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Abstract: Precision control of multiple robotic fish visual navigation in complex underwater environ-
ments has long been a challenging issue in the field of underwater robotics. To address this problem,
this paper proposes a multi-robot fish obstacle traversal technique based on the combination of
cross-modal variational autoencoder (CM-VAE) and imitation learning. Firstly, the overall framework
of the robotic fish control system is introduced, where the first-person view of the robotic fish is
encoded into a low-dimensional latent space using CM-VAE, and then different latent features in the
space are mapped to the velocity commands of the robotic fish through imitation learning. Finally, to
validate the effectiveness of the proposed method, experiments are conducted on linear, S-shaped,
and circular gate frame trajectories with both single and multiple robotic fish. Analysis reveals
that the visual navigation method proposed in this paper can stably traverse various types of gate
frame trajectories. Compared to end-to-end learning and purely unsupervised image reconstruction,
the proposed control strategy demonstrates superior performance, offering a new solution for the
intelligent navigation of robotic fish in complex environments.

Keywords: multiple robotic fish; visual navigation; CM-VAE; imitation learning

1. Introduction

Object detection, tracking, and traversal using visual-based approaches have been
extensively studied in the field of computer vision. These methods have been applied
in diverse domains, including robot navigation [1], traffic monitoring [2], and crowd de-
tection [3]. The utilization of visual approaches across many platforms is a significant
advancement in harnessing the potential of growing visual detection technologies. Current
robotic platforms include underwater robots, surface vessels, ground-based robots, and
unmanned aerial aircraft, along with other intelligent technologies. The research and
utilization of several robotic platforms have greatly improved the capacity for environ-
mental investigation. There is currently a significant increase in the interest around the
examination of underwater robotic platforms, which have a wide range of practical uses.
The combination of visual technology with underwater robotic platforms has the potential
to accelerate technological progress in both fields, consequently increasing their societal
usefulness [4].

Robotic fish, a sort of underwater robot, have the ability to perform underwater
reconnaissance and mobile monitoring of environmental targets [5]. Underwater robot
platforms are commonly used for the navigation of target obstacles by several robotic fish.
GPS navigation systems are frequently necessary to furnish navigation and positioning data
for robotic fish in such scenarios. Nevertheless, the arduous communication circumstances
underwater provide obstacles for robotic fish in establishing effective communication with
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the surrounding environment, resulting in a decline in the precision of GPS navigation
systems [6]. Thus, this work employs a visual navigation strategy to navigate through
target impediments.

Regarding the matter of visual navigation, extensive research has been conducted both
domestically and internationally, resulting in notable advancements. Popular methods for
visual navigation include mapping-based approaches [7], deep reinforcement learning [8],
and imitation learning [9]. Within the field of map-based visual navigation research,
techniques can be classified into two sub-directions based on the precision and structure of
their map construction: metric map-based visual navigation and topological map-based
visual navigation [10]. VSLAM-generated maps belong to the metric map category. VSLAM,
in theory, is defined as follows: A mobile robot, equipped with visual sensors, constructs
a model of the surrounding environment and concurrently estimates its own motion
while in motion, without any prior knowledge of the environment [11]. In their study,
Wang et al. [12] introduced a technique that utilizes a semantic topological map and ORB-
SLAM2 for relocalization and loop closure detection. This strategy significantly enhances
the precision of relocalization and loop closure detection in dynamic situations. Although
visual SLAM approaches have the capability to produce precise metric maps, the specific
demands for localization and mapping include substantial time and labor expenses. The
intricacy of these requirements impedes the ability to effectively strategize and navigate in
extensive settings.

Visual teach and repeat (VT&R) [13] is a navigation strategy that relies on topological
maps. During the teaching phase, also known as mapping, a path is created by gathering a
collection of images with the assistance of a human. During the repeating phase, the motion
commands are calculated exclusively using topological information or in combination with
accurate metric information [14]. The use of deep learning for visual teach and repeat
navigation has emerged as an important area of research [15]. Roucek et al. [16] introduced
a technique that enables neural networks to be trained autonomously in VT&R tasks, which
involve a mobile robot repeating a path it has been taught before. Although neural networks
used in teach and repeat navigation can demonstrate resistance to specific alterations in
input images, there remains a requirement to improve the network’s ability to manage
more extensive fluctuations in the environment.

The research on visual navigation methods based on deep reinforcement learning
tackles several challenges, including the scarcity of rewards [17], the intricacy of time [18],
and the extensive dimensionality of motion space [19]. Additionally, it addresses the diffi-
culties arising from the large number of training samples and the complex representation of
input data [20]. In order to address these difficulties, Ashlesha Akella et al. [21] proposed
a temporal framework that integrates dynamic systems and deep neural networks. This
paradigm facilitates the understanding of the passage of time (“action time”) and actions,
enabling the agent to assess the timing of its actions depending on the input velocity, hence
improving the navigation performance. The LS-modulated compound learning robot con-
trol (LS-CLRC) approach was proposed by Guo et al. [22]. The LS-CLRC technique ensures
that all parameter estimates converge at a similar rate, resulting in a balanced convergence
rate for all components of the parameter vector and enhancing the usage of data. The
research findings exhibit substantial progress in comparison to prior investigations.

