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Abstract: A number of aromatic metabolites of tyrosine and phenylalanine have been investigated
as new perspective markers of infectious complications in the critically ill patients of intensive
care units (ICUs). The goal of our research was to build a multivariate model for predicting the
outcome of critically ill patients regardless of the main pathology on the day of admission to the ICU.
Eight aromatic metabolites were detected in serum using gas chromatography-mass spectrometry.
The samples were obtained from the critically ill patients (n = 79), including survivors (n = 44) and
non-survivors (n = 35), and healthy volunteers (n = 52). The concentrations of aromatic metabolites
were statistically different in the critically ill patients and healthy volunteers. A univariate model
for predicting the outcome of the critically ill patients was based on 3-(4-hydroxyphenyl)lactic acid
(p-HPhLA). Two multivariate classification models were built based on aromatic metabolites using
SIMCA method. The predictive models were compared with the clinical APACHE II scale using
ROC analysis. For all of the predictive models the areas under the ROC curve were close to one. The
aromatic metabolites (one or a number of them) can be used in clinical practice for the prognosis of
the outcome of critically ill patients on the day of admission to the ICU.
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1. Introduction

Metabolomic approaches are actively used in the search, evaluation, and clinical
verification of the biomarkers of the critical states. Infectious complications, including
sepsis, remain a serious life-threatening conditions in critically ill patients with different
pathologies. The science community has recognized the need to search for specific markers
for the verification of the infectious complications in critically ill patients [1]. The absence
of a positive blood culture is a common phenomenon and the decision to prescribe antibi-
otics is often based on the different international clinical scales, such as Sequential Organ
Failure Assessment (SOFA) [2] and Acute Physiology and Chronic Health Evaluation II
(APACHE II) [3], and recommendations, such as the Third International Consensus on the
Definition of Sepsis and Septic Shock (SEPSIS-3) [4].

Lactate, procalcitonin, C-reactive protein, interleukin-6, and some other compounds
are known to be non-specific infectious biomarkers and are widely used in clinical practice.
However, new trends in the sepsis treatment include personalized approaches based on
the specific markers with high specificity, sensitivity, and response to the treatment [5,6]. A
number of aromatic metabolites of tyrosine and phenylalanine, including those of micro-
bial origin, have been investigated as perspective sepsis-specific markers during the last
two decades (Table 1) [7–9]. The main hypothesis was formulated that the accumulation
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of aromatic metabolites in the blood of patients with sepsis was the result of the micro-
bial degradation of phenylalanine and tyrosine [10]. Experimental studies demonstrated
their pathophysiological role in sepsis development [11]. Clinical studies revealed their
diagnostic significance in sepsis and septic shock caused by various pathologies [12,13],
such as community-acquired pneumonia [14], acute surgical diseases of the abdominal
organs [15], acute or chronic (end stage) renal failure [16], postoperative cardiosurgical
complications [17], and post-neurosurgical meningitis [18]. There are positive correlations
between the sepsis-associated aromatic metabolites phenyllactic, p-hydroxyphenylacetic,
and p-hydroxyphenyllactic (p-HPhLA) acids and the clinical scales (SOFA and APACHE
II), serum lactate, and procalcitonin [11,14,15]. In particularly, the dynamics of the total
concentration of sepsis-associated aromatic metabolites in serum appeared to be a more
accurate biochemical criterion of the therapy’s efficiency than lactate dynamics in patients
with acute surgical abdominal diseases [15]. In total, the results of the clinical studies
indicated that the aromatic compounds could be diagnostic markers, regardless of the main
pathology of the critically ill patients [12,19,20].

Table 1. Chemical structures of the aromatic acids, which are the metabolites of phenylalanine
and tyrosine.

Amino Acid Metabolites, Acids

Phenylalanine
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Most of the clinical studies listed above [13–16] were carried out using gas chroma-
tography with flame ionization detection. The detection limits were restricted by the low 
selectivity of this method and the significant matrix effect which caused the increase of 
the baseline level. The use of a mass selective detector improved the analytical perfor-
mance and led to the detection of the extended list of compounds, including benzoic, phe-
nylpropionic, p-hydroxybenzoic, homovanillic, and p-hydroxyphenylpropionic acids [21]. 

For the practical use of the aromatic metabolites as a diagnostic tool, it is important 
to find out if one or a number of them demonstrates any predictive value for the outcome 
of critically ill patients. Previous clinical studies have described the univariate predictive 
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Most of the clinical studies listed above [13–16] were carried out using gas chromatog-
raphy with flame ionization detection. The detection limits were restricted by the low
selectivity of this method and the significant matrix effect which caused the increase of the
baseline level. The use of a mass selective detector improved the analytical performance and
led to the detection of the extended list of compounds, including benzoic, phenylpropionic,
p-hydroxybenzoic, homovanillic, and p-hydroxyphenylpropionic acids [21].

For the practical use of the aromatic metabolites as a diagnostic tool, it is important
to find out if one or a number of them demonstrates any predictive value for the outcome
of critically ill patients. Previous clinical studies have described the univariate predictive
models based on concentrations of one or a sum of several metabolites (phenyllactic,
p-hydroxyphenylacetic acids, and p-HPhLA) [13,15,18]. In addition, it is important to
reveal if these compounds could be used as predictive markers on the day of admission
to the intensive care unit (ICU), by analogy with the APACHE II scale, thus, indicating
patients with more severe disease and a higher risk of death. The main goal of our research
was to build a multivariate model for predicting the outcome of critically ill patients
regardless of the main pathology on the day of admission to the ICU, using serum levels of
eight aromatic metabolites detected by gas chromatography-mass spectrometry (GC-MS).

