the beam-stop space to
accommodate the target holder.

2.1.5. Separation and Purification

All reagents used in the separation, purification, and radiolabeling processes were
trace analysis grade.

Once removed from the target holder and placed in a PFA beaker, dissolution began
with the addition of 2 mL of 15.7 M HNO3. The resultant mixture was placed on a hotplate
at 70 ◦C and with a magnetic stirrer at 180 RPM. While stirring, 4 mL of trace analysis grade
water was added slowly over 30 min, followed by an additional 5 min of stirring.

The dissolved target solution was transferred to a 15 mL Falcon tube and centrifuged
at 4000 RPM for 5 min. After centrifugation, the resulting supernatant was extracted with a
syringe and loaded onto a preconditioned DGA cartridge (2 mL) for separation [12,14,21].
The column was then washed with 3 full column volumes (FCV) of 5 M HNO3 and 3 FCV of
1 M HCl. 95 ◦C 0.1 M HCl was used to elute trapped 43Sc from the DGA cartridge into ten
500 µL fractions as 43Sc-Cl3. Aliquots were assayed, and those of the highest concentration
were used for radiolabeling.

2.2. Linear Accelerator-Based Production of 47Sc
2.2.1. Target Preparation

Titanium metal targets (Figure 6) were prepared by pressing Ti powder (2.227 g/cm3
,

49% of theoretical density) with a hydraulic press by applying 1.5 ton of pressure for
5 min at ambient temperature in a 12.7 mm diameter die. Three pellets with mass of ~1 g
were produced.
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Figure 6. A representative natural titanium target utilized in the production of 47Sc.

2.2.2. Irradiation

The three Ti targets were stacked in a water-cooled aluminum target carrier and irradi-
ated at the Low Energy Accelerator Facility (LEAF) at the Argonne National Laboratory.

A 40 MeV electron beam at a current of 12.5 µA for 10–12 h irradiated six tantalum
plates to produce Bremsstrahlung photons for the NatTi(γ,p)47Sc reaction. The target carrier
was placed behind the convertor so that the target was 20 mm from the last converter plate.
The targets were allowed to cool for 10–16 h post irradiation and were then transported to
a hood for processing.

Since natural Ti was used as the target material, 46Sc, 47Sc, and 48Sc were observed
in the products. The ratios observed were typically in the range of 0.7–1% 46Sc, 89–91%
47Sc, and 7–9% 48Sc decay corrected to EOB. These impurities are observed in the prod-
uct’s gamma spectrum in Figure 7. The average EOB yield was approximately 925 MBq.
Impurities can be reduced and the 47Sc maximized by using enriched 48Ti targets: for a
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100%-pure 48Ti target, the only radionuclidic impurity would be from 46Sc produced via
48Ti(γ,pn)46Sc.
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2.2.3. Chemical Separation

The irradiated Ti targets were dissolved in 60 mL of concentrated HCl under reflux.
After complete dissolution, indicated by the solution turning a deep purple color, the
solution was allowed to cool for 30 min, then transferred to a graduated flask and diluted to
100 mL using washings from the Erlenmeyer flask. Similar to 43Sc separation, the separation
of radioscandiums from the Ti target was completed using DGA resin. A DGA resin was
prepared by soaking it overnight in 2.5 M HNO3 and decanting the fine particles. The resin
was loaded into a plastic column, compressed with a sintered glass frit, and washed with
10 mL of water, followed by 3 M HCl, then 6 M HCl.

The target solution was gravity-fed to the DGA resin and washed with 6M HNO3 and
3M HCl. A final wash of 1 M HCl was used to lower the pH of the solution and enhance the
elution of the product. Over 90% of radioscandiums were eluted with 15 mL of warm 0.1 M
HCl. An oversized DGA column bed (0.75 g) was chosen based on the significant mass
of Ti (3 g) from which Sc was to be separated. Smaller resin beds in similar separations
have eluted the Sc product in smaller fractions [14]. Optimizations of this process have not
been investigated.

