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Abstract: The ability of particles to “tunnel” through potential energy barriers is a purely quantum
phenomenon. A classical particle in a symmetric double-well potential, with energy below the
potential barrier, will be trapped on one side of the potential well. A quantum particle, however, can
sit on both sides, in either a symmetric state or an antisymmetric state. An analogous phenomenon
occurs in conservative classical systems with two degrees of freedom and no potential barriers. If
only the energy is conserved, the phase space will be a mixture of regular “islands” embedded in a
sea of chaos. Classically, a particle sitting in one regular island cannot reach another symmetrically
located regular island when the islands are separated by chaos. However, a quantum particle can sit
on both regular islands, in symmetric and antisymmetric states, due to chaos-assisted tunneling. Here,
we give an overview of the theory and recent experimental observations of this phenomenon.
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1. Introduction

The field of classical dynamics was placed on a solid mathematical footing by the pub-
lication of Newton’s Principia in 1686 [1]. It led to the growth of science and gave support to
a belief that the world is deterministic. This view was subsequently challenged by the work
of Poincaré [2], who showed that perturbation expansions of dynamical processes often
diverge due to nonlinear resonances (and chaos), making long-time predictions impossible.

With the development of computers in the 20th century, it became possible to explore,
numerically, the consequences of chaos in dynamical systems, although scientists in the
1800’s unknowingly had begun the process with their work on thermodynamics. The
so-called “ideal gas” equation of state, PV = NkBT (P is pressure, V is volume, N is the
number of particles (≈1023), T is the temperature of the gas, and kB is Boltzmann’s constant),
describes the macroscopic behavior of a dilute hard sphere gas in a box of volume V. This is
a consequence of the fact that a hard sphere gas is chaotic and, therefore, ergodic (all states
with the same energy are equally probable) and mixing [3]. In each collision between hard
sphere particles, only quantities that are protected by the symmetries of nature survive.
These include the number of particles, the total momentum, and the total kinetic energy of
each pair of colliding particles. As a consequence, the macroscopic behavior of the chaotic
hard sphere gas can be described in terms of its pressure (momentum conservation), particle
number, and temperature (average kinetic energy). The constant kB = 1.38 × 10−23 JK−1

is Boltzmann’s constant and is one of the seven fundamental constants of nature. It is the
“chaos” constant because chaotic systems with many degrees of freedom are thermalized
systems, and kB is intrinsic to such systems.

The hard sphere gas is the only many-body system that has been proven (by Sinai) to
be chaotic [4]. Subsequently, Shrednicki [5] derived the Maxwell–Boltzmann distribution,
which is the single-particle probability distribution for an “ideal gas” based on the fact that
hard sphere gases are chaotic (ergodic and mixing). The world we live in is thermalized
and is largely governed by the laws of thermodynamics. But what is the mechanism by
which the world of interacting particles is thermalized, since most interactions in nature
are not hard-sphere-like? That is still an open question.
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“Quantum chaos” is concerned with the quantum behavior of classically chaotic sys-
tems. In the 1950s, Wigner surmised that the (quantum) Hamiltonians of classically chaotic
systems have energy eigenvalue spacing distributions similar to those of a Hamiltonian
matrix whose matrix elements are random numbers determined by Gaussian distributions.
This “surmise” has since been verified in multiple quantum systems whose underlying
classical dynamics is chaotic [6].

If we consider the dynamics of systems with few degrees of freedom, the dynamics
is generally a mixture of chaotic and regular orbits. This behavior of classical dynamical
systems, with few degrees of freedom, was clarified by the work of Kolmogorov [7],
Arnol’d [8,9], and Moser [10] (collectively called KAM). KAM theory [6] is based on the
fact that, for systems with few degrees of freedom, some regions of the phase space can be
described by converging perturbation expansions (using appropriate parameters). In other
regions of phase space, this is impossible because the orbits are chaotic and all perturbation
expansions diverge. For systems with one degree of freedom, there is no chaos. It requires
two degrees of freedom to begin to see chaotic behavior in classical dynamical systems.