2. Results
2.1. Characteristics of the Critically Ill Patients

The critically ill patients were characterized by the outcome (survivors/non-survivors);
the oxygenation index (an indicator of the impaired respiratory function); the prescription
of vasopressors (an indicator of the heart dysfunction); and the Glasgow Coma Scale value
(an indicator of the central nervous system dysfunction), SOFA (a scale of the patient’s
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status during the stay in the ICU), and APACHE II (a severity-of-disease classification
system within 24 h of admission to the ICU) scores. The serum samples were characterized
by the day of sampling; platelet cell concentration (an indicator of the dysfunction of the
rheological properties of blood); total bilirubin (an indicator of the impaired liver function);
creatinine (an indicator of the impaired kidney function). All of the patients were divided
into two groups as survivors (n = 44) and non-survivors (n = 35). The description of the
two groups of critically ill patients is summarized in Table 2.

Table 2. Characteristics of the critically ill patients (n = 79), and the results of the clinical and
biochemical analysis of their serum samples taken on the day of admission to the intensive care
unit. Data are presented as median and interquartile range (25–75%), for vasopressors–% of the
prescriptions. For each parameter n indicates the number of patients in whom this parameter has
been measured. The results for the Mann–Whitney U-test for the comparison of the independent
groups of survivors and non-survivors, which are significant at p < 0.05, are highlighted in bold. The
Holm–Bonferroni method was used to adjust p-values for multiple comparisons.

Parameters Normal Values

Patients
2-Tailed pSurvivors

(n = 44)
Non-Survivors

(n = 35)

APACHE II, points 0 7 (5–11)
n = 43

20 (16–26)
n = 33 <0.0001

SOFA, points 0 2 (1–5)
n = 43

10 (8–13)
n = 33 <0.0001

Glasgow Coma Scale, points 15 15 (13–15)
n = 44

15 (13–15)
n = 33 0.578

Oxygenation PaO2/FiO2, mmHg ≥400 305 (267–385)
n = 31

282 (152–361)
n = 31 0.141

Platelets, ×103/µL ≥150 241 (175–313)
n = 44

166 (89–208)
n = 33 0.0052

Bilirubin, µmol/L <20 12.5 (8.4–14.9)
n = 42

19.0 (13.1–31.4)
n = 28 0.0082

Creatinine, µmol/L <110 80 (67–113)
n = 43

191 (151–263)
n = 31 <0.0001

Vasopressors, % No 13.6%
n = 44

91.4%
n = 35 Not available

Eight aromatic metabolites were measured in all of the serum samples (n = 196)
and their occurrence was different. Benzoic acid and p-HPhLA were detected in all
of the samples: phenyllactic; p-hydroxyphenylacetic; phenylpropionic; homovanillic;
p-hydroxybenzoic; and p-hydroxyphenylpropionic acids were detected in 81, 78, 48, 31, 17,
and 9% of the serum samples, accordingly. Statistically significant differences (p < 0.05)
were found between all of the groups (healthy volunteers, survivors, and non-survivors)
for all of the metabolites (Table 3).

2.2. Multivariate Classification Model Based on Eight Aromatic Metabolites

The concentrations of some of the metabolites (e.g., homovanillic, p-hydroxyphenylacetic
acids, or p-HPhLA) varied significantly among the non-survivors (Table 3). On the contrary,
the samples obtained from the survivors were less spread out. It is additionally illustrated
in Figure S1 (Supplementary Materials), where two metabolites (i.e., homovanillic acid
and p-HPhLA) are considered. The samples obtained from the survivors constitute a
compact group near the origin. On the other hand, the samples from the non-survivors are
significantly scattered (Figure S1, Supplementary Materials). If both of the classes formed
compact groups in the multidimensional space, discriminant techniques (such as partial
least squares discriminant analysis) could be applied to model both of the classes. However,
in our research, the members of the “Non-survivors” class are different from each other
and they are spread in multidimensional space. For this reason, it was decided to build a
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one-class classification model. Moreover, it gives an additional benefit when the number
of samples is limited: the samples obtained from the non-survivors are not used during
the construction of the model and, as a result, they should not be split into calibration and
test sets.

Table 3. Results of the GC-MS analysis of serum samples from healthy volunteers (n = 52) and
critically ill patients (n = 79) taken on the day of admission to the intensive care unit. Data are
presented as median and interquartile range (25–75%). The results for the Kruskal–Wallis test for the
independent groups of healthy volunteers, survivors, and non-survivors, which are significant at
p < 0.05, are demonstrated. The Holm–Bonferroni method was used to adjust p-values for multiple
comparisons. For each parameter n (c > LOQ) indicates the number of samples in which this
parameter has been quantitatively measured. To perform the statistical test missing values (i.e., below
the limit of detection) were replaced by the half of the minimum of non-missing values.