The product solution was evaporated to dryness on a hot plate. The purity and
molar activity were analyzed by inductively coupled plasma–mass spectroscopy and by
complexation with DOTA. The product was typically void of common impurities (Cu, Fe,
and Pb) below the method detection limit (MDL) [19]: typically, < 5 µg of total Ti was
observed, and the Sc content was below the MDL value. Using the MDL value, the specific
activity was typically > 25.9 TBq/mg. A typical molar activity of > 6 MBq/nmol DOTA
was observed by complexation of the 47Sc with DOTA. These values are consistent with
high-purity radioscandium products observed in the literature [12,14,27].

2.3. Radiosynthesis

2.3.1. 43Sc-PSMA-617

To better facilitate the conjugation of 43Sc to the DOTA chelator on PSMA-617 and
minimize colloid formation, purified selected fractions of 43ScCl3 were adjusted to a pH
between 4.2 and 5.0 through the addition of an equal volume of 0.5 M NH4OAc (pH 4.5)
buffer. Once buffered, DOTA-PSMA-617 was added to the 43ScCl3/43Sc(OAc)3 solution
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and placed in a thermomixer at 95 ◦C and 500 RPM for 40 min. The radiolabeling reaction
was monitored by spotting the reaction on an iTLC-SG paper developed on a 50:50 mixture
of 1 M ammonium acetate and methanol and scanning with a Lablogic radio-TLC scanner
(Figure 8).
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Figure 8. Representative iTLC of 43Sc-PSMA-617. The absence of a peak near the origin of the iTLC
exhibits the successful radiolabeling of 43Sc-PSMA-617 with a yield of > 95%.

Once successful radiolabeling of >90% was confirmed, labeled activity was loaded onto
a C-18 cartridge preconditioned with 6 mL of EtOH and 10 mL of water. The C-18 cartridge
was then washed with 10 mL of water, and 43Sc-PSMA-617 was eluted with EtOH in 0.2 mL
aliquots. Aliquots were then transferred to a 20 mL glass scintillation vial and placed
in a rotary evaporator until EtOH was evaporated to near dryness. After evaporation,
43Sc-PSMA-617 was reconstituted in phosphate buffer solution (PBS), pH 7.4. The final
molar activity of each 43Sc-PSMA-617 dose was calculated using a standard calibration
curve generated from the UV trace of the reference, cold Sc-PSMA-617, and found to be
7.14 MBq/nmol, although successful labeling was performed up to 8.77 MBq/nmol, with
gradual improvement seen each experiment. A representative HPLC chromatogram of the
radiolabeled compound and cold trace can be seen in Figure 9.
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2.3.2. 47Sc-PSMA-617

The dry 47ScCl3 residue, received from the Argonne National Laboratory, was reconsti-
tuted in 0.2 mL of 0.01 M HCl (trace analysis grade) in a 4 mL glass v-vial. The remaining
radiolabeling process proceeded as described in 2.3.1 for 43Sc radiolabeling and yielded a
specific activity of 8.07 MBq/nmol. A representative TLC and HPLC for 47SC are shown
below in Figures 10 and 11.
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Figure 11. Representative HPLC chromatogram of 47Sc-PSMA-617. The proximity of the retention
times of the UV trace of cold PSMA-617 (bottom) and the radioactive trace of the solutions of
radiolabeled 47Sc-PSMA-617 and (top) indicate successful radiolabeling.
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2.4. Stability of 43/47Sc-PSMA-617

The doses of radiolabeled 43Sc-PSMA-617 and 47Sc-PSMA-617 prepared in PBS were
stability-checked over 24 and 48 h at ambient temperature, respectively, and were found to
be stable over that period (Figures 12 and 13).
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Figure 12. RadioHPLC chromatograms from 1, 24, and 48 h time-points for 43Sc-PSMA-617. As
no additional peaks are observed beyond the main radiolabeled 43Sc-PSMA-617 peaks, it can be
concluded that the compound is stable in PBS. Decreasing peak size is the result of radioactive decay.