For systems with two degrees of freedom (2D), the dynamics is regular (no chaos)
if symmetries allow two conserved quantities (like energy and angular momentum) to
exist. However, if only one symmetry governs the dynamics, it can undergo a transition to
chaos as parameters are varied [11]. The quantum mechanical behavior of such systems
can exhibit behavior qualitatively different from that of their classical counterpart. When
the dynamics consists of a mixture of chaotic and regular orbits (KAM tori), particles that
would be trapped in one region of the classical phase space can tunnel through the chaotic
regions into classically prohibited regions of the phase space in the quantum system. This
phenomenon is known as “chaos-assisted tunneling” or “CAT”.

Some examples of 2D systems that undergo a transition to chaos,include anharmonic
potentials and hard wall asymmetric billiards. Systems with one spatial degree of freedom,
driven by a time-periodic force are 1.5D systems and can also exhibit a transition to chaos.
As we will describe in subsequent sections, these systems provide important platforms for
observing chaos-assisted tunneling, both theoretically and in experiments.

2. Chaos-Assisted Tunneling in 2D Systems

Tunneling is a quantum effect that occurs, for example, in symmetric 1D double-well
potentials. Classically, a particle placed in the left side of the double-well potential (below
the barrier) will stay on that side of the potential energy barrier forever. A quantum
particle, however, after it is placed in the left well, will oscillate back and forth between the
wells. In a symmetric quantum double-well potential, the energy eigenstates of particles
trapped below the barrier consist of symmetric and anti-symmetric energy probability
amplitudes with probability equally distributed in the two wells. The energies of the
symmetric and anti-symmetric eigenstates differ by a small amount, called the energy
splitting δ = |E− − E+|, where E+ (E−) is the energy of the symmetric (antisymmetric)
state (see Figure 1a). The energy splitting, δ ≈ e−A/h̄ (A has units of action and depends on
the shape of the potential) has an exponential dependence on Planck’s constant, h̄. As h̄→0
and we tend to the classical limit, the splitting disappears [12,13].
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Figure 1. (a) A double-well potential with a potential energy barrier. (b) Periodic orbits (A and B) of
the quartic potential with no potential energy barriers (Based on [12]).

2.1. Anharmonic Oscillators

The concept of “dynamical tunneling” was first made explicit by Davis and Heller [12,14]
(and further clarified by other authors [15,16]), when they explored the quantum behavior
of a particle confined to a 2D anharmonic potential with Hamiltonian

H =
p2

s
2

+
p2

u
2

+
1
2

ω2
s s2 +

1
2

ω2
uu2 + λu2s + βs2u (1)

The potential in Equation (1) has no potential energy barriers, but energy contours have a
triangle-like shape which, for β = 0, is symmetric about u = 0 (see sketch in the upper part
of Figure 1b). For β = 0, the classical system has pairs of periodic orbits that have the same
energy and are mirror images of each other (after reflection through u = 0). They bounce
back and forth between opposite walls (in the u direction) of the potential (orbit “A” and
“B” in Figure 1b). Classically, they can be identified with stable fixed points in a pu versus u
surface of section of the classical phase space (see the lower part of Figure 1b).

The quantum version of the symmetric (β = 0) anharmonic oscillator system has
energy eigenstates that form symmetric and antisymmetric pairs, with slightly different
energies, whose probability distributions sit along both classical periodic orbits (A and
B in Figure 1b). The absolute value of one of the symmetric eigenstates is shown in
Figure 2a. This behavior of eigenstates in the quartic potential is similar to the symmetric
and antisymmetric pairs of eigenstates in the symmetric double-well system, except for
the fact in the quartic potential there is no potential energy barrier to tunnel through.
When β 6= 0 and the reflection symmetry is broken, and the eigenstates again lie primarily
along only one of the pair of classical periodic orbits in Figure 1b. Davis and Heller [12]
proposed chaos-assisted tunneling as a mechanism to allow the system to form symmetric
and antisymmetric pairs of energy eigenstates, even though there is no potential barrier to
tunnel through. From Figure 2c, we see that there is a vast region of chaos separating the
stable islands that support the energy eigenstate in Figure 2a.



Entropy 2024, 26, 144 4 of 16

(a)

(b)                                    (c)

Figure 2. Some aspects of the quantum and classical dynamics of the quartic oscillator Equation (1)
for parameters ωs = 1.0, ωu = 1.1, λs = −0.11, and β = 0. (a) The symmetric eigenstate with energy
E = 13.59. (b) Surface of section, pu versus u, for energy E = 9.0. (c) Surface of section, pu versus u,
for energy E = 13.6. The circular curves in (b,c) are energy boundaries. (Reproduced from [12] with
permission of AIP publishing).