Wu et al. [23] introduced a new MARDDPG algorithm specifically designed to tackle
the problem of traffic congestion at many crossings in transportation. The centralized
learning within each evaluation network allows each agent to accurately assess the pol-
icy execution of other agents while making decisions. The approach utilizes long short-
term memory (LSTM) to capture concealed state information and shares parameters in
the actor network to accelerate the training process and decrease memory use. Carrillo
Mendoza et al. [24] created the robot architecture AutoMiny, which is operated proportion-
ately. Data for training were gathered and the network was evaluated using the NVIDIATM
arm architecture graphics processor unit. The researchers developed a Siamese deep neural
network structure called the visual autonomous localization network (VALNet) to perform
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visual localization. This network is specifically designed to estimate the ego-motion of a
given sequence of monocular frames.

Bozek et al. [25] proposed an algorithm for training artificial neural networks for path
planning. The trajectory ensures optimal movement from the current position of the mobile
robot to the specified location, while considering its direction. Segota et al. [26] trained a
feedforward type multilayer perceptron (MLP), which can be used to compute the inverse
kinematics of robot manipulators. Luís Garrote et al. [27] suggested a localization tech-
nique that combines particle filtering, sometimes referred to as Monte Carlo localization,
with map updates using reinforcement learning. This method combines measurements
that are relative to each other with data obtained from absolute indoor positioning sen-
sors. An inherent characteristic of this localization method is its capacity to modify the
map if notable alterations pertaining to the existing localization map are identified. The
adaptive Kalman filtering navigation algorithm, abbreviated as RL-AKF, was introduced
by Gao et al. [28]. The RL-AKF approach employs deep deterministic policy gradients to
estimate the process noise covariance matrix. The reward is defined as the negative value of
the current localization error. The method is specifically designed to be used in a navigation
system that combines multiple elements, and it may be applied to action spaces that are
continuous in nature.

Spurr et al. [29] introduced a technique for acquiring a statistical hand model by
creating a deep neural network that captures the hidden space representation through
cross-modal training. The goal function is obtained from the variational lower limit of the
variational autoencoders (VAE) framework. The optimization process of the target function
involves the simultaneous incorporation of the cross-modal KL divergence and posterior
reconstruction objectives. This naturally employs a training technique that results in a
consistent configuration of latent space across several modalities, including RGB pictures,
2D keypoint detection, and 3D hand representations. These approaches collectively show
that deep reinforcement learning methods greatly improve the navigation of mobile robots,
allowing them to reach specified places more quickly and precisely.

Wu et al. [30] introduced a goal-driven navigation system for map-free visual navi-
gation in indoor environments, as part of their research on imitation learning in this field.
This method utilizes different perspectives of the robot and the target image as inputs
during each time interval to produce a sequence of actions that guide the robot towards the
objective, hence avoiding the necessity of relying on odometry or GPS during runtime. Due
to the lack of safety assurance in learning-based map-free navigation approaches, imitation
learning can be utilized to train map-free navigation policies using 2-D LiDAR data in a
safe manner. This solution employs an innovative IL training method that relies on dataset
aggregation, offering supplementary safety improvements [31]. Behavior cloning, a form
of imitation learning, has proven useful in learning basic visual navigation strategies by the
imitation of extensive datasets generated from expert driving actions [32]. Additionally, vi-
sual navigation imitation learning techniques encompass direct policy learning [33], inverse
reinforcement learning [34], and generative adversarial imitation learning (GAIL) [35].

In recent years, underwater robots equipped with advanced intelligent navigation
algorithms have demonstrated significant potential for autonomous operations underwater.
Zhang et al. [36] proposed a deep framework called NavNet, which treats AUV navigation
as a deep sequential learning problem. NavNet exhibits an outstanding performance in both
navigation accuracy and fault tolerance, achieving the precise navigation and positioning
of AUVs. Ruscio et al. [37] introduced a navigation strategy for underwater surveillance
scenarios, which integrates a single bottom-view camera with altitude information for
linear velocity estimation. This allows the effective use of payloads already required
for monitoring activities, also for navigation purposes, thereby reducing the number of
sensors on the AUV. Song et al. [38] presented an acoustic-visual-inertial navigation system
(Acoustic-VINS) for underwater robot localization. Specifically, they addressed the issue
of global position ambiguity in underwater visual-inertial navigation systems by tightly
coupling a long baseline (LBL) system with an optimization-based visual-inertial SLAM.
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Yan et al. [39] proposed a novel autonomous navigation framework integrating visual
stabilization control, based on a navigation network generated from stereo vision. While
this approach addresses limitations of underwater visual conditions and restricted robot
motion in visual navigation methods, it does not fully tackle the precise control of robot
visual navigation in complex underwater environments. This paper presents the precise
control of multi-robotic fish crossing obstacle technology based on visual navigation based
on deep learning and imitation learning, by introducing a learning framework that needs
to learn the cross-modal representation of state coding. The initial data modality consists
of unannotated, unprocessed first-person view (FPV) images, whereas the second data
modality encompasses state information linked to the gate frame. Annotations are provided
during the swimming phase of the robotic fish to indicate the relative attitude of the
following gate frame in the FPV. The utilization of a cross-modal variational autoencoder
(CM-VAE) architecture allows for the acquisition of a low-dimensional latent representation.
This paradigm employs encoder–decoder pairs for each data modality, constraining all
inputs and outputs that enter and exit a unified latent space. Therefore, it is possible
to include both labeled and unlabeled data in the training procedure of latent variables.
Afterwards, imitation learning is utilized to train a control policy that maps the latent
variables to velocity commands for the robotic fish.