2.5. In Vivo Animal Studies

2.5.1. 43Sc-PSMA-617

PSMA-expressing LNCaP-EnzaR-Luc cells were implanted onto the right flank of an
athymic nude mouse to produce a tumor xenograft. The mouse received a tail vein injection
of 5.66 MBq of 43Sc-PSMA-617 and was allowed an uptake period of two hours. Following
the uptake period, the animals underwent a 30-min PET acquisition, followed by a CT scan
to obtain anatomical information. The resulting image is shown in Figure 14a, where the
uptake is displayed in standardized uptake values (SUV).
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Figure 13. RadioHPLC chromatograms from 1, 24, and 48 h time-points for 47Sc-PSMA-617. As
no additional peaks are observed beyond the main radiolabeled 47Sc-PSMA-617 peaks, it can be
concluded that the compound is stable in PBS. Decreasing peak size is the result of radioactive decay.

The imaging revealed a significant uptake of 43Sc-PSMA-617 in the tumor, while the
remaining uptake was limited to the kidneys and bladder. The standardized uptake value
ratio (SUVR) of the tumor and muscle tissue corresponding to the contralateral side of the
tumor (i.e., the left flank) was found to be 129.16. These findings show that 43Sc-PSMA-617
has a high specificity for PSMA expression and exhibits tumor uptake characteristic of
other PSMA-617-based radiopharmaceuticals [28,29]. This suggests that 43Sc-PSMA-617 is
viable in the pre-clinical imaging of prostate cancer.

2.5.2. 47Sc-PSMA-617

An SCID mouse exhibiting a PSMA-expressing LNCaP-EnzaR-Luc tumor xenograft
on the right flank was given 53.7 MBq of 47Sc-PSMA-617 through a tail vein injection. Two
hours post-injection, animals were imaged with a 90-min SPECT scan followed by a CT scan
for anatomical information; this is shown in Figure 14b. High uptake of 47Sc-PSMA-617
in the xenografted tumor was observed, with the remaining uptake being non-specific
uptake in the renal system [10,30,31]. The SUVR of the tumor relative to contralateral
muscle tissue was found to be 53.82. Hot spots in the kidney are the result of non-specific
uptake in the renal calyces before excretion through the ureter. As uptake was limited to
PSMA expression in the tumor xenograft and the renal system, these results have exhibited
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that 47Sc-PSMA-617 has a high degree of selectivity in PSMA-positive tumors, which is
congruent with other PMSA-617-based radiopharmaceuticals [28,29,32]. As such, prostate
cancer detection with 47Sc-PSMA-617 is feasible, and the biodistribution of radiotracer
observed shows promise for future therapeutic evaluation.
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3. Materials and Methods

3.1. Cyclotron-Based Production and Purification of 43Sc
3.1.1. Beam-Stop as A Target Holder

The beam stop of a Cyclone 18/9 cyclotron (IBA, Louvain-la-Neuve, Brussels) was
converted into a simple solid target holder to accommodate the use of 42CaO pellets for 43Sc
production with a deuteron beam. The implementation of the solid target holder involved
the precision machining of two aluminum disks, each having a diameter of 16 mm. The first
disk was designed to incorporate a shallow well with a depth of 0.05 mm and diameter of
7.1 mm, providing sufficient space for the target material. The second disk was machined
into a ring and possessed an outer diameter of 16 mm and an inner diameter of 7.1 mm.
This disk had the primary function of securely attaching a thin carbon cover foil to the
target holder. Four radially spaced, threaded M3 holes were machined into this backing
disk with corresponding clear holes being machined into the ring. Two of these holes were
employed for the purpose of joining the bracket and target holder, while the remaining two
facilitated the manual retrieval of the target with a long M3 screw.