In order to confirm the concept of chaos-assisted tunneling, Tomsovic and Ullmo [13]
modeled the quartic system in terms of symmetric Ψ+

R and antisymmetric Ψ−R regular states,
each with energy ER (the energies they would have without the effect of tunneling), that
were isolated on the stable islands at p = ±po. For one case they considered, they assumed
the region of chaos separating the two stable islands had no blockages (for example no
cantori partially blocking classical trajectories [6]). They assumed that the states in the
chaotic region were either symmetric or antisymmetric. Then, for each symmetry class,
they modeled the dynamics in terms of a Hamiltonian that coupled the state in the regular
region to the states in the chaotic region. As the energies of the states were varied with
variation in a parameter (such as λ in Equation (1)), they found that the coupling v between
the regular and chaotic states was enhanced when the energies associated with the regular
and chaotic states undergo avoided crossings.

Since it was not possible to actually construct the states in the chaotic region accurately,
they assumed that the chaotic states had energy eigenvalues govern by the Gaussian
orthogonal ensemble (GOE) and that the coupling vn between the nth chaotic state and
the regular state was a Gaussian random variable with variance v2. For the case where the
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chaotic sea has no partial blockages, the Hamiltonian they constructed (for the symmetric
states) had a structure

H+ =

(
ER v̄+
v̄T
+

¯̄E
+
GOE

)
, (2)

where ¯̄E
+
GOE is a matrix of energies of the chaotic states (given by the Gaussian orthogonal

ensemble) and v̄ is a row matrix of Gaussian random variables vn. A similar matrix was
written for the antisymmetric states. They then computed the energy splittings of the
pairs of regular symmetric and antisymmetric states. The splitting distribution is given
in Figure 3. Tomsovic and Ullmo also constructed random Hamiltonians for cases where
there were blockages in the chaotic regions and found level splitting distributions that were
close to, but not exactly the same as the case with no blockages.

Figure 3. Level splittings for quartic potential. (Reprinted Figure 10 from [13] with permission from
the American Physical Society).

Leyvraz and Ullmo [16] further investigated the statistical properties of symmetric
and antisymmetric energy eigenstates (for the quartic oscillator) whose structure is the
result of chaos-assisted tunneling. They found that the probability distribution of energy
level splittings δ = |E+ − E−| was given by a Cauchy distribution

P(δs) =
2
π

1
1 + δs2 , (3)

where δs = δ/δtyp, and δtyp is a typical value of the splitting [17]. The distribution of level
splittings, shown in Figure 3, when plotted in terms of appropriate variables, is consistent
with the result of Leyvrz and Ullmo.

The work of all these authors, including Davis and Heller [12]; Bohigas, Tomsovic, and
Ullmo, [15]; Tomsovic and Ullimo [13]; and Leyvraz and Ullmo [16], showed that energy
eigenstates (where chaos-assisted tunneling plays a role due to the presence of chaos) appear
to have (i) great enhancement of their average (energy) splitting; (ii) extreme sensitivity
to the variation in an external parameter; and (iii) strong dependence on the tunneling
properties to any blockages in the chaotic region separating the two tunneling tori.
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2.2. Time-Periodic 1D Systems

Anharmonic systems with one spatial degree of freedom, driven by time-periodic
forces, have provided another testing ground for issues related to chaos-assisted tunneling.
Lin and Ballentine [18] studied the dynamics of a particle in double-well potential driven
by a time periodic force,

H =
p2

2m
+ Bx4 − Dx2 + λxcos(ωt). (4)

By analyzing the Floquet states, they found erratic tunneling times for states that are
initially localized on field induced periodic orbits. They explain this in terms of overlap of
the “regular” states with a large number of eigenstates states that “randomly” cover the
chaotic sea. The role played by avoided crossings on the tunneling process for a periodically
driven pendulum was also studied by Latka, Grigolini, and West [19].

Mechanisms for chaos-assisted tunneling in other time-periodically driven systems
have been considered by several authors. For example, Roncaglia et al. [20] considered the
time-periodically kicked Harper model,

H = Kcos(p) + Kcos(x)
+∞

∑
n=−∞

δ(t− n). (5)

They found that when the chaotic region and Planck’s constant were the same size and
tunneling rates were irregular, which they interpreted to be a signature of the chaos present
in the system.