Aromatic Acid,
µmol/L

LOD/
LOQ Values *

Healthy Volunteers
(n = 52)

Patients
2-Tailed pSurvivors

(n = 44)
Non-Survivors

(n = 35)

Benzoic **/0.7
1.3 (0.8–1.8)

n (c > LOD) = 52
n (c > LOQ) = 44

1.9 (1.2–2.7)
n (c > LOD) = 44
n (c > LOQ) = 40

2.5 (1.5–5.1)
n (c > LOD) = 35
n (c > LOQ) = 31

0.0002

Phenylpropionic 0.01/
0.59

<LOQ (<LOD–0.73)
n (c > LOD) = 37
n (c > LOQ) = 19

<LOD
(<LOD–<LOQ)

n (c > LOD) = 19
n (c > LOQ) = 2

<LOD
(<LOD–<LOQ)

n (c > LOD) = 16
n (c > LOQ) = 2

0.0001

Phenyllactic 0.4/
0.5

0.6 (<LOD–0.8)
n (c > LOD) = 34
n (c > LOQ) = 29

1.1 (<LOD–1.7)
n (c > LOD) = 32
n (c > LOQ) = 32

4.0 (2.5–7.0)
n (c > LOD) = 35
n (c > LOQ) = 35

<0.0001

p-Hydroxybenzoic 0.2/
0.6

<LOD (<LOD–<LOD)
n (c > LOD) = 0
n (c > LOQ) = 0

<LOD
(<LOD–<LOD)
n (c > LOD) = 4
n (c > LOQ) = 2

<LOQ (<LOD–1.9)
n (c > LOD) = 20
n (c > LOQ) = 16

<0.0001

Homovanillic 0.1/
0.5

<LOD (<LOD–<LOD)
n (c > LOD) = 1
n (c > LOQ) = 0

<LOD
(<LOD–<LOD)
n (c > LOD) = 9
n (c > LOQ) = 6

1.7 (<LOQ–6.3)
n (c > LOD) = 26
n (c > LOQ) = 21

<0.0001

p-Hydroxy-
phenylacetic

0.1/
0.6

<LOQ (<LOD–<LOQ)
n (c > LOD) = 28
n (c > LOQ) = 2

<LOQ (<LOD–1.9)
n (c > LOD) = 32
n (c > LOQ) = 21

9.6 (2.8–18.5)
n (c > LOD) = 33
n (c > LOQ) = 29

<0.0001

p-Hydroxy-
phenylpropionic

0.1/
0.5

<LOD (<LOD–<LOD)
n (c > LOD) = 0
n (c > LOQ) = 0

<LOD
(<LOD–<LOD)
n (c > LOD) = 2
n (c > LOQ) = 1

<LOD
(<LOD–<LOQ)
n (c > LOD) = 9
n (c > LOQ) = 5

0.0002

p-HPhLA **/0.5
2.1 (1.6–2.6)

n (c > LOD) = 52
n (c > LOQ) = 51

2.9 (2.2–3.4)
n (c > LOD) = 43
n (c > LOQ) = 43

14.8 (6.5–32.6)
n (c > LOD) = 35
n (c > LOQ) = 35

<0.0001

* LOD—limit of detection; LOQ—limit of quantitation, ** the LOD values in serum samples cannot be measured
because benzoic acid and p-HPhLA are ubiquitous in human blood including healthy volunteers.

As can be seen from Table 3 and Figure S2 (Supplementary Materials), the concen-
tration of phenylpropionic acid is higher in the healthy volunteers than in the survivors.
As a result, several healthy volunteers with a high level of phenylpropionic acid would
be classified as “Non-survivors”, if the classification model was built using only the sur-
vivors. Merging the healthy volunteers and the survivors into one class solves this problem.
Additionally, it significantly increases the number of samples in the target class.

If the concentration of at least one of the metabolites was atypically high, a sample
was found to be an outlier. Examining the concentration distributions and applying multi-
variate approaches [22] showed that 15 samples in the group of survivors were outliers.
Seven of them were replaced with samples taken a few days after admission from the same
patients. However, in eight cases it was not possible, because either only one sample was
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taken from a particular patient or all of the samples were found to be outliers (Figure S3,
Supplementary Materials). These samples were not used during the calibration and valida-
tion steps and formed an additional group which was called “Survivors (outliers)”.

For some members of the “Non-survivors” class, the concentration of one or more of
the analytes exceeded the maximum concentration of the calibration curve. For this reason,
relative areas were used to build multivariate classification models, using soft independent
modeling by class analogy (SIMCA).

The distance plots are typically used to visualize the results of SIMCA classification
(Figure 1a,b). To build such a plot, the orthogonal and score distances are calculated for
each sample and all of the samples are projected on the respective plane. In this work, the
distances were log-transformed to make it possible to display all of the samples on the same
plot. The acceptance area (also known as cut-off value or decision rule) was calculated,
using a data-driven approach employing the assumption that the distances followed the
scaled chi-squared distribution [23]. The decision rule is represented by a black solid line
on the distance plot.
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Figure 1. Distance plot (a) in original and (b) zoomed scale; and (c) one-dimensional visualization of
the results obtained with SIMCA (points are scattered along the y-axis to improve perception in the
case of overlapping). The black solid line is the decision rule (α = 0.01).

It should be emphasized that the approach to choosing the cut-off value differs from
the two-class classification methods. When both classes are modeled, sensitivity and
specificity are simultaneously examined. There are several criteria for choosing the optimal
cut-off value [24]. In contrast, we used a one-class classification method in combination
with the data-driven approach. It means that the cut-off value is calculated using only one
class. The cut-off value can be adjusted by setting an appropriate significance level (α).

In this work, we also implemented another visualization approach. It is based on
calculating the full distance [22]. The full distance represents both the value of the residuals
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(i.e., the orthogonal distance) and the distance to the center of the model (i.e., the score
distance). From a geometrical point of view, it is equivalent to projecting all of the points
onto a straight line. We believe that such plots are clearer and more compact when several
groups are considered simultaneously (Figure 1c). In the case of such one-dimensional
plots, the decision rule is represented by a vertical line.

It can be seen from Figure 1c that one sample from the calibration set was misclassified,
i.e., it was to the right of the decision rule line. The decision rule was calculated from
the data for the significance level α = 0.01, using a data driven approach. Thus, some
samples from the target class can be misclassified. As long as the number of such points is
comparable to the given significance level, the model works adequately.