The innovation of this study lies in the following:
(i) Incorporating the CM-VAE architecture into the navigation system of robotic fish

enables the effective processing of diverse modal data. This allows information from
different modalities to be seamlessly integrated and expressed within a unified framework,
thereby enhancing the overall perception and comprehension capabilities of the robotic
fish towards its environment.

(ii) The integration of CM-VAE’s feature extraction and imitation learning navigation
strategies provides real-time optimization for the motion planning of multiple robotic fish.
This facilitates a gradual learning process for the robotic fish to handle intricate navigation
tasks, while concurrently accounting for the influence of multimodal perception data,
thereby enhancing the stability and generalization capabilities of the learning process.

(iii) The application of CM-VAE and imitation learning on the Unreal Engine simula-
tion platform has realized a realistic virtual simulation environment. This enables multiple
robotic fish to learn in the simulation, facilitating improved generalization to the real world
and providing a reliable training and validation environment for practical applications.

The remaining of the paper are organized as follows: Section 2 provides a comprehen-
sive description of the fundamental structure of the control system for the robotic fish. The
first-person view (FPV) of the robotic fish is transformed into a compressed representation
in a low-dimensional latent space using CM-VAE. The control strategy then translates
into velocity directives for the robotic fish. The CM-VAE design incorporates an encoder–
decoder pair for each data modality, and the control policy in imitation learning leverages
behavior cloning. Section 3 presents the introduction of the experimental platform and
environment. The efficacy of the proposed visual navigation system is confirmed by trials
in which robotic fish successfully navigate across various gate paths. Section 4 presents the
empirical findings of robotic fish navigating through different gates. It also highlights the
constraints of the visual navigation technique and proposes potential avenues for future
research. Section 5 of the study provides a concise overview of the primary content and
experimental findings. It also evaluates the advantages and constraints of visual navigation
techniques and finishes by detailing the forthcoming research directions.

2. Cross-Modal Control Strategy

This study focuses on the task of enabling a robotic fish to navigate independently
across gate frames in the underwater environment simulation platform of the Unreal
Engine (UE). The research is focused on two primary areas: (i) constructing a cross-modal
variational autoencoder architecture, and (ii) establishing a control method using imitation
learning to manage the latent space.
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2.1. Control System Framework

The front camera component of the UE receives images, which serve as the first-
person view (FPV) for the robotic fish. The low-dimensional latent representation encodes
the relative attitude to the next visible gate frame, as well as the background information.
Afterwards, the hidden representation is inputted into the control network, which generates
velocity commands. The motion controller of the robotic fish translates these commands
into actuator commands, as shown in Figure 1, which depicts the system framework.
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Figure 1. Control system architecture. Input images are encoded into low-dimensional latent
representations, and the control strategy obtains desired output velocity commands through
this representation.

In this system workflow, it is necessary to collect image data of robotic fish during
the obstacle traversal task of passing through gate frames. Utilizing the collected data, a
cross-modal VAE model is trained. This model effectively captures the correlations between
multimodal data and encodes them into a representation in a latent space. Based on
imitation learning, the behavioral strategy of the robotic fish during the obstacle traversal
task is trained. Expert data are employed for training an imitation learning model, enabling
it to predict the correct actions from given observation states. The trained imitation learning
model can be used to generate behavioral strategies for robotic fish during the obstacle
traversal task. When facing new environments, the predicted actions from the model can
be utilized to execute tasks.

2.2. Robotic Fish Kinematic Model

When establishing the motion equation model for robotic fish, the inertial coordinate
system and the fish body coordinate system are typically employed to analyze the motion
of the robotic fish. As illustrated in Figure 2, E − ξηζ represents the inertial coordinate
system, while O − xyz represents the body coordinate system. With the transformation
relationship between the two coordinate systems, position variables can be calculated
from known velocity variables, which constitutes the primary focus of research in robotic
fish kinematics.