3.1.2. Target Materials and Preparation
42CaO purchased from Isoflex USA had a 42Ca enrichment of 96.30% and was utilized

for target synthesis in the first 10 productions indicated in Table 2. 42CaO containing an
enrichment of 94.37% was purchased from Oak Ridge National Laboratory and was utilized
in the remaining 43Sc productions. Targets were prepared by transferring the material into
a pellet press (Parr Instrument Company, Moline, IL, USA, P/N 2810-2106-103101) and
manually pressing each target.

After the target was synthesized, two pieces of graphite foil (25 µ, Digi-Key, P/N
EyG-S091203DP) were prepared by pre-coring two small holes through which the M3
screws passed when joining the target to the holder. The wooden handle (3.175 mm) of
a simple swab was used to make the holes. The target was then placed between these
two graphite foils on the backing plate of the target holder and then held in place by the
retaining ring, which was secured by two M3 screws. Before the beam stop was inserted
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into the cyclotron port for irradiation, the carbon foil was trimmed, and diffusion pump oil
was applied to the target holder backing to improve thermal transfer.

3.1.3. Target Irradiation

After mounting the beam stop with the target holder into the IBA Cyclone 18/9
medical cyclotron and bringing the system to vacuum, targets were irradiated with a 9 MeV
deuteron beam at 1–8 µA for approximately 8 h. Targets were allowed to cool for 1 h
prior to retrieval to minimize the dose from short-lived nuclides to personnel involved in
target retrieval.

Once the short-lived nuclides had died out, the target gate valve was closed, and
the target was vented. Immediately after venting, the beam stop was removed and two
long M3 screws were inserted into the empty screw holes of the target holder for manual
retrieval of the target.

3.2. Accelerator Production and Purification of 47Sc
3.2.1. Argonne National Laboratory LEAF

Argonne houses a variable-energy with variable-power L-band (1300 Hz) electron linear
accelerator with a maximum energy of 53 MeV with an average beam power of up to 25 KW
at 30 MeV. It can produce steady-state pulses that are continuously variable from 200 ns to
5.5 µs. The maximum repetition rate is 210 Hz. The peak current for the microsecond pulse
can achieve 2 amps. The effective beam energy range is from 20–45 MeV.

Bremsstrahlung photons are generated by bombarding a high “Z” converter with the
incident electron beam. A Ta converter was employed for these experiments. Briefly, six Ta
plates (each 0.5 mm thick) spaced ~1.0 mm apart were enclosed in an aluminum carrier
with cooling channels. The convertor was cooled with 0.16 L/s flow of water directly over
the plates.

3.2.2. Irradiation

In a representative case, three pressed metal powder pellets were prepared by pressing
natural Ti metal powder into 1 g 12.7 mm diameter pellets with a hydraulic pellet press
(1 ton for 5 min). The three 1 g pellets were stacked and loaded into a water-cooled
aluminum target holder. The target holder was placed behind and proximal to a converter
and this system was irradiated for ~10–12 h with beam energies of 40 MeV and ~2.5–3 kW
beam power using a beam spot of 6 × 6 mm. The temperature of the target holder was
monitored and kept below 200 ◦C throughout the irradiations.

3.2.3. Ti Metal Target Processing

The targets were allowed to decay for ~12 h prior to retrieval. The Ti pellets (~3 g)
were dissolved in concentrated HCl (60 mL). The solution was refluxed with a condenser
for 1 h, whereupon the solution became dark purple/blue. The solution was allowed to
cool to room temperature, then transferred to a 100 mL graduated flask, and diluted to
the mark with water. This 47Sc stock solution was sampled for gamma-ray analysis and
inductively coupled plasma mass spectroscopy utilizing an HPGe detector (Ortec, Oak
Ridge, TN, USA) and NexION 2000 ICP Mass Spectrometer (PerkinElmer, Waltham, MA,
USA), respectively. Gamma peak analysis was performed using GammaVision version
7.02.01 software. ICP-MS analysis was performed with Syngistix Version 2.5.