The false-negative rates for both the calibration and the Procrustes cross-validation
were equal to 0.017, which are close to the selected significance level α = 0.01. It should be
emphasized that the test set was used only for the evaluation of the model efficiency. All of
the samples from the test set were classified correctly.

All of the samples which appeared to be outliers and formed the “Survivors (outliers)”
group were to the right of the decision rule line. The rest of the samples from the survivors,
which were not used either in the calibration or the test group, formed the “Survivors
(others) group”. As can be seen from Figure 1c, such samples are located on both sides of
the vertical line. This behavior can be explained by changing the profile of the metabolites
in the patients during their stay in the ICU.

Only one sample from the “Non-survivors” group was misclassified. It happened
because the concentrations of all of the metabolites were in the range typical for the
calibration and test sets. Unfortunately, only one sample was taken from this patient, and it
is not possible to investigate changes in metabolomic profile during treatment in the ICU.

2.3. Univariate Classification Models

It was shown in the previous studies [13,15] that p-HPhLA can be used to predict
the outcome of critically ill patients. It was interesting to compare the univariate models
based on the concentration of the only p-HPhLA, the clinical APACHE II scale, and the
multivariate model (based on the concentrations of all eight of the metabolites). The results
obtained for the univariate models are summarized in Figure 2. The “Calibration” and
“Test” groups were merged into one group, “Healthy volunteers and survivors”, for the
univariate model based on the concentration of the only p-HPhLA, because the univariate
model does not require the optimization of any free parameter (the decision rule was
estimated using a data-driven approach, without taking into account the “Non-survivors”
group for α = 0.01).

The univariate model based on the concentration of the p-HPhLA with the decision
rule of 4.1 µmol/L demonstrates that all of the samples from the modeling class were
classified correctly, but three samples from the “Non-survivors” and three samples from
the “Non-survivors (others)” groups were misclassified. For the univariate model based on
the clinical APACHE II score with the decision rule of 19 points (negative prognosis begins
from 20 points), all of the samples from the modeling class were classified correctly, but
13 and 5 samples from the “Non-survivors” and “Non-survivors (others)” groups were
misclassified, respectively.

2.4. Multivariate Classification Model Based on Seven Aromatic Metabolites

A comparison of the results obtained using the univariate and multivariate models
raises one more question: whether the other metabolites (i.e., except p-HPhLA) have any
predictive value. To shed light on this issue, we excluded the p-HPhLA from consideration
and rebuilt the SIMCA model. The results are summarized in Figure 3. Excluding p-HPhLA
had only a small effect on the results. The modeled class containing both the healthy volun-
teers and survivors, and the “Non-survivors” group became less separated. As a result,
two of the samples from the “Calibration” group were misclassified and three samples from
“Non-survivors” and “Non-survivors (others)” groups were inside the acceptance area.
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Figure 2. Visualization of the results obtained using the univariate models based on the concentration
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Figure 3. One-dimensional visualization of the results obtained with SIMCA. The model was built
without p-HPhLA. The vertical line is the decision rule (α = 0.01). Points are scattered along the y-axis
to improve perception in the case of overlapping.

2.5. ROC Analysis

Receiver operating characteristic (ROC) analysis was applied to estimate the overall
performance of the models (Figure 4). The “Calibration” and “Test” groups were used to
calculate the sensitivity and the “Non-survivors” group was used to calculate the specificity.
The area under the ROC curve is typically used to summarize the overall diagnostic
accuracy of the models [25]. For all of the models, the areas under the ROC curve were
close to one (Figure 4). In the case of the multivariate models, the area under the curve was
smaller in comparison with the univariate model, based on the concentration of the only
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p-HPhLA (AUC = 0.990). However, the areas under the ROC curve for all of the models
based on the aromatic metabolites (AUC ≥ 0.978) were higher than for the clinical APACHE
II scale (AUC = 0.966).
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Figure 4. ROC curves obtained for univariate models based on the p-HPhLA concentration and
clinical APACHE II scale, and multivariate models based on the profile of the 8 aromatic metabolites,
including p-HPhLA, and on the profile of the 7 aromatic metabolites without p-HPhLA.

3. Discussion

In this research, we built several prognostic models which could successfully predict
the outcome of critically ill patients, regardless of the main pathology on the day of admis-
sion to the ICU. The target compounds for the prognostic models were phenyl-containing
acids. Some of them (sepsis-associated phenyllactic, p-hydroxyphenylacetic acids, and
p-HPhLA) were considered previously in the univariate models of the outcome for the
patients with similar pathologies, i.e., in homogeneous cohorts. Summarizing the results of
the previous clinical studies, we formulated the following hypothesis: aromatic metabolites
could be prognostic markers of the patient’s outcome regardless of the main pathology.

The most important compound, p-HPhLA, is a metabolite of tyrosine. It was used to
build the univariate model. Other metabolites of tyrosine, such as p-hydroxyphenylacetic,
homovanillic, p-hydroxyphenylpropionic, and p-hydroxybenzoic acids, and metabolites
of phenylalanine, such as phenylpropionic, hydroxyphenyllactic, and benzoic acids were
considered simultaneously to construct two multivariate models. One of them included
all eight of the mentioned metabolites; the other one did not include p-HPhLA. All of the
models demonstrated satisfactory performance according to the area under the ROC-curve
(AUC ≥ 0.978).