2.3. Billiards

Chaos-assisted tunneling has also been explored in several different types of billiards.
As mentioned earlier, symmetric billiards like the circle or half-circle billiard support
integrable dynamics, but if the symmetry is broken by distorting the shape of the billiard,
the dynamics becomes non-integrable and can support a variety of dynamical behaviors
ranging from small regions of chaos to fully chaotic dynamics [11].

Frischat and Doron [21,22] performed extensive studies of mechanisms for chaos-
assisted tunneling between states in the annular billiard, which consists of a large circle
billiard, with a smaller circle cut out of it off-center (see Figure 4a). Classically, this billiard
has two whispering gallery modes, which correspond to waves (or particles) that travel
close to and along the outer wall due to internal reflection. One whispering gallery mode
travels clockwise and the other travels counterclockwise. If the small circular cutout is
placed off-center, the billiard dynamics will consist of a mixture of regular and chaotic
orbits (see Figure 4b). Classically, the whispering gallery modes will not be blocked if the
small circular cutout is not in contact with the walls. For this system, the whispering gallery
modes play the role of the states in the double-well system. If the dynamics of the objects
in the billiard are governed by wave motion (such as quantum particles or photons), then
the whispering gallery modes can form symmetric or antisymmetric standing waves due
to chaos-assisted tunneling involving the chaotic states in the billiard.

Hackenbroich and Nöckel [23], numerically studied the effect of chaos on the lifetimes
of whispering gallery (WG) modes in an annular dielectric billiard with a metallic inclusion
and found that the lifetimes of the whispering gallery modes fluctuated by orders of magni-
tude as the location of the small circular inclusion was varied due to avoided crossings with
chaotic states in the annular billiard. Since the waves inside the dielectric billiard can decay,
the system can be thought to behave like an open system with long-lived quasibound
states whose dynamics are strongly affected by the regular and chaotic dynamics inside
the billiard.
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(a)

(b)
Figure 4. (a) Annular billiard. (b) Surface of section (angular momentum L versus γ/π) of orbits in
the annular billiard for a = 0.4 and δ = 0.2 (the angle γ is shown in (4a)). (Reprinted Figures 1 and 2
from [22] with permission from the American Physical Society).

2.3.1. Microwave Cavities

In 2000, Dembowski et al. [24] provided the first experimental confirmation of chaos-
assisted tunneling in a microwave annular billiard, and it was followed by a more extensive
analysis in 2005 by Hofferbert et al. [25]. They studied microwave dynamics in both a
superconducting niobium resonator and in a normal conducting copper resonator. In a
symmetric annular billiard (circular inset in the middle), the whispering gallery modes
(clockwise and counterclockwise) have opposite angular momentum and are degenerate.
However, when the symmetry is destroyed by moving the circular inset off-center, the
whispering gallery modes become coupled and form symmetric and antisymmetric pairs.
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The energy splitting of these pairs showed the signatures of chaos-assisted tunneling in the
de-symmetrized annular microwave billiard.

Several years later, Bäcker et al. [26], studied chaos-assisted tunneling using mi-
crowave spectra in a mushroom billiard. The mushroom billiard consists of a quarter
circle with a rectangular billiard attached to one side so the radius and the left side of the
rectangle are aligned. In this case, there are whispering gallery modes along the circular
edge of the quarter circle. They tunnel between each other via avoided crossings with the
chaotic states in the billiard (the chaotic states sample the whole billiard.)

2.3.2. Optical Cavities

Nöckel and Stone et al. [27–29] studied the lifetime of whispering gallery modes for a
deformed cylindrical dielectric optical resonator. They found that the deformation of the
optical resonator led to highly anisotropic emission of the whispering gallery modes and
significantly shortened lifetimes of the whispering gallery modes, due to avoided crossings
with the chaotic states inside the resonator.

One of the most wide-spread uses of chaos-assisted tunneling (CAT) is in the field
of microlasers [30]. Circular optical cavities (2d billiards containing light waves) have
whispering gallery modes that emit light isotopically. In a series of papers in 1994–1997,
Nöckel, Stone, and co-authors [23,28,31], analyzed the effect on light emission if the optical
cavities are slightly deformed so that chaotic dynamics starts to play a roll. They found
that the light emission could become highly anisotropic, so that chaos could, in principle,
be used to control emission of light from the microcavities.