The 47Sc was isolated from the Ti target material using a gravity-fed DGA resin column
(0.75 g). The DGA resin (Eichrom, Lisle, IL, USA) was primed with 6 M HCl and then
loaded with the 47Sc stock solution. The column was washed twice with HCl (3 M, 20 mL
each), once with HNO3 (3 M, 20 mL), and a final HCl (1 M, 5 mL) wash. The 47Sc was eluted
with warm HCl (0.1 M, 15 mL). The product fractions were combined and evaporated to
dryness. The dry residue, containing 47Sc, 46Sc, and 48Sc, was packaged and shipped to the
University of Chicago for testing.
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3.2.4. DOTA Titrations

The apparent molar activity (AMA) of the isolated 47Sc was determined by complex-
ation with varying amounts of DOTA. Five vessels were labeled as D0, D1, D1, D3, and
D4. Each tube was loaded with ammonium acetate buffer (1.0 M, pH 5.5, 100 µL). DOTA
was added to each tube from a standard DOTA stock solution to provide 16.3 µg, 1.63 µg,
0.163 µg, 0.0489 µg, and 0.00163 µg of DOTA to the D0, D1, D2, D3, and D4 tubes, respec-
tively. These solutions were spiked with 47Sc (3.7–7.4 MBq) and then incubated at 90 ◦C for
30 min. Each tube was spotted on two separate silica get TLC plates, which were developed
using an EDTA (50 mM) or NH4OH (10% w/v)/methanol solution (1:1).

3.3. Radiolabeling of PSMA-617 with 43Sc and 47Sc
43Sc/47ScCl3 was reconstituted in 0.01 M HCl and pH was adjusted to 4.0 by 1 M

ammonium acetate buffer to a final buffer concentration of 0.5 M. DOTA-PSMA-617 was
added and the reaction was mixed for 45 min at 95 ◦C on a thermomixer at 450 rpm. The re-
sulting 43Sc/47Sc labeled ligands were then trapped on a preconditioned C18 SPE cartridge
(Waters, Milford, MA, USA). The column was washed with water. The purified product
was eluted with ethanol, dried and reconstituted in PBS for cellular and animal studies.

3.4. Quality Control of 43Sc and 47Sc Labeled Radioligands

Characterization of the synthesized probes was done by iTLC-SG (glass microfiber
chromatography paper impregnated with silica gel, Agilent Technologies, Santa Clara,
CA, USA) and HPLC (Infinity 1260 series, Agilent Technologies, Santa Clara, CA, USA)
equipped with a Flow-Ram radioHPLC detector (LabLogic, Sheffield, UK). Typically, a 50%
MeOH solution in 1 M ammonium formate is used to develop the iTLC papers and then
evaluated with a Scan-Ram radioTLC scanner (LabLogic, Sheffield, UK).

3.5. Cell Culture for Xenograft

PSMA-expressing parental LNCaP or the luciferase-expressing enzalutamide-resistant
LNCaP-EnzaR-Luc cells were used [33]. All human prostate cancer cells were authenticated
at the University of Arizona and tested regularly for mycoplasma using the MycoAlert
Plus kit (Lonza, Basel, Switzerland). Cells were maintained in RPMI1640 medium sup-
plemented with 10% fetal bovine serum under humidified conditions at 37 ◦C with 5%
CO2. In addition, the maintenance medium for the LNCaP-EnzaR cells contains 10 µM
enzalutamide (Astellas, Tokyo, Japan) and 300 µg/mL hygromycin B (Invitrogen, Waltham,
MA, USA).