The main difference between the multivariate and univariate models is the prediction
obtained for the samples with atypical concentrations of one or several metabolites. Such
samples formed the “Survivors (outliers)” group for the SIMCA models (Figures 1 and 3).
However, most of these samples have relatively low concentrations of p-HPhLA which is
typical for the “Survivors” group (Figure 2a). It is an open question as to why there is such
a difference. On the one hand, the multivariate model may be more sensitive. On the other
hand, changes in the concentration of the metabolites other than p-HPhLA can indicate
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other conditions which were not connected with the outcome. Thus, the univariate model
based on p-HPhLA is able to classify correctly more survivors (less false-positive samples)
than the multivariate models.

At the same time, the univariate model gave an incorrect prediction for the higher
number of non-survivors. One sample from the “Non-survivors” group in the multivariate
model based on eight metabolites, and three samples from the “Non-survivors” and “Non-
survivors (others)” groups in the multivariate model based on seven metabolites (Figure 3)
were misclassified, in contrast to six samples from the “Non-survivors” and “Non-survivors
(others)” groups in the univariate model based on p-HPhLA. Considering the possible
application of the prognostic models in clinical practice, the use of the univariate model
will result in a smaller number of patients in the “risk” group and more chance to “miss”
the patients with a poor outcome. Hence, the multivariate models will result in more
patients in the “risk” group and a lower mortality rate in the ICU. The latter, in turn,
will increase the cost of the patient’s treatment. Thus, the “golden mean” is a subject for
subsequent discussion.

Despite the more false-negative samples for the univariate model, the areas under the
ROC curve for this model were the highest in contrast to the multivariate models. The main
reason was a sample in the “Non-survivors” group for the multivariate models having
a relatively small full distance. If this sample were located closer to the vertical line in
Figures 1 and 3, the areas under the curve would be higher.

It is more significant that the areas under the ROC curve for all of the models based on
the aromatic metabolites (AUC ≥ 0.978) were higher than for the clinical APACHE II scale
(AUC = 0.966). The decision rule for the univariate model based on the clinical APACHE
II score was 19 points and negative prognosis began from 20 points. This scale has been
used since the 1980s to assess the ICU mortality and has been tested many times around
the world [26]. There are special calculators which are used to obtain the APACHE II score
points and to find the corresponding mortality rate [27]. At 15–19 points, the approximated
in-hospital mortality rates are 25% for nonoperative and 12% for postoperative patients; at
20–24 points, the approximated in-hospital mortality rates are 40% for nonoperative and
30% for postoperative patients. Thus, a patient with a score of 20 is already in a “risk”
group and the use of any predictive model based on aromatic metabolites would help in
further patient stratification.

Moreover, our results suggest that severe metabolic disturbances in critically ill pa-
tients on the day of admission to the ICU are as important as other clinical parameters,
such as oxygenation and blood pressure, and should also be treated. In the case of aro-
matic metabolites, this treatment should include properly selected antibiotic therapy and
monitoring of its effectiveness.

4. Materials and Methods
4.1. Reagents and Standards

The benzoic acid (≥99.5%), 2,3,4,5,6-D5-benzoic acid (internal standard, ≥99 atom % D,
≥99%), 3-phenylpropionic acid (phenylpropionic, ≥99%), 3-phenyllactic acid (phenyllactic,
≥98%), 4-hydroxybenzoic acid (p-hydroxybenzoic, ≥99%), 2-(4-hydroxyphenyl)acetic acid
(p-hydroxyphenylacetic, ≥98%), 4-(3-hydroxyphenyl)propionic acid (p-hydroxyphenylpropionic,
≥98%), homovanillic acid (≥97%), 4-(3-hydroxyphenyl)lactic acid (p-HPhLA, ≥97%),
N,O-bis(trimethylsilyl)trifluoroacetamide (99%, contains 1% trimethylchlorosilane), hex-
ane (≥97.0%) were obtained from Merck (Darmstadt, Germany); sulfuric acid, diethyl ether,
sodium chloride were Laboratory Reagent grade and obtained from Khimreactiv (Staryy
Oskol, Russia).

4.2. Sample Preparation and GC-MS Analysis

The sample preparation and GC-MS analysis conditions of the serum samples were
described in detail in the previous study [21]. Briefly, the sample preparation of the serum
samples included dilution with an aqueous solution of internal standard (4 mg/L) and
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distilled water, protein precipitation using sulfuric acid and solid sodium chloride, double
liquid–liquid extraction with diethyl ether, evaporation, silylation, and dilution with hexane
before GC-MS analysis.

The GC-MS analysis was performed on a Trace GC 1310 gas chromatograph
with helium as the carrier gas (1.5 mL/min) using the capillary column TR-5ms
(95% poly(dimethylsiloxane) + 5% phenyl polysilphenylene-siloxane phase, 30 m × 0.25 mm,
df = 0.25 µm) equipped with an ISQ LT mass spectrometer and AI 1310 autosampler, ob-
tained from Thermo Scientific (Thermo Scientific, Thermo Electron Corporation, Waltham,
MA, USA). The conditions of the GC analysis were the following: split 1:10; inlet temper-
ature 260 ◦C; injection volume 2 µL; initial temperature 80 ◦C with ramp 10 ◦C/min to
250 ◦C and hold time 4 min; time of GC analysis 27 min. The conditions of the MS analysis
were the following: electron-impact mode 70 eV; m/z range: 50–480; scan rate 3 scans/s;
MS source 200 ◦C; GC-MS interface 250 ◦C; software Xcalibur 2.2.

The trimethylsilyl derivatives of the analytes were identified using the retention times
and characteristic m/z of the derivatized standards. The quantitative analysis was carried
out using calibration curves and internal standard (2,3,4,5,6-D5-benzoic acid). The linear
analytical range for the analytes was 0.5–36 µmol/L. The relative standard deviation (RSD)
of LOQ value (0.5 µmol/L in average) was 10–12% for benzoic, phenylpropionic, phenyl-
lactic acids, and p-HPhLA; and 18–30% for p-hydroxybenzoic, p-hydroxyphenylacetic,
p-hydroxyphenylpropionic, and homovanillic acids.