Since these early theory papers, a number of experiments have shown that chaos-
assisted tunneling in microlasers can be used to control the performance and output of
the microlasers. In 2010, Shinohara et al. [32,33], studied the performance of a deformed
GaAs/AlGaAs disk cavity. By comparing experimental data to the results of numerical
simulations that show significant chaos in the phase space of the deformed cavity, they
were able to show signatures of chaos in the light emission pattern of the microlaser. In
2013, several groups observed chaos-assisted tunneling in microlasers. Kim et al. [34]
demonstrated chaos-assisted tunneling in a rounded half-moon shaped InGaAsP semicon-
ductor microcavity laser. Xiao et al. [35] showed that chaos-assisted tunneling in the phase
space of a slightly deformed optical microcavity can give rise to a new form of induced
transparency in the device.

In 2021, Qian et al. [36], considered a microcavity with a quadrapole shape whose
radius could be written R(φ) = R0[1 + εcos(2φ)], where R0 = 10 µm is the approximate
radius and ε = 0.12. In 2021, Wang et al. [37] showed that it is possible to map the light
wave mode patterns in an optical microcavity and showed the existence of chaos-assisted
tunneling in a silicon microdisk “with unprecedented certainty”.

2.4. Cold Atoms

Since the dynamics of atoms is governed by the Schrodinger equation, which is a
wave equation, the atomic dynamics is described in terms of complex “probability” waves.
Atom-optics experiments make use of the wave nature of atoms and, so far, have used
alkali atoms, either sodium (Na) or cesium (Ce). The alkali atoms are made to interact with
a standing wave of laser light (formed from two counter-propagating laser beams). The
two counter-propagating laser beams form a periodic standing wave. The standing wave
of light is slightly detuned away from resonance with a specific pair of atomic energy levels
with energy spacing h̄ω0. The light wave stimulates absorption and emission of a photon
by the atoms, which results in a net atomic recoil of 2h̄kL (kL = ωL

c is the wave vector of
the laser beam). When the laser detuning, δL = ω0 −ωL, is large, this process dominates
the dynamics.

The theoretical model that describes the atom-optic experiment was originally devel-
oped by Graham, Schlautman, and Zoller [38]. In 2001, two different experimental groups,
one in Texas (Steck, Oskay, and Raizen [39–41] and the other at NIST (Hensinger et al. [41–43],
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observed chaos-assisted tunneling in atom-optics experiments (here, we follow the theoret-
ical analysis in [44,45]).

The Texas experiment involved (after considerable manipulation [39]) a cloud of
about 104 cesium atoms, with fairly well-defined momentum at a temperature of about
T = 4 × 10−7 K. The Hamiltonian that described the center-of-mass dynamics of each
cesium atom in the oscillating standing wave of light is

H1 =
p2

1
2m
− 2Vocos2

(
ωmt

2

)
cos(2kLx1), (6)

where ωm = 2π
T is the modulation frequency of the light (and T = 20 µs the period),

Vo = E2
o d2

2h̄δL
, Eo is the electric field amplitude, and d is the dipole moment of the cesium

atom. Interaction with the laser beam causes absorption, and then emission, of a photon
causing a cesium atom a momentum change of 2h̄kL. Thus, the momentum of the cesium
atoms is quantized in units of 2h̄kL and we can use Floquet (not Floquet–Bloch) theory to
describe the dynamics (Floquet–Bloch theory was used in [46,47]). In dimensionless units,
the Hamiltonian can be written

H =
p2

2
− 2αcos2(πτ)cos(φ), (7)

where φ = 2kLx1, τ = t
T , p = 4πkL p1

mωm
, and H =

16π2k2
L

mω2
m

. Strobe plots of the classical phase
space are shown in Figure 5 for α = 2 and α = 10. Theoretical curves for momentum
oscillations, as a function of time, are given in Figure 6 for α = 2.0 and α = 10. The
experimental curve for momentum oscillations for α = 9.7 is given in Figure 7. Note that
α depends inversely on Planck’s constant. For α = 2.0, there is no tunneling between the
states localized on the large islands at p ≈ ±3 in Figure 5. For α = 9.7, tunneling has
occurred and the quantum system can now “see” the chaotic region separating the two
islands at p ≈ ±3. As pointed out in [45,47], for the parameters used in the experiment, the
effective Planck’s constant is too large for the experiment to see the tunneling complexity
that occurs when a number of states lie in the chaotic sea. However, the experiment is
seeing chaos-assisted tunneling, but not all the complexity that can come with it.