3.6. Animal Preparation

Animal experiments were performed in the context of an IACUC-approved animal
protocol (P.I. Szmulewitz). As previously described, 2 × 106 luciferase-expressing LNCaP-
EnzaR were resuspended in 35 µL Hanks Balanced Salt Solution (HBSS) (Corning, Corning,
NY, USA) and mixed with 115 µL Matrigel (Corning, Corning, NY, USA) and inoculated
subcutaneously into an immunocompromised 8–10 week-old SCID or athymic nude mouse
(Harlan, Indianapolis, IN, USA) [33]. Animals were monitored to determine when the
xenograft was established, determined by the tumor being palpable and visualized using
bioluminescence imaging prior to 43Sc/47Sc-PSMA-617 imaging.

3.7. In Vivo Imaging of Tumor-Bearing Mouse Models with 43Sc/47Sc-PSMA-617

3.7.1. Static microPET/CT Imaging with 43Sc-PSMA-617

The animal model was injected with approximately 5.66 MBq of 43Sc-PSMA-617 in
100 µL of PBS. After a 2 h awake uptake period, micro CT and microPET scans were acquired
on the X-Cube and β-Cube microCT and microPET systems, respectively (Molecubes, Gent,
Belgium). A general purpose protocol was used for microCT and a 30 min acquisition time
for microPET scans. MicroPET images were reconstructed using an OSEM reconstruction
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algorithm with an isotropic voxel size of 400 µm. CT images were reconstructed with a
200 µm isotropic voxel size and used for anatomic co-registration and scatter correction. The
animal was maintained under 1–2% isoflurane anesthesia in 100% oxygen during imaging.
Respiratory rate and body temperature were constantly monitored and maintained using
Molecubes onboard monitoring and a Small Animal Instruments (SAII Inc, Stoney Brook,
NY, USA) setup. Images were coregistered and post-processed using VivoQuant software
(InviCRO, Boston, MA, USA, https://www.vivoquant.com/, accessed on 19 July 2023).
Utilizing the CT scans, regions of interest were drawn around tumors and the muscle
tissue corresponding to the contralateral side of the tumor. Data are shown in standard
uptake volume.

3.7.2. Static microSPECT/CT Imaging with 47Sc-PSMA-617

An animal model was injected with 53.9 MBq of 47Sc-PSMA617 in 100 µL of isotonic
saline solution. After 2 h incubation, animals were anesthetized with 1–2% isoflurane,
placed in the γ-Cube microSPECT instrument (Molecubes, Gent, Belgium) and scanned for
90 min, followed by microCT scan for anatomic reference.

4. Conclusions

The production of 43Sc via the 42Ca(d,n)43Sc reaction was found to be feasible using a
deuteron-capable medical cyclotron. Radioactivity was readily produced at a level capable
of supporting pre-clinical studies with the addition of an easily fabricated beam stop
modification. Similarly, 47Sc was shown to be readily producible with the NatTi(γ,p)47Sc
reaction at a linear accelerator with off-site production proving to be no obstacle for a
pre-clinical study. 43Sc and 47Sc produced through these methods were successfully used
for labeling PSMA-617 at specific activities appropriate for preliminary in vivo studies.
Clear detection of LNCaP-r tumors was possible with both 43Sc-PSMA-617 PET and 47Sc-
PSMA-617 SPECT imaging.

Together, these preliminary findings exhibit 43Sc/47Sc as a promising theranostic pair.
Through the experimentally demonstrated pipeline defined by this publication, 43Sc/47Sc
is easily adaptable to the pre-clinical space. As such, this theranostic pipeline will be
utilized to vastly expand upon the dataset presented in this publication through the full-
scale investigation of 43Sc/47Sc-PSMA-617 with subsequent expansion to the utilization of
scandium theranostics with other DOTA based tracers.

This paper also illustrates the initial progress of the UChicago/Argonne Joint Ra-
dioisotope Initiative’s (JRI) efforts in building a complete pipeline for rapid development
of novel theranostics.
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