4.3. Serum Samples

The concentration of the aromatic metabolites was determined in the serum samples
from the critically ill patients and healthy volunteers; the total number of the serum samples
was 196, the total number of subjects were 131. The serum samples were stored at −30 ◦C
in the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
(Moscow, Russia). The approval of the local Ethics Committee was obtained (N H 01/18,
12 July 2018). To study the samples from the patients (n = 79), admitted to the ICUs, serum
residues taken for routine biochemical tests were used. All of these patients with severe
traumatic brain injury [11], community-acquired pneumonia [13,14], or acute surgical
diseases of abdominal organs [13,15] were previously, clinically described in the relevant
studies. More than one serum sample in the dynamics was collected from 43 patients
(2 samples from 28 patients, 3 samples from 9 patients, 4 samples from 5 patients, 5 samples
from 1 patient). The normal values of the analytes were determined in the serum samples
from healthy volunteers aged over 18 (n = 52) which were collected in Rogachev National
Research Center (Moscow, Russia) [21]. The healthy volunteers were clinically examined
before the blood donation; all of them met the necessary criteria. All of the serum samples
(52 samples from healthy volunteers and 144 samples from critically ill patients) were
collected into the tubes without preservatives, coagulation activators, or other reagents,
kept at −40 ◦C, then defrosted at room temperature before the experiments.

4.4. Data Processing

The data processing was performed in the R environment (4.1.2) using RStudio. The
statistical tests were carried out using the base R. The plots were generated using the ggplot2
package [28]; multivariate analysis was conducted using the mdatools package [29]; ROC
analysis was performed using the pROC package [30]. The DUPLEX algorithm [31] was
implemented by us in C and integrated into R, using the Rcpp package [32].

To predict the outcome of the critically ill patients, a classification model was built
using SIMCA. SIMCA is a supervised classification method based on principal component
analysis (PCA). In this work, we are solving a binary classification problem because our
goal is to predict one out of two possible outcomes for a critically ill patient. In this case,
each class can be modeled using SIMCA, however, only one class (containing both healthy
volunteers and survivors) was modeled. The samples obtained from non-survivors were
not considered during the model construction.
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If several samples were obtained from the same patient, only one was used during the
model construction. Outlier detection was the first step of data processing. It was based
on both examining the concentration distributions and using multivariate approaches [22].
Similar results were obtained in both cases. If the concentration of at least one of the
metabolites was atypically high, a sample was found to be an outlier. Initially, the samples
taken on the day of admission were chosen for all of the critically ill patients. However,
if any sample was found to be an outlier, it was replaced with another one taken a few
days after admission. If such a sample was not available, the respective patient was
not considered during model construction. As a result, seven samples taken on the day
of admission were replaced and eight samples were excluded from consideration. If a
sample taken on the day of admission was not found to be an outlier, other samples taken
from the same patient were not tested to be outliers and were placed in the “Survivors
(others)” group.

The total number of samples in the modeled class was 88. These samples were split
in a ratio of 2:1 into two subsets, using the DUPLEX algorithm (healthy volunteers and
survivors were treated independently) [31]. The first subset contained 59 samples. It was
used to build and validate the classification model. A matrix containing relative areas of
chromatographic peaks was used as an input. The autoscaling was performed before PCA
decomposition. The number of principal components (n(PCs) = 3) and the decision rule (for
a selected significance level α = 0.01) were found, using the data-driven approach [23,33].
The validation was performed using the Procrustes cross-validation [34]. The second
subset contained 29 samples and formed an independent test set. It was used only for the
evaluation of the model efficiency.

All of the samples were placed in one of the following groups (without duplication):
“Calibration” group (n = 59) was the calibration set;
“Test” group (n = 29) was the test set;
“Survivors (outliers)” group (n = 28) contained all of the samples which were found to

be outliers;
“Survivors (others)” group (n = 29) contained all of the remaining samples taken from

survivors (i.e., all of the samples which were not included in the “Calibration”, “Test” or
“Survivors (outliers)” groups);

“Non-survivors” group (n = 35) contained all of the samples taken from the non-
survivors on the day of admission;

“Non-survivors (others)” group (n = 16) contained all of the samples taken from the
non-survivors a few days after admission.

5. Conclusions

The use of metabolomics in discovering the alterations between patient groups, in-
cluding critically ill patients, is a powerful tool, and a predictive model based on different
metabolites can help in patient stratification. Despite the widespread use of generally ac-
cepted multi-parameter scales, such as the APACHE II clinical score, aromatic metabolites
(one or a number of them) may be used in clinical practice to reliably predict the outcome of
critically ill patients on the day of admission to the ICU. Our data showed that a univariate
model based on p-HPhLA is able to classify correctly more survivors (less false-positive
samples) than the multivariate models. An imbalance in the profile of aromatic metabolites
in the blood of critically ill patients indicates serious metabolic disorders, which may have
to become a new therapeutic target.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27154784/s1, Figure S1: The concentration (µmol/L) of
homovanillic (HVA) and 4-(3-hydroxyphenyl)lactic acids (p-HPhLA) in the blood serum of survivors
(n = 44) and non-survivors (n = 35). Concentrations higher than 36 µmol/L are approximate because
they were calculated by extrapolation; Figure S2: The distributions of phenylpropionic acid (PhPA)
concentration, µmol/L, obtained for healthy volunteers (n = 52) and survivors (n = 44); Figure S3:
The concentration of all metabolites in the blood serum of survivors. Each person is represented