The Hamiltonian describing the Hensinger experiment [42],

H =
p2

2
+ 2κ[1 + 2εsin(ωt)]sin2(x/2), (8)

differs from that of the Raizen experiment by the placement of resonant islands in the
chaotic sea, but the analysis is similar.

The experiments of Raizen et al. and of Hensinger et al. were not far enough into the
semiclassical regime to see all the complexity associated with signatures of chaos-assisted
tunneling. In 2016, Dubertrand et al. [17] did a more extensive analysis of typical cold
atom experiments and, through numerical simulations, obtained the important signatures
of chaos-assisted tunneling. They considered the dimensionless Hamiltonian

H =
p2

2m
− U0

2
(1 + εcos(ωt))cos

(
2πx

d

)
, (9)

where m is the mass of the alkali atoms used in the experiment, ω is the modulation
frequency of the light wave, ε is the amplitude of the time-periodic modulation, U0 is the
depth of the periodic standing wave of light for ε = 0, and d is the spatial period of the
optical lattice. If we now introduce dimensionless variables

p =
2π

mωd
p, x =

2π

d
x, t = ωt, (10)
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the dimensionless Hamiltonian takes the form

H =
p2

2
− γ(1 + εcos(t))cos(x), (11)

where

EL =
h2

2md2 , γ =

(
EL
h̄ω

)2
s, s =

U0

EL
, and h̄e f f =

2EL
h̄ω

. (12)

Here, EL is a characteristic energy scale for the optical lattice, s is a dimensionless depth of
the lattice potential, and h̄e f f is an effective Planck’s constant for the dimensionless system.
They studied the classical dynamics of this model system. They computed the Lyapunov
exponents of classical trajectories and found parameter regimes with significant chaos but
also large regular islands at p = ±po. Dubertrand et al. [17] could identify the symmetric
and antisymmetric pairs of states that sit in the regular islands at p = ±po and computed
how their energy splitting δ = |E+− E−| varied. They define a fractional splitting δs = δ

δtyp
,

where δtyp is a “typical” splitting. They obtain the distribution of splittings as h̄e f f is varied
and compared it to the Cauchy distribution obtained by Leyvraz and Ullmo [16] based on
GOE. A plot of the actual splittings is shown in Figure 8 and a comparison of the actual
splitting distribution and the theoretical Cauchy distribution is shown in Figure 9. The data
obtained from the cold atom Hamiltonian gives good agreement with GOE predictions.

(a)

p

p

Figure 5. Strobe plots of cold atoms governed by Equation (7). (a) α = 2. (b) α = 10. (Reprinted
Figure 1 from [45] with permission from World Scientific Pub.).
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Figure 6. Time evolution of the momentum expectation value for cold atoms governed by Equation (7).
(a) For α = 2, no chaos-assisted tunneling. (b) For α = 10 , chaos-assisted tunneling occurs. (Reprinted
Figure 2 from [45] with permission from World Scientific Pub.)

Figure 7. Experimentally measured oscillation of momentum distribution of cold atoms (governed
by a Hamiltonian-like Equation (7)), as a function of time. The initial distribution was centered in
the upper regular island. The momentum oscillates between the upper and lower regular islands.
(Reprinted Figure 1 from [39] with permission from the American Association for the Advancement
of Science.)
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One of the conclusions of the analysis of Dubertrand et al. [17] is that it might not
be feasible, given the experimental constraints of the atom-optics experiments, to see all
the complexity of chaos-assisted tunneling between symmetric island pairs separated in
momentum space. They proposed a series of steps and changes in parameters that would
allow the central island, in Figure 5a, to undergo bifurcation into two symmetric islands
separated in position space. They then indicate that the scheme they propose might be
feasible with current technology.

10

10

10

0                       5                      10

-2

-6

-10

1/h
Figure 8. Energy splitting, δ, of symmetric and antisymmetric states as a function of 1/h̄e f f for ε = 0.4
and γ = 0.25. The red dashed line is the “typical value”. (Reprinted Figure 4a from [17] with permission
from the American Physical Society.)