In the process of studying the spatial motion equations of robotic fish, it is common
practice to place the origin O of the fish body coordinate system at the centroid of the
robotic fish. The spatial position of the robotic fish is determined by three coordinate
components (ξ, η, ζ) in the inertial coordinate system, along with angular components
(φ, θ, ψ). The components (u, v, w) represent the velocity components of the fish body
coordinate system, while (p, q, r) represent the angular velocity components of the fish
body coordinate system.
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When the origin of the E − ξηζ coordinate system coincides with the O − xyz co-
ordinate system, according to Euler’s theorem, rotations are performed in the order of
ψ → φ → θ . After three consecutive rotation transformations of the coordinate vectors in
the O − xyz coordinate system, they can coincide with the vectors in the E − ξηζ coordinate
system. Subsequently, the velocity vector of the robotic fish at point O − xyz in the fish
body coordinate system is denoted as (u v w)T , which is transformed into coordinates

(
.
ξ

.
η

.
ζ)

T
in the inertial coordinate system E − ξηζ. According to the principles of coordi-

nate transformation, the following velocity transformation relationship can be obtained as
shown in Equation (1): 

.
ξ
.
η
.
ζ

 = S

u
v
w

 (1)

In the above equation, the transformation matrix S is defined as shown in Equation (2):

S−1 = ST =

 cos ψ cos θ sin ψ cos θ − sin θ

cos ψ sin θ sin φ − sin ψ cos φ sin ψ sin θ sin φ + cos ψ cos φ cos θ sin φ

cos ψ sin θ cos φ + sin ψ sin φ sin ψ sin θ cos φ − cos ψ sin φ cos θ cos φ

 (2)
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Similarly, if the angular velocity vectors of the robotic fish in the inertial coordinate

system are denoted as
.

Λ = (
.
φ

.
θ

.
ψ)

T
, and in the body coordinate system are denoted as

Ω = (p q r)T , then the transformation relationship can be derived as shown in Equation (3):
.

Λ = CΩ

C =

1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ/ cos θ cos φ/ cos θ

 (3)

Combining the above, let the position vector of the robotic fish be denoted as
η = [ξ, η, ζ, φ, θ, ψ]Tn and the velocity vector be denoted as v = [u, v, w, p, q, r]T. Therefore,
the vector form of the robotic fish kinematic model can be obtained as shown in Equation (4):

.
η = J(η)v

J(η) =
[

S 03×3
03×3 C

]
(4)

Expanding the kinematic vectors, the kinematic model of the robotic fish can be
obtained as shown in Equation (5):

.
ξ = u cos ψ cos θ + v(cos ψ sin θ sin φ − sin ψ cos φ) + w(cos ψ sin θ cos φ + sin ψ sin φ)
.
η = u sin ψ cos θ + v(sin ψ sin θ sin φ + cos ψ cos φ) + w(sin ψ sin θ cos φ − cos ψ sin φ)
.
ζ = −u sin θ + v cos θ sin φ + w cos θ cos φ
.
φ = p + q sin φ tan θ + r cos φ tan θ
.
θ = q cos φ − r sin φ
.
ψ = q sin φ/ cos θ + r cos φ/ cos θ

(5)

2.3. Cross-Modal VAE Architecture

Unsupervised learning is a machine-learning technique that operates without the need
for labeled datasets. This method is frequently utilized for the purposes of data clustering,
dimensionality reduction, and feature extraction. The VAE, or variational autoencoder, is
a deep-learning model designed to enhance the process of learning data representations
in unsupervised learning settings. By using the benefits of both generative adversarial
networks (GAN) and autoencoders, a variational autoencoder (VAE) is capable of producing
top-notch data samples and representing data in a space with fewer dimensions.

An efficient method for reducing dimensionality should possess the qualities of
smoothness, continuity, and consistency [40]. In order to accomplish this objective, this
article utilizes the CM-VAE framework, which employs an encoder–decoder pair for each
data modality, while restricting all inputs and outputs to a latent space.

The overall architecture of CM-VAE is as follows:

1. Encoder: For each modality, there is a corresponding encoder network responsible for
encoding the input data into mean and variance parameters in the latent space. The
encoder network can be a multi-layer neural network or a neural network structure
specific to the modality;

2. Latent space sampling: Based on the mean and variance parameters output by the
encoder, a latent vector is sampled from the latent space. This latent vector represents
the representation of the input data in the latent space;

3. Decoder: Similarly, for each modality, there is a corresponding decoder network
responsible for decoding the latent vector into the reconstruction of the original
data. The decoder network can also be a multi-layer neural network corresponding
to the encoder.