https://www.mdpi.com/article/10.3390/molecules27154784/s1
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Molecules 2022, 27, 4784 12 of 13

by a single point. Eight samples (red points) are outliers. Points are scattered along the x-axis to
improve perception in the case of overlapping. BA—benzoic acid; PhPA—3-phenylpropionic acid;
PhLA—3-phenyllactic acid; p-HBA—4-hydroxybenzoic acid, p-HPhAA—2-(4-hydroxyphenyl)acetic
acid; p-HPhPA—4-(3-hydroxyphenyl)propionic acid; HVA—homovanillic acid; p-HPhLA—4-(3-
hydroxyphenyl)lactic acid.
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5. Mierzchała-Pasierb, M.; Lipińska-Gediga, M. Sepsis diagnosis and monitoring–procalcitonin as standard, but what next?
Anaesthesiol. Intensive Ther. 2019, 51, 299–305. [CrossRef]

6. Vincent, J.-L.; Bakker, J. Blood lactate levels in sepsis: In 8 questions. Curr. Opin. Crit. Care 2021, 27, 298–302. [CrossRef]
7. Beloborodova, N.V.; Olenin, A.Y.; Pautova, A.K. Metabolomic findings in sepsis as a damage of host-microbial metabolism

integration. J. Crit. Care 2018, 43, 246–255. [CrossRef]
8. Carry, E.; Zhao, D.; Mogno, I.; Faith, J.; Ho, L.; Villani, T.; Patel, H.; Pasinetti, G.M.; Simon, J.E.; Wu, Q. Targeted analysis of

microbial-generated phenolic acid metabolites derived from grape flavanols by gas chromatography-triple quadrupole mass
spectrometry. J. Pharm. Biomed. Anal. 2018, 159, 374–383. [CrossRef]

9. Pautova, A.K.; Sobolev, P.D.; Revelsky, A.I. Microextraction of aromatic microbial metabolites by packed hypercrosslinked
polystyrene from blood serum. J. Pharm. Biomed. Anal. 2020, 177, 112883. [CrossRef]

10. Beloborodova, N.V.; Khodakova, A.S.; Bairamov, I.T.; Olenin, A.Y. Microbial origin of phenylcarboxylic acids in the human body.
Biochemistry 2009, 74, 1350–1355. [CrossRef]

11. Beloborodova, N.V.; Pautova, A.K.; Sergeev, A.A.; Fedotcheva, N.I. Serum Levels of Mitochondrial and Microbial Metabolites
Reflect Mitochondrial Dysfunction in Different Stages of Sepsis. Metabolites 2019, 9, 196. [CrossRef] [PubMed]

12. Rogers, A.J.; McGeachie, M.; Baron, R.M.; Gazourian, L.; Haspel, J.A.; Nakahira, K.; Fredenburgh, L.E.; Hunninghake, G.M.; Raby,
B.A.; Matthay, M.A.; et al. Metabolomic Derangements Are Associated with Mortality in Critically Ill Adult Patients. PLoS ONE
2014, 9, e87538. [CrossRef] [PubMed]

13. Beloborodova, N.V.; Sarshor, Y.N.; Osipov, A.A. Prognosis of outcome in patients with acute abdominal or pulmonary bacterial
infection based on the serum level of aromatic microbial metabolites. Clin. Exp. Surgery. Petrovsk. J. 2020, 8, 96–104. [CrossRef]

14. Beloborodova, N.V.; Sarshor, Y.N.; Bedova, A.Y.; Chernevskaya, E.A.; Pautova, A.K. Involvement of Aromatic Metabolites in the
Pathogenesis of Septic Shock. Shock 2018, 50, 273–279. [CrossRef]

15. Moroz, V.V.; Beloborodova, N.V.; Osipov, A.A.; Vlasenko, A.V.; Bedova, A.Y.; Pautova, A.K. Phenylcarboxylic Acids in The
Assessment of The Severity of Patient Condition and The Efficiency of Intensive Treatment in Critical Care Medicine. Gen.
Reanimatol. 2016, 12, 37–48. [CrossRef]

http://doi.org/10.3390/metabo12010001
http://www.ncbi.nlm.nih.gov/pubmed/35050123
http://doi.org/10.1186/s13049-019-0609-3
http://www.ncbi.nlm.nih.gov/pubmed/31039813
http://doi.org/10.5644/ama2006-124.165
http://doi.org/10.1001/jama.2016.0287
http://www.ncbi.nlm.nih.gov/pubmed/26903338
http://doi.org/10.5114/ait.2019.88104
http://doi.org/10.1097/MCC.0000000000000824
http://doi.org/10.1016/j.jcrc.2017.09.014
http://doi.org/10.1016/j.jpba.2018.06.034
http://doi.org/10.1016/j.jpba.2019.112883
http://doi.org/10.1134/S0006297909120086
http://doi.org/10.3390/metabo9100196
http://www.ncbi.nlm.nih.gov/pubmed/31547099
http://doi.org/10.1371/journal.pone.0087538
http://www.ncbi.nlm.nih.gov/pubmed/24498130
http://doi.org/10.33029/2308-1198-2020-8-2-96-104
http://doi.org/10.1097/SHK.0000000000001064
http://doi.org/10.15360/1813-9779-2016-4-37-48


Molecules 2022, 27, 4784 13 of 13

16. Khoroshilov, S.E.; Beloborodova, N.V.; Nikulin, A.V.; Bedova, A.Y. Impact of Extracorporeal Detoxification on the Serum Levels of
Microbial Aromatic Acid Metabolites in Sepsis. Gen. Reanimatol. 2015, 11, 6–14. [CrossRef]

