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Abstract: Most banana improvement programs are restricted to using a sub-set of edible landraces
for sexual hybridization as the majority are female sterile. This results from an array of factors that
work in tandem and lead to sterility. Use of pollen germination media (PGM) during pollination
significantly increases seed set, but it is a very small fraction compared to the potential seed set.
This research therefore explored early pollination (a day before anthesis), evening pollination, saline
treatment, plant growth regulators (PGRs) treatment, and ovule culture as potential techniques for
overcoming sterility in bananas. Early and evening pollinations did not increase seed set because of
immature flowers and a mismatch of male and female flower opening, respectively (t-prob. = 0.735
and 0.884). Immersion of bunches in a saline solution before pollination and ovule culture also did not
overcome pollination barriers. Auxin antagonists (TIBA and salicylic acid) increased seed set, though
their respective increases were not statistically significant (t-prob. = 0.123 and 0.164, respectively).
The use of auxin antagonists shows great potential for overcoming pollination barriers in bananas.
However, application rates and time of application have to be optimized and used holistically with
other promising techniques, such as use of PGM.

Keywords: banana breeding; banana sterility; pollination techniques; seed set; PGRs

1. Introduction

Bananas and plantains, hereafter referred to as bananas, are the world’s most impor-
tant fruit crop, and they are grown in tropical and subtropical countries. They are giant
perennial herbaceous plants with an all-year fruiting habit. In 2021, their global produc-
tion stood at 182 million tons over an estimated 12.5 million hectares in 130 countries [1].
Of the total production of bananas, excluding plantains in 2022, only 19.1 percent was
exported [2]; the rest were consumed locally. Despite the importance of bananas, and
associated improvement efforts, they are still affected by both abiotic and biotic stresses.
The most imminent is now Fusarium wilt caused by Fusarium oxysporum Schlechtend. f. sp.
Cubense tropical race 4, which is rapidly spreading to various banana growing regions [3–5].
The conventional improving of bananas for increased yield, better consumer attributes, and
resistance against stresses has been hampered by inherent male and female sterility [6,7].

More emphasis has been put on understanding the gametophyte than the sporophyte
as it makes a greater contribution to low seed set [8]. Female sterility results from a complex
array of factors that act collectively to produce a seedless phenotype. Meiotic errors, embryo
sac defects, pollen tube growth inhibition, and pollen–pistil interactions all contribute
to female sterility. Sterility is also compounded by weather involvement, whereby low
temperatures during bunch development reduces seed set [9]. Enhancing stigma receptivity
using pollen germination media significantly increases seed set by minimizing negative
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outcomes of pollen–pistil interactions [10]. However, the increase is still far below the
potential seed set [11]. At the molecular level, a genome investigation identified candidate
genomic regions involved in the pathways of gibberellin, auxin, abscisic acid, and cytokinin
signaling [6]. The involvement of these hormones in banana male and female sterility is
not yet fully understood. There is also evidence that fertilization happens, but the vast
majority of fertilized ovules abort [11]. As a result of sterility in edible bananas, total gene
pools are underutilized, as some preferred landraces have been rendered “infertile” [12,13].
Overcoming sterility would therefore broaden the parental base in improvement programs.

There has never been deliberate application of plant growth regulators (PGRs) with
the aim of overcoming sterility in bananas, yet they have been successfully used in other
crops. Successful applications include 6-Benzylaminopurine (BAP) in wide crosses of tulips
and lily crosses [14], and gibberellic acid has been shown to overcome pre-pollination
barriers in Chrysanthemum grandiflorum (Ramat.) Kitamura and C. nankingense (Nakai)
Tzvel. (Asteraceae) [15]. Auxins and cytokinins are also among PGRs that have been
successfully used [14]. Auxins have been reported to induce parthenocarpy in bananas [16];
however, they also deter seed development [17]. Experiments to antagonize auxins may,
therefore, lead to overcoming sterility. Auxins can induce parthenocarpic fruit development
in tomatoes, with the process being partly mediated by gibberellins [18]. Antagonizing
gibberellins could deter fruit development in bananas as a result of improper functioning
of auxins. Abscisic acid is another hormone that has been implicated in early and late
seed development [19]; thus, exogenous applications could potentially result in seed set
in bananas.

Some of the other approaches used to overcome sterility include style pollination [20],
mixed and mentor pollen techniques [21], heating of styles to inactivate heat-sensitive
pollen tube inhibitors [21], and ovule cultures [22]. Techniques that have worked in other
crops may not necessarily work for bananas, and modifications may be required. Hormones
that surge with seasonal changes, especially conditions that favor seed set, are candidate
hormones for increasing seed set. High temperature, higher solar radiation, low relative
humidity, and low rainfall are conditions that have been reported to increase seed set
in bananas [12,23]. The aim of this study was, therefore, to develop in vivo pollination
techniques and in vitro techniques that can be adopted for sterility in East African Highland
cooking bananas (EAHB). The results of this study can be extrapolated to other edible
banana groups.

2. Materials and Methods
2.1. Experimental Site and Banana Genotypes Used

This experiment was conducted in Uganda at the National Agricultural Research
Laboratories (NARL), in Kawanda, located at 0◦25′ N and 32◦32′ E, at an elevation of
1177 m. The banana genotypes used included Musa (AAA group Matooke sub-group)
‘Enzirabahima’, ‘Mbwazirume’, and ‘Nakitembe’. Also used were Musa (AA group sub-
group Mchare) ‘Mshale’, ‘Nshonowa’, and ‘Mlelembo’. Matooke and Mchare banana types
belong to the same genetic complex [24], and can be collectively referred to as East African
Cooking Bananas. Among the Matooke landraces, ‘Enzirabahima’ has considerably high
female fertility, while ‘Mbwazirume’ and ‘Nakitembe’ are regarded as “sterile” [23,25]. The
highly fertile wild banana Musa acuminata subsp. burmannicoides De Langhe (Musaceae)
‘Calcutta 4’ was used as the pollen source for all pollinations. The pollination blocks were
planted at a spacing of 3 m between rows and 2 m between plants in plots of 9 × 22 mats.
The pollen source ‘Calcutta 4’ was planted at the beginning and end of female parent rows.
The plant population of the pollination blocks was, therefore, 1667 plants per hectare. The
pollination block was managed optimally after planting with manure and top dressing
with 80 g of NPK (17:17:17) inorganic fertilizer per mat.
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2.2. Early and Evening Pollination Techniques

The control pollination technique was hand pollination, as described by Vuylsteke
et al. (1997) [26] for plantain. The emerging bunches designating the female parent were
bagged a day before the start of bract opening to avoid contamination with pollen from
unknown sources, normally by bats and insects [27,28]. Male buds were also bagged in such
a way that a bract with fresh pollen was obtained for pollination the next day. Pollination
was performed by excising a hand of male flowers and brushing against the stigmas of
female flowers [23,26,28]. The early pollination technique involved forcing bracts open
about a day before natural opening; the free and compound tepals were pulled aside to
expose the stigmas. Pollen was then dusted on the stigmas and pollen germination media
(PGM) was sprayed with a hand spray pump in a fine mist from 15–20 cm to enhance
receptivity [10]. A fine mist ensured that pollen was just moist but not washed off from the
stigmas. The rationale was to boost moisture and energy availability for pollen germination.
The evening pollination technique involved pollination between 16:00 and 18:00 h, when
female flowers had just opened [29]. Stigma receptivity was also enhanced as described for
early pollination. Pollen germination media was prepared with tap water, 30 g/L glucose as
a substitute for sucrose, 0.25 g MgSO4·7H2O, 0.25 g KNO3, 0.4 g Ca(NO3)2, and boric acid
at 0.1 g/L [10,30]. Each treatment was applied to individual bunches from start to finish of
pollination. The two pollination techniques were applied on the landrace ‘Enzirabahima’.

2.3. Hormonal Treatment

‘Mshale’, ‘Mlelembo’, ‘Enzirabahima’, ‘Nakitembe’, and ‘Mbwazirume’ were hand
pollinated with ‘Calcutta 4’ pollination as described by Vuylsteke et al. (1997) [26], and
stigma receptivity was enhanced [10]. PGRs were then sprayed with a knapsack sprayer on
the bunches just a day after pollinating the last female hand. For salicylic acid, injections
into the pseudo stem were also experimented with just after pollination. Some bunches
were left unsprayed/untreated as the control. The different PGRs, application rates, modes
of application, and periods of application are summarized in Table 1.

Table 1. Plant growth regulators applied for seed set increase on East African Highland cooking bananas.

Name of PGR Rate (ppm) Method of Application Period

B-Nine, gibberellic acid
(GA) inhibitor 5000 (recommended rate) Foliar, freshly pollinated fruits Marchto September 2018

Abscisic acid (ABA),
plant hormone 500 and 1000 Foliar, freshly pollinated fruits March to September 2018

6-benzylamino purine
(6BAP), cytokinin 500, 1000, and 2000 Foliar, freshly pollinated fruits August to December 2018

Thiourea 1000, 7612, 15,224, and 38,060 Foliar, freshly pollinated fruits May to June 2018

Triiodo benzoic acid (TIBA),
auxin inhibitor 500 and 1000 Foliar, freshly pollinated fruits May to June 2018

Salicylic acid (SA),
plant hormone 100 and 200 Injection, foliar, freshly

pollinated fruits
December 2017 to

January 2018

PGR, plant growth regulator; rate (ppm), application rate measured in parts per million.

2.4. Saline Solution Treatment

Bracts were forced open to expose fingers a day before the start of flowering and
bunches were immersed in four liters of a table salt solution in a transparent polyethylene
bag for 24 h (Figure 1). The bunches were then removed from the saline solution at the time
of pollination. They were given ample time for the saline solution to drip off and to air
dry before performing pollinations with PGM [10]. They were then put back in the saline
solution in the evening for the next pollination on the next day, and the procedure was
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repeated until all hands were pollinated. Pollinated bunches were then labeled and left to
mature in the open. Water was included as a negative control, as summarized in Table 2.
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Figure 1. A ‘Mbwazirume’ bunch immersed in a 0.031 M saline solution treatment for seed set
increase a day before the start of pollination.

Table 2. ‘Mbwazirume’ bunches pollinated (sample) after salt solution treatment for seed set increase
between May and July 2017.

Salt Concentration (M) Number of Bunches

0.000 (Control) 9
0.031 8
0.063 9
0.125 9
0.250 16
0.500 9
1.000 2

M, molarity.

2.5. Ovule Culture

Pollinations were performed on two bunches each of ‘Calcutta 4’, ‘Mshale’, ‘Mlelembo’,
‘Enzirabahima’, and ‘Nakitembe’, with ‘Calcutta 4’ pollen using enhanced stigma receptivity
as described in Section 2.2 above. The wild banana ‘Calcutta 4’ was used as the control,
since it is highly female-fertile. The fruits were then harvested 48 h post-pollination, with
a presumption that fertilization was completed within that time. The fruits were then
washed with detergent and surface sterilized in 70% ethanol for 15 min. Under sterile
conditions, the fruits were carefully peeled to expose ovules attached to the placenta, which
were initiated on standard Murashige and Skoog (MS) media. Because of rapid enzymatic
browning, ascorbic acid was added to the culture while some cultures continued no ascorbic
acid. Liquid media on a shaker was also experimented in an effort to efficiently control
enzymatic browning. Three jars as three replicates were prepared for each media type and
treatment (pollinated genotypes), that is, standard MS media, MS media plus abscisic acid,
and liquid MS media. The ovules were cultured for up to two months and examined for
the presence of embryos.
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2.6. Seed Extraction

Bunches were harvested when some fruits started to ripen (to yellow). They were
then kept in a ripening room, and seeds were hand extracted from the fruit pulp, washed,
air-dried, and counted. The number of fingers per bunch was also counted, and seed set
was expressed on a per-100 fruit basis as follows:

(Total seed in a bunch)/(Total number of fruits of that bunch)× 100 (1)

This was performed for all of the pollination techniques to standardize seed set, since
different bunches had different numbers of fruit fingers. Seed set standardization was not
necessary for the ovule culture technique.

2.7. Data Analysis

The early and evening pollination techniques (new techniques) were compared with
the control pollination technique in a two-sample one-sided t-test. The new pollination
techniques were considered to be better than the control. For the PGR treatments, a paired
t-test was performed for the different PGRs and their varying application rates. The PGR-
treated bunches were also considered to have yielded more seed than the control. Seed
set per 100 fruits of bunches treated with PGRs were averaged for each landrace and each
concentration. The corresponding bunches for the control pollination were in the range
of pollinations plus or minus 15 days. The plus or minus 15 days range was considered
because weather plays a critical role in seed set in bananas. Weather effects are significant
from 75 days before pollination until about 10 days before harvest [9]. Data were analyzed
using Genstat 19th edition developed by VSN International (VSNi).

3. Results
3.1. Early and Evening Pollinations

The early and evening pollination techniques did not yield significantly more seed
compared to the control pollination technique (Table 3). The mean seed set per 100 fruits
per bunch for the control was numerically greater than the new techniques. The evening
pollination was the least effective among the three pollination techniques.

Table 3. Comparison of seed set per 100 fruits per bunch of early pollination and evening pollination
techniques on landrace ‘Enzirabahima’.

Pollination Technique Bunches Pollinated Seed/Bunch t-Probability Pollination Period

Early pollination 47 0.48
0.735 May 2016–April 2017

Control 37 0.66

Evening pollination 34 0.27
0.884 June 2016–April 2017

Control 32 0.62

3.2. Hormonal Treatment

All hormonal treatments made on sterile ‘Mbwazirume’, ‘Mlelembo’, and ‘Nakitembe’
did not yield any seed for any of the pollinated bunches (Table 4). However, there was
some seed set after hormonal treatment on ‘Mshale’, ‘Nshonowa’, and ‘Enzirabahima’,
especially with salicylic acid or TIBA. The t-probabilities for salicylic acid and TIBA were
much lower compared to those of other PGRs.
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Table 4. Plant growth regulator treatment soon after pollination and resulting seed set per 100 fruits
compared to the control.

PGR
Name

Rate
(ppm)

PGR Treated Bunches Control (+/− 15 Days)
t-prob.Landrace

Name
No.

Poll.
No.

W/Seed
Max.
Seed

Av.
Seed

No.
Poll

No.
W/Seed

Max.
Seed

Av.
Seed

B-Nine

5000 ‘Enzirabahima’ 5 0 0.0 0.0 6 1 1.4 0.2
5000 ‘Mlelembo’ 3 0 0.0 0.0 19 0 0.0 0.0
5000 ‘Mshale’ 1 1 51.9 51.9 7 5 30.6 12.0
5000 ‘Nakitembe’ 3 0 0.0 0.0 27 0 0.0 0.0
5000 ‘Nshonowa’ 7 4 12.5 3.6 15 13 89.7 18.4

Average 3.8 1.0 12.9 11.1 14.8 3.8 24.3 6.1 0.308

ABA

500 ‘Enzirabahima’ 5 1 12.5 2.5 17 4 6.5 2.2
500 ‘Mlelembo’ 4 0 0.0 0.0 18 0 0.0 0.0
500 ‘Mshale’ 2 1 3.7 1.9 8 6 30.6 11.5
500 ‘Nakitembe’ 5 0 0.0 0.0 14 0 0.0 0.0
500 ‘Nshonowa’ 2 0 0.0 0.0 14 11 26.0 9.9

Average 3.6 0.4 3.24 0.88 14.2 4.2 12.62 4.72 0.907

6BAP
1000 ‘Mshale’ 1 0 0.0 0.0 6 3 26.8 20.2
2000 ‘Mshale’ 1 0 0.0 0.0 5 3 26.8 7.8

Average 1.0 0.0 0.0 0.0 5.5 3.0 26.8 14.0 0.867

Thiourea

1000 ‘Mlelembo’ 2 0 0.0 0.0 8 0 0.0 0.0
7612 ‘Mbwazirume’ 3 0 0.0 0.0 1 0 0.0 0.0

15224 ‘Nakitembe’ 1 0 0.0 0.0 11 0 0.0 0.0
38060 ‘Nakitembe’ 1 0 0.0 0.0 11 0 0.0 0.0