In the context of robotic fish visual navigation, the data modalities are defined as
RGB images and the relative pose of the next gate frame to the robotic fish frame. The
input data from the first-person perspective of the robotic fish are processed by the image
encoder qRGB, forming a latent space with a normal distribution N(µt, σ2

t ), from which zt
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is sampled. The data modalities can be reconstructed from the latent space using the image
decoder pRGB and the gate pose decoder pG, as shown in Figure 3.
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In the standard definition of VAE, the objective is to learn the probability distribution
of the data while maximizing the log density of the latent representation, as shown in
Equation (6).

log p(x) = Ez∼q(z|x)[log p(x|z)]− DKL(q(z|x) ∥ p(z)) (6)

Here, DKL(q(z|x) ∥ p(z)) refers to the Kullback–Leibler (KL) divergence, representing
the difference between the variational distribution q(z|x) and the original distribution
p(z). When two distributions are exactly the same, the KL divergence is 0. A higher KL
divergence value indicates a greater difference between the two distributions.

Training steps:

1. Utilize the encoder to map input data and random noise, obtaining hidden representations;
2. Employ the decoder to map the hidden representations back to the dimensions of the

original data;
3. Calculate the logarithmic density of the hidden representations and maximize this objective.

We define three losses: (1) mean square error (MSE) loss between the actual image and
the reconstructed image (It, Ît); (2) MSE loss for gate pose reconstruction (yt, ŷt); (3) KL
divergence loss for each sample.

2.4. Imitation Learning of the Control Policy

Imitation learning is a machine-learning method whose basic idea is to learn by
observing and imitating the behavior of experts or known strategies. In imitation learning,
the model attempts to learn the mapping relationship from input observations to output
actions in order to achieve behavior performance similar to that of experts. Imitation
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learning mainly consists of three parts: firstly, the policy network; secondly, behavior
demonstration (the continuous actions of experts); and thirdly, the environment simulator.
To achieve the goal of imitation learning, this paper utilizes the behavior cloning method.

While it is often impossible to define a reward in many scenarios, it is possible to
collect demonstration data from experts. For instance, in the underwater environment of
the UE, it is not feasible to define rewards for robotic fish; however, records of numerous
successful passages of gates by robotic fish can be collected. In the context of this paper,
it typically involves expert robotic fish observing the current state of the environment at
a given moment. The robotic fish then performs an action to pass through the gate in
this state. After passing through the gate, the robotic fish enters the next state, where
it performs another action. This sequence of states and actions is referred to as expert
demonstration data.

Once the expert demonstration data are decomposed into state–action pairs, labeled
data can be observed, meaning that for each state, the expert has performed a specific
action. The intuitive idea of teaching the robotic fish to learn continuous actions is to use a
form of supervised learning, where each state serves as a sample in the supervised learning
framework and each action serves as a label. The state is treated as the input to the neural
network, and the output of the neural network is treated as the action. Finally, by using the
expected action, the robotic fish is taught to learn the corresponding relationship between
states and actions. The process is illustrated in Figure 4.
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In the above process, the training data are initially divided into training and valida-
tion sets. This partitioning process can be represented by blue arrows. Subsequently, the
neural network is trained by minimizing the error on the training set until the error on
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the validation set converges [41]. Next, the trained neural network is applied to testing in
the environment. The specific steps are as follows: Firstly, obtain the current state infor-
mation from the environment. Then, utilize the trained neural network to determine the
corresponding action. Finally, apply this action to the environment and observe its effects.

In reference to expert control policies and neural network control policies, following
the approach of Rogerio et al. [42], this study designates π∗(E) as the expert control policy.
It seeks to find the optimal model parameters Θ∗ and Φ∗ in visual navigation. Under the
observation state s of the expert, it minimizes the expected distance D between the control
policy πΦ(qΘ

RGB(I)
)

and the expert control policy π∗(E), as shown in Equation (7).

Θ∗, Φ∗ = argmin
Θ,Φ

Es

[
D
(

π∗(E), πΦ
(

qΘ
RGB(I)

)]
(7)

where the observation state s of the expert typically represents the environment state
observed by the expert during task execution or the current state of the task. E defines the
external environment, and qΘ

RGB(I) encodes the input images.
To highlight the advantages of the cross-modal control strategy proposed in this paper,

several contrasting strategies were introduced in the simulation experiments as follows:
The first one is the cross-modal control strategy BCunc introduced in this paper,

which utilizes features called zunc. These features are latent space representations ex-
tracted from multimodal data. This strategy is based on imitation learning, learning the
mapping relationship from these features to the behavior of the robot fish from expert
demonstration data.

The second one is the BCimg strategy, which employs pure unsupervised image recon-
struction VAE as features. This means that BCimg directly uses images as inputs without
first extracting other features from the images. BCimg aims to learn the behavior strategy of
the robot fish by learning the latent space representation of images. During training, BCimg
minimizes the difference between the original image and the reconstructed image to learn
the effectiveness of image representation.

The third one is the BCreg strategy, which utilizes a purely supervised regressor, map-
ping from images to the gate pose as features. This means that BCreg does not directly learn
the robot’s action strategy but attempts to predict the position of the gate. During training,
BCreg uses the true position of the gate as a label and trains the model by minimizing the
error between the predicted position and the actual position.