17. Babaev, M.A.; Eremenko, A.A.; Grin, O.O.; Kostritсa, N.S.; Dymova, O.V.; Beloborodova, N.V.; Pautova, A.K.; Zakharenkova, Y.S.;
Levitskya, M.V. Successful therapy of endotoxin shock and multiple organ dysfunction using sequential targeted extracorporeal
treatment in a patient after combined cardiac surgery. Clin. Exp. Surgery. Petrovsk. J. 2020, 8, 105–114. [CrossRef]

18. Pautova, A.K.; Meglei, A.Y.; Chernevskaya, E.A.; Alexandrova, I.A.; Beloborodova, N.V. 4-Hydroxyphenyllactic Acid in Cere-
brospinal Fluid as a Possible Marker of Post-Neurosurgical Meningitis: Retrospective Study. J. Pers. Med. 2022, 12, 399. [CrossRef]

19. Moviat, M.; Terpstra, A.M.; Ruitenbeek, W.; Kluijtmans, L.A.J.; Pickkers, P.; van der Hoeven, J.G. Contribution of various metabo-
lites to the “unmeasured” anions in critically ill patients with metabolic acidosis *. Crit. Care Med. 2008, 36, 752–758. [CrossRef]

20. Langley, R.J.; Tsalik, E.L.; van Velkinburgh, J.C.; Glickman, S.W.; Rice, B.J.; Wang, C.; Chen, B.; Carin, L.; Suarez, A.;
Mohney, R.P.; et al. An Integrated Clinico-Metabolomic Model Improves Prediction of Death in Sepsis. Sci. Transl. Med. 2013,
5, 195ra95. [CrossRef]

21. Pautova, A.K.; Bedova, A.Y.; Sarshor, Y.N.; Beloborodova, N.V. Determination of Aromatic Microbial Metabolites in Blood Serum
by Gas Chromatography–Mass Spectrometry. J. Anal. Chem. 2018, 73, 160–166. [CrossRef]

22. Rodionova, O.; Kucheryavskiy, S.; Pomerantsev, A. Efficient tools for principal component analysis of complex data—A tutorial.
Chemom. Intell. Lab. Syst. 2021, 213, 104304. [CrossRef]

23. Pomerantsev, A.L. Acceptance areas for multivariate classification derived by projection methods. J. Chemom. 2008, 22, 601–609. [CrossRef]
24. Habibzadeh, F.; Habibzadeh, P.; Yadollahie, M. On determining the most appropriate test cut-off value: The case of tests with

continuous results. Biochem. Medica 2016, 26, 297–307. [CrossRef] [PubMed]
25. Mandrekar, J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [CrossRef]
26. Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A severity of disease classification system. Crit Care Med

1985, 13, 818–829. [CrossRef]
27. APACHE II Score-MDCalc. Available online: https://www.mdcalc.com/apache-ii-score#evidence (accessed on 12 May 2022).
28. Wickham, H. ggplot2; Use R! Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-24275-0.
29. Kucheryavskiy, S. mdatools–R package for chemometrics. Chemom. Intell. Lab. Syst. 2020, 198, 103937. [CrossRef]
30. Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: An open-source package for R and S+

to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [CrossRef]
31. Snee, R.D. Validation of Regression Models: Methods and Examples. Technometrics 1977, 19, 415–428. [CrossRef]
32. Eddelbuettel, D. Seamless R and C++ Integration with Rcpp; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-6867-7.
33. Pomerantsev, A.L.; Rodionova, O.Y. Concept and role of extreme objects in PCA/SIMCA. J. Chemom. 2014, 28, 429–438. [CrossRef]
34. Kucheryavskiy, S.; Zhilin, S.; Rodionova, O.; Pomerantsev, A. Procrustes Cross-Validation—A Bridge between Cross-Validation

and Independent Validation Sets. Anal. Chem. 2020, 92, 11842–11850. [CrossRef] [PubMed]

http://doi.org/10.15360/1813-9779-2015-5-6-14
http://doi.org/10.33029/2308-1198-2020-8-2-105-114
http://doi.org/10.3390/jpm12030399
http://doi.org/10.1097/CCM.0B013E31816443CB
http://doi.org/10.1126/scitranslmed.3005893
http://doi.org/10.1134/S1061934818020089
http://doi.org/10.1016/j.chemolab.2021.104304
http://doi.org/10.1002/cem.1147
http://doi.org/10.11613/BM.2016.034
http://www.ncbi.nlm.nih.gov/pubmed/27812299
http://doi.org/10.1097/JTO.0b013e3181ec173d
http://doi.org/10.1097/00003246-198510000-00009
https://www.mdcalc.com/apache-ii-score#evidence
http://doi.org/10.1016/j.chemolab.2020.103937
http://doi.org/10.1186/1471-2105-12-77
http://doi.org/10.1080/00401706.1977.10489581
http://doi.org/10.1002/cem.2506
http://doi.org/10.1021/acs.analchem.0c02175
http://www.ncbi.nlm.nih.gov/pubmed/32786450

	Introduction 
	Results 
	Characteristics of the Critically Ill Patients 
	Multivariate Classification Model Based on Eight Aromatic Metabolites 
	Univariate Classification Models 
	Multivariate Classification Model Based on Seven Aromatic Metabolites 
	ROC Analysis 

	Discussion 
	Materials and Methods 
	Reagents and Standards 
	Sample Preparation and GC-MS Analysis 
	Serum Samples 
	Data Processing 

	Conclusions 
	References

