Supplementary Materials

Materials and Methods

Biological Assay

Cell Culture

Normal murine embryonic liver BNL CL.2 cell lines were maintained in Dulbecco's modified Eagle's medium (DMEM, HyClone, Logan, UT, USA), supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin in CO₂ incubator (SANYO, CO₂ incubator, Osaka, Japan) with a humidified atmosphere of 95% air and 5% CO₂ at 37 °C.

Cell Cytotoxicity Assay Using MTT Assay

The effects of plumbagin (1) and compound **11a** on the cell viability were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, Bionovas Biotechnology Co., Ltd., Toronto, ON, Canada) assay. Briefly, murine embryonic liver cells BNL CL.2 (7×10^3 cells/well) were seeded in 96-well culture plates. After 24 h incubation to allow cell attachment, the cell were incubated with or without various concentrations of plumbagin (1) and compound **11a** for 48 h. Ten microliter of MTT (5 mg/mL) was then added to each well, and the plates were incubated for an additional 2.5 h at 37 °C. The formazan crystals formed by MTT metabolism were solubilized by 100 µL DMSO to each well. The absorbance at 540 nm was measured with a microplate ELISA reader (Molecular Devices spectramax 340 PC³⁸⁴, Molecular Devices, Sunnyvale, CA, USA). Values represent the mean \pm SD form at least two independent experiments.

Figure S1. The effects of plumbagin (1) and compound **11a** on cell proliferative activity of normal cell line BNL CL.2 (murine embryonic liver cells) for 48 h.

Figure S2. (A) ¹H-NMR spectra of juglone (3); (B) ¹³C-NMR spectra of juglone (3); (C) LC-MS spectra of juglone (3).

Figure S3. (A) ¹H-NMR spectra of compound 5a; (B) ¹³C-NMR spectra of compound 5a; (C) LC-MS spectra of compound 5a.

Figure S4. (A) ¹H-NMR spectra of compound 5b; (B) ¹³C-NMR spectra of compound 5b; (C) LC-MS spectra of compound 5b.

Figure S5. (A) ¹H-NMR spectra of compound 6a; (B) ¹³C-NMR spectra of compound 6a; (C) LC-MS spectra of compound 6a.

Figure S6. (A) ¹H-NMR spectra of compound 6b; (B) ¹³C-NMR spectra of compound 6b; (C) LC-MS spectra of compound 6b.

Figure S7. (A) ¹H-NMR spectra of compound 7a; (B) ¹³C-NMR spectra of compound 7a; (C) LC-MS spectra of compound 7a.

Figure S8. (A) ¹H-NMR spectra of compound 7b; (B) ¹³C-NMR spectra of compound 7b; (C) LC-MS spectra of compound 7b.

Figure S9. (A) ¹H-NMR spectra of compound 8a; (B) ¹³C-NMR spectra of compound 8a; (C) LC-MS spectra of compound 8a.

Figure S10. (A) ¹H-NMR spectra of compound 8b; (B) ¹³C-NMR spectra of compound 8b; (C) LC-MS spectra of compound 8b.

Figure S11. (A) ¹H-NMR spectra of compound 9a; (B) ¹³C-NMR spectra of compound 9a; (C) LC-MS spectra of compound 9a.

Figure S12. (A) ¹H-NMR spectra of compound 9b; (B) ¹³C-NMR spectra of compound 9b; (C) LC-MS spectra of compound 9b.

Figure S13. (A) ¹H-NMR spectra of compound 10a; (B) ¹³C-NMR spectra of compound 10a; (C) LC-MS spectra of compound 10a.

Figure S14. (A) ¹H-NMR spectra of compound 11a; (B) ¹³C-NMR spectra of compound 11a; (C) LC-MS spectra of compound 11a.

Figure S15. (A) ¹H-NMR spectra of compound 11b; (B) ¹³C-NMR spectra of compound 11b; (C) LC-MS spectra of compound 11b.

Figure S16. (A) ¹H-NMR spectra of compound 13a; (B) ¹³C-NMR spectra of compound 13a; (C) LC-MS spectra of compound 13a.

Figure S17. (A) ¹H-NMR spectra of compound 13b; (B) ¹³C-NMR spectra of compound 13b; (C) LC-MS spectra of compound 13b.

Figure S18. (A) ¹H-NMR spectra of compound 14a; (B) ¹³C-NMR spectra of compound 14a; (C) LC-MS spectra of compound 14a.

Figure S19. (A) ¹H-NMR spectra of compound 14b; (B) ¹³C-NMR spectra of compound 14b; (C) LC-MS spectra of compound 14b.

Figure S20. (A) ¹H-NMR spectra of compound 15a; (B) ¹³C-NMR spectra of compound 15a; (C) LC-MS spectra of compound 15a.

Figure S21. (A) ¹H-NMR spectra of compound 15b; (B) ¹³C-NMR spectra of compound 15b; (C) LC-MS spectra of compound 15b.

Figure S22. (A) ¹H-NMR spectra of compound 16a; (B) ¹³C-NMR spectra of compound 16a; (C) LC-MS spectra of compound 16a.

Figure S23. (A) ¹H-NMR spectra of compound 16b; (B) ¹³C-NMR spectra of compound 16b; (C) LC-MS spectra of compound 16b.

Figure S24. (A) ¹H-NMR spectra of compound 17a; (B) ¹³C-NMR spectra of compound 17a; (C) LC-MS spectra of compound 17a.

Figure S25. (A) ¹H-NMR spectra of compound 17b; (B) ¹³C-NMR spectra of compound 17b; (C) LC-MS spectra of compound 17b.

Figure S26. (A) ¹H-NMR spectra of compound 18a; (B) ¹³C-NMR spectra of compound 18a; (C) LC-MS spectra of compound 18a.

Figure S27. (A) ¹H-NMR spectra of compound 18b; (B) ¹³C-NMR spectra of compound 18b; (C) LC-MS spectra of compound 18b.

Figure S28. (A) ¹H-NMR spectra of compound 19a; (B) ¹³C-NMR spectra of compound 19a; (C) LC-MS spectra of compound 19a.

Figure S29. (A) ¹H-NMR spectra of compound 19b; (B) ¹³C-NMR spectra of compound 19b; (C) LC-MS spectra of compound 19b.