The fourth one is the BC f ull strategy, which employs full end-to-end mapping, directly
mapping from images to velocities, without an explicit latent feature vector. This means
that BC f ull directly learns the robot’s velocity control strategy from images without the
need for intermediate feature representations. During training, BC f ull directly minimizes
the error between the predicted velocity and the actual velocity.

3. Experimental Analysis and Validation
3.1. Experimental Environment

The experiment was carried out on the Windows 11 operating system, employing
tools such as the UE (Unreal Engine), PyCharm, 3ds Max, and the Airsim plugin. The
experimental hardware platform comprised a 13th Generation Intel(R) Core (TM) i7-13700
CPU running at 2.10 GHz, 32 GB of RAM, and an NVIDIA GeForce RTX 4060 GPU with
24 GB of dedicated memory.

The undersea environment necessary for the experiment was established within the
UE simulation platform. The robotic fish model was developed using 3ds Max software,
aiming to resemble the boxfish in look. Subsequently, the model was integrated into the
aquatic environment of the UE simulation platform, as illustrated in Figure 5; the first gate
is located 3 m directly in front of the robot fish.
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3.2. Experimental Analysis

To assess different task modules, such as first-person vision detection, cross-modal
VAE architecture, and simulation learning of control methods, on the UE simulation
platform, we created several obstacle-crossing simulation scenarios in the underwater
environment of the UE. The robotic fish successfully maneuvers through doorframe barriers
using only visual navigation, without the need for communication.

3.2.1. Different Track-Crossing Outcomes

(1) Straight-line track

In the underwater environment of the UE simulation platform, eight doorframes are
arranged along a 50 m straight-line track, as shown in Figure 6. The initial position of
the robotic fish is on the left side of the figure, and external images are obtained through
the front camera of the robotic fish for navigation. The red doorframes in the figure
represent the real poses for navigating through obstacles, and the green curve represents
the swimming trajectory achieved by the fish through the BCunc control strategy. During
the swimming process, the trajectory can be dynamically updated based on the detection
information of the doorframe obstacles.
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Through the analysis of the above figure, it can be observed that the robotic fish,
starting from the left initial position, can smoothly navigate through these eight doorframe
obstacles based on the first-person view, achieving a success rate of 100%. The green
curve maintains a central position within the doorframes, and there is no collision with
the doorframes. This validates that the proposed method in this paper can successfully
navigate obstacles on a linear track. In order to ensure the adaptability of the proposed
method in different scenarios, the doorframe obstacles are replaced with an S-shaped track.

(2) S-shaped curve track

By placing 10 doorframes in the underwater environment of the UE, a 90 m long
S-shaped curved track is established, as shown in Figure 7. The initial position of the
robotic fish is on the left, and it navigates through the doorframe obstacles of the S-shaped
track using the BCunc control strategy.
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Upon analyzing the aforementioned figure, it is evident that the robotic fish is capable
of navigating around the obstacles of the S-shaped track with ease, ultimately reaching the
target without any deviation from the route. The probability of successfully navigating
through the doorframes is 100%. While navigating, the robotic fish may encounter momen-
tary friction with the inside surfaces of the doorframes. However, the visual navigation
technique adapts the swimming direction in real-time to effectively maneuver around the
difficulties posed by the doorframes in subsequent tries. This experiment confirms the
practicality of the suggested visual navigation technique in navigating across curves with a
S shape. In order to improve the flexibility of this approach in intricate surroundings, the
doorframe obstructions are substituted by circular tracks.

(3) Circular Track

In the underwater environment of UE, a circular track with a radius of 16 m was
established, as shown in Figure 8. The circumference of the track is 100.48 m, and it
includes 14 doorframes. The initial position of the robotic fish is at the center of the circular
track. After starting the operation, it moves to the left circumference and then navigates
through the circular doorframes using the BCunc control strategy.

After examining the figure, it can be inferred that the robotic fish is capable of navigat-
ing the circular doorframe track in the UE environment with ease. Friction and collision
are absent when interacting with the doorframes, and the green trajectory line consistently
aligns with the central area of the rectangular doorframes. The probability of success-
fully going through the doorframes is 100%. Furthermore, the robotic fish is instructed
to complete three laps around the circular track, with each lap following a trajectory that
maintains close proximity to the center of the rectangular doorframes. This ensures the
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stability and precision of the optical navigation technique. This confirms the effectiveness
of the navigation method in successfully crossing doorframes on a circular path.
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The robotic fish in the UE simulation platform has effectively demonstrated the capac-
ity to navigate through doorframe barriers, including linear tracks, S-shaped curved tracks,
and circular tracks. The robotic fish can pass through doorframes on various types of
tracks by detecting the position and orientation of the doorframes and employing a flexible
control technique. This suggests that inside a simulated environment, the visual navigation
and control algorithms of the robotic fish demonstrate adaptability, efficiently overcoming
problems presented by different track geometry and obstructions such as doorframes. This
feature is crucial for allowing the robotic fish to execute intricate motion tasks in particular
missions and situations.