1.00

0.10

0.01

0.1  1.0                                         10

P(  s)

Figure 9. Probability distribution of energy splittings, δs, for the Hamiltonian in Equation (11) (see
Figure 8). The red dashed line is the prediction of Equation (3). (Reprinted Figure 4b from [17] with
permission from the American Physical Society.)

In 2020, Arnal et al. [48] again pointed out that atom cooling techniques are extremely
versatile and allow the modeling of a variety of systems where the wave nature of atomic
motion is essential. A variety of potentials can be produced to influence atomic motion.
They can mimic situations commonly found in condensed matter systems. They then
analyze the dynamics of atom optic system with a Hamiltonian very similar to that used in
the Raizen experiment.

3. Three or More Degrees of Freedom

It is not clear if dynamical tunneling can play the same role in nD systems (n ≥ 3) in
regard to the control of wave dynamics. For example, for systems with 3D, the “landscape”
totally changes. In 1963, Arnold showed that conservative classical systems with three or
more degrees of freedom are intrinsically unstable [8,9]. For such systems, the energy surface
is covered densely by interconnected resonance lines (an Arnold web) and the system can
diffuse throughout the “energy surface” in the high-dimensional phase space [6,49,50].
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To understand the complexity of the classical dynamics in 3D, consider the anharmonic,
time-periodic lattice (effectively a 3D system)

H(x, y, t) = p2
x + p2

y + (V0 + V1cos2(ωt)]V(x, y), (13)

where

V(x, y) = U[cos2(x) + cos2(y) + bcos(x)cos(y)]. (14)

For b = 0, the dynamics in the x- and y-directions is uncoupled. The dynamics in the
x-direction behaves as if it was governed by the Hamiltonian

H(x, t) = p2
x + p2

y + (V0 + V1Ucos2(ωt)]cos2(x). (15)

In Figure 10a, we show a strobe plot of the dynamics for b = 0. We see a region of chaos
surround by KAM tori. However, when b 6= 0, the dynamics fundamentally changes. A
strobe plot for b 6= 0 is shown in Figure 10b. As discussed in [49], the dynamics is governed
by a dense Arnold web and diffusion of the system trajectories now occurs throughout the
3D phase space.

It would be very interesting to look for the phenomenon of chaos-assisted tunnel-
ing in these higher dimensional systems (3D or more). It would likely have to occur in
parameter regimes where most of the phase space still consists of non-resonant KAM
tori [6,49]. However, at this time, the quantum dynamics of such systems still remains
largely unexplored.

10 
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X 

Figure 10. Dynamics of governed by Hamiltonian in Equations (13) and (14). Strobe plot of px versus
x for each period of the field. (a) b = 0. (b) b = 0.002. (Reprinted Figure 3 from [49] with permission
from the American Physical Society).
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4. Conclusions

For 2D systems with two conserved quantities, such as energy and angular momentum
for a circular billiard, the classical and quantum dynamics is regular (integrable). However,
if one of the symmetries is broken (deform the circle), the dynamics becomes a mixture of
chaotic and regular orbits. A classical particle in a regular region is trapped there forever,
but a quantum particle (like an atom or a photon) can tunnel through the chaotic region.
The first theoretical discussion of this phenomenon is due to Davis and Heller [12] in 1981.
The work of Davis and Heller inspired numerous subsequent theoretical contributions to
the field by other authors (many described in sections above and also in the review [41]).

The first experimental observation of chaos-assisted tunneling occurred in microwave
cavities in 2000 [24]. That was followed, in 2001, by observation of chaos-assisted tunneling
in cold atomic systems (alkali atoms trapped in standing waves of light) [39,40,42,43]. In
2010, signatures of chaos-assisted tunneling were found in microlasers [32,33]. Subsequent
to those early experiments, it has proven to be an important and practical tool for controlling
radiation emitted from microlasers of various shapes.

It has been suggested that it can play a role in the internal dynamics of molecules [14,51]. It
has been observed recently in the dynamics of periodically kicked spin systems [52]. Indeed,
chaos-assisted tunneling has been shown to play a key role in the quantum dynamics of
many different physical systems with two degrees of freedom, when they can be shown
to have a classical counterpart. It will be extremely interesting to see if situations occur
where it governs aspects of the quantum dynamics of systems with three or more degrees
of freedom.
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