Average 1.8 0.0 0.0 0.0 7.8 0.0 0.0 0.0 -

TIBA

500 ‘Enzirabahima’ 1 1 9.3 9.3 18 10 15.2 3.4
500 ‘Mbwazirume’ 2 0 0.0 0.0 3 0 0.0 0.0
500 ‘Mshale’ 1 1 13.6 13.6 16 12 24.6 6.4
500 ‘Nakitembe’ 2 0 0.0 0.0 24 0 0.0 0.0
500 ‘Nshonowa’ 1 0 0.0 0.0 6 3 7.1 1.5

1000 ‘Nakitembe’ 1 0 0.0 0.0 17 0 0.0 0.0
1000 ‘Mlelembo’ 1 0 0.0 0.0 6 0 0.0 0.0

Average 1.3 0.3 3.3 3.3 12.9 3.6 6.7 1.6 0.123

SA spray 100 ‘Enzirabahima’ 2 1 0.9 0.5 6 3 7.6 1.8

SA injection

200 ‘Enzirabahima’ 1 1 7.1 7.1 14 9 10.7 2.3
200 ‘Mlelembo’ 1 0 0.0 0.0 6 0 0.0 0.0
100 ‘Mshale’ 1 1 75.0 75.0 2 2 38.2 36.0
100 ‘Nshonowa’ 1 1 5.7 5.7 8 4 29.2 5.5

Average 1.2 0.8 17.7 17.7 7.2 3.6 17.1 9.1 0.164

PGR, plant growth regulator; PGR treated bunches rate (ppm), application/spray rate measured in parts per
million; No. poll., number of bunches pollinated (sample); No. w/seed, number of bunches with seed; Max. seed,
maximum seed per bunch per 100 fruits; Av. seed, average seed per 100 fruits per bunch; t-prob., paired t-test
t-probability for comparison of seed set after plant growth regulator treatment and the control (no treatment);
ABA, abscisic acid; 6BAP, 6-benzylamino purine; TIBA, triiodo benzoic acid; SA, salicylic acid.

3.3. Saline Solution Treatment

All bunches harvested from the saline solution treatment, before pollination, did not
yield any seed. The high concentration of 1 M had phytotoxic effects on young bunches;
thus, it was discontinued after pollinating two bunches. During seed extraction, it was
noticed that salt-treated fruits had more large ovules that were presumed to have been
fertilized, but withered compared to the control.
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3.4. Ovule Culture

The wild banana ‘Calcutta 4’ grew on MS media for up to 42 days, though some of
the jars showed enzymatic browning (Figure 2A,B). Mchare landraces, including ‘Mshale’,
‘Mlelembo’, and ‘Nshonowa’ also had some cultures showing growth; however, the ovules
remained mostly undersized and withered (Figure 2C). ‘Mlelembo’ showed the best re-
sponse among the Mchare landraces, and it also had fruit pulp development (Figure 2C).
On the other hand, Matooke landrace ovules withered shortly after initiation, leaving
behind plenty of phenolic compounds in the media (Figure 2D,E). An attempt to disperse
phenolics into the media as soon as they were released by using liquid medial on a shaker
did not yield any growth response (Figure 2F). The use of high levels of ascorbic acid did
not efficiently control phenolics release. Cultures with and without ABA did not yield
proper ovule growth. The ovules of Mchare and ‘Calcutta 4’ that grew up to 42 days on MS
media did not yield any embryos for in vitro germination.
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Figure 2. Wild banana ‘Calcutta 4’ and East African Cooking banana ovules in culture initiated two
days after pollination (indicated with red arrows). Pictures were taken 20 days after initiation (A–E),
bars = 2 cm. (A) Growing ‘Calcutta 4’ ovules with some browning from the first hand. (B) ‘Calcutta 4’
ovules engulfed in phenolics from the first hand. (C) Slow growing ‘Mlelembo’ ovules from the sixth
hand. (D) Withered ‘Nakitembe’ ovules from the third hand. (E) Intense browning of ‘Enzirabahima’
ovules from the fourth hand. (F) Failed initiation of ‘Nakitembe’ ovules 43 days after initiation in
liquid MS media.

4. Discussion