3.2.2. Effect of Multi-Robotic Fish Navigation

To validate the effectiveness of the visual navigation approach in multi-robotic fish
navigating through gates, a simulated underwater environment was created in the UE
simulation platform. A track with an S-shaped curve, comprising 10 gates and measuring
90 m in length, was established, as illustrated in Figure 9. Due to the increased difficulty and
representativeness of navigating through S-shaped gates for multiple robotic fish compared
to linear or circular gates, this configuration was selected for the study. The figure depicts
three robotic fish, initially positioned on the left side of the S-shaped track. All three robotic
fish employ the BCunc control strategy for navigating through gate obstacles, and the green
curves represent the trajectories of the multi-robotic fish.

Upon examination of the depicted diagram, it is evident that the three robotic fish
are capable of navigating the S-shaped gate track with ease. Furthermore, the trajectory
of each fish, represented by the color green, remains inside the boundaries of the red gate
frames. Given that the group of robotic fish were able to navigate the gate track 30 times
using visual navigation control, without any deviations from the S-shaped trajectory, and
achieved a 100% success rate, they fulfill the criteria for overcoming gate obstacles. This
study evaluates the overall performance of several robotic fish navigating through gates by
conducting experiments on the UE simulation platform. The assessment includes measures
such as the number of successful traversals and the stability of the swimming trajectories.
The purpose of this evaluation is to confirm the dependability of the visual navigation
system in this particular task.
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3.3. Experimental Comparison

For the experiment involving multiple robotic fish navigating obstacles, this study
conducts comparative experiments based on four different types of control strategies. As
mentioned earlier, behavior cloning strategy BCunc was trained on the latent space of
CM-VAE, direct gate pose regressor BCreg, conventional VAE image reconstruction feature
BCimg, and finally, fully end-to-end trained BC f ull .

To compare these four control strategies, this study established a simulation environ-
ment in the underwater setting of the UE platform, featuring a S-shaped curve track with
15 gates and a length of 140 m, as shown in Figure 10. In order to better highlight the
distinguishability of these control strategies, random noise was added along the Z-axis
direction of the obstacle gates, resulting in varying heights for each gate along the curved
track, thereby increasing the difficulty of the robotic fish in navigating through the gates.
Figures 11–14 respectively depict schematics of crossing the gate frames under the four
aforementioned control strategies.
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From the above four diagrams, it can be observed that under the BCunc control strategy,
multiple robotic fish can almost completely pass through all the gate frames. Under the
BCreg control strategy, most of them can pass through the gate frames, but one robotic fish
is stuck in the gate frame and unable to move within the blue circle in Figure 12. However,
under the BC f ull and BCimg control strategies, three robotic fish cannot successfully pass
through all the gate frames, and some even deviate from the track.
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To further the differentiation of these four control systems, several robotic fish were
subjected to testing on an elongated S-shaped trajectory containing multiple gate frames.
Every control technique was subjected to 10 experimental trials, with the criterion for
success being a 100% traversal rate of all gate frames by the robotic fish. The control
strategy tests yielded the following results, as shown in Table 1: three robotic fish required
a total of 450 gate traversals. The success rate was obtained by dividing the number of gate
traversals by the total count of 450.
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Table 1. Performance of various navigation strategies on simulated trajectory.

Control Strategy BCunc BCreg BCfull BCimg

Number of Gate Traversals 446 401 81 73
Success Rate 98.89% 89.11% 18.00% 16.22%

Through analysis of the above table, it can be observed that the performance of multi-
ple robotic fish under the control of the behavior cloning strategy BCunc is the most optimal.
The number of gate traversals is 446, with only 4 gate frames remaining untraversed, result-
ing in a success rate of 98.89%. This strategy exhibits the highest performance among the
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analyzed control strategies. In comparison, the control performance of the BCreg strategy
is relatively poor, with only 89.11% of gate frames successfully traversed; however, its
performance surpasses that of the BC f ull and BCimg strategies. Under the navigation control
of BC f ull and BCimg, the robotic fish demonstrate the poorest performance in gate traversal,
with success rates of only 18.00% and 16.22%, respectively, making it nearly impossible to
complete a full experiment successfully.

Overall, the performance of the two architectures, BCunc and BCreg, which encode gate
positions, is significantly superior to the benchmark model. This may stem from the fact
that gate frames represent pixel footprints in the overall image, making it challenging for
conventional VAE architectures or end-to-end learning to effectively capture the gate frame
orientations.

4. Discussion

Given the intricate nature of underwater settings, it is difficult to attain accurate
control over several robotic fish via optical navigation. This paper presents a vision-based
obstacle traversal strategy for numerous robotic fish as a solution to the problem at hand.
The method integrates CM-VAE with imitation learning to facilitate the navigation of
the robotic fish through gate frames. The control system framework for the robotic fish
entails acquiring first-person view (FPV) using a camera component integrated into a user
equipment UE. Afterwards, the FPV images are transformed into a lower-dimensional
latent space using CM-VAE. The underlying characteristics in this domain are subsequently
linked to the velocity instructions of the robotic fish using imitation learning, which is
based on the control method.

To validate the effectiveness of the visual navigation method proposed in this study,
experiments were conducted utilizing the BCunc control strategy for both single and mul-
tiple robotic fish traversing linear, S-shaped, and circular gate frame trajectories. The
experimental results are presented in Figures 6–9. Experimental analysis indicates that the
robotic fish can smoothly and accurately traverse all gate frames on the trajectories.

Experiments were conducted on a noisy S-shaped gate frame trajectory for different
control strategies, namely BCunc, BCreg, BCimg, and BC f ull . The experimental results are
presented in Table 1. Through comparative analysis of the experiments, it is evident that
the BCunc control strategy yields the best performance, followed by BCreg with moderate
effectiveness, while BCimg and BC f ull exhibit the least favorable outcomes.

The obstacle traversal technique for multiple robotic fish, which utilizes CM-VAE and
imitation learning, has made notable achievements but also encounters specific limitations.
This offers essential guidance for future research endeavors. The constraints encompass
the following:

(i) Restricted ecological adaptability: The technology’s capacity to function well in
various situations may be limited when it is educated in certain settings. When placed in
unfamiliar surroundings, a group of robotic fish may encounter difficulties in adjusting
and efficiently navigating obstacles. Subsequent investigations may prioritize enhancing
the model’s capacity to adjust to diverse environmental fluctuations;

(ii) Sample efficiency and data requirements: Imitation learning sometimes necessitates
a substantial quantity of sample data to achieve optimal performance, a task that may be
difficult to do in real-world scenarios. Future research endeavors may focus on improving
the algorithm’s sample efficiency and decreasing reliance on extensive datasets;

(iii) Uncertainty management: Models may encounter difficulties in dynamic and
uncertain contexts, particularly when navigating obstacles. Subsequent investigations may
focus on strategies to manage and alleviate environmental unpredictability in order to
improve the resilience of many robotic fish in intricate situations.

To overcome these constraints and propel the technology forward, potential avenues
for future study may encompass the following:
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(i) Reinforcement learning introduction: The integration of reinforcement learning
processes allows for the ongoing improvement of strategies by interacting with the envi-
ronment, resulting in enhanced adaptability and generalization performance;

(ii) Transfer learning methods: Employing transfer learning methods to enhance the
application of knowledge gained in one setting to different settings hence enhances the
algorithm’s adaptability;

(iii) Instantaneous decision-making and strategic planning: Highlighting the need to
meet immediate time constraints and investigating more effective approaches to making
decisions and creating plans is important in order to promptly address challenges in
ever-changing settings.

By exploring these instructions, future study might enhance the obstacle traversal
method for multiple robotic fish using cross-modal VAE and imitation learning, hence
increasing its practicality and robustness.

5. Conclusions

This study presents a novel visual navigation method that integrates CM-VAE and
imitation learning. The algorithm is implemented in the control system of a robotic fish
to enable it to traverse gates in various surroundings. This research primarily aims to
give the comprehensive foundation of the control system for robotic fish. The robotic
fish acquires the first-person view (FPV) by utilizing the camera component in the UE.
Afterwards, the images are transformed into a low-dimensional latent space using CM-VAE.
The underlying characteristics in this domain are subsequently translated into the velocity
instructions for the robotic fish using the control approach. The CM-VAE design utilizes
distinct encoder–decoder pairs for each data modality, while restricting all inputs and
outputs to a common latent space. The imitation learning for control approach employs
behavioral cloning, which is a form of supervised learning. Ultimately, the utilization of the
visual navigation method in robotic fish is showcased. By conducting trials with a solitary
robotic fish navigating linear, S-shaped, and circular gate frame paths, as well as multiple
robotic fish navigating an S-shaped gate frame path, it was determined that the control
approach successfully traverses several types of gate frame paths with 100% stability and
precision. In experiments on a noisy S-shaped gate frame trajectory with navigation using
BCunc, BCreg, BCimg, and BC f ull control strategies, it is observed that BCunc outperforms
the other strategies with an accuracy exceeding 98%.

Although significant progress has been made in the simulation experiments of multiple
robotic fish crossing obstacles based on visual navigation, practical applications in real
environments have not yet been realized. Robotic fish may encounter challenges in real
environments, such as inadequate environmental adaptability, real-time requirements, and
cost and resource demands. Future research may focus on enhancing the environmental
adaptability and generalization capability of models, improving sensor technology, and
optimizing cost and resource utilization efficiency.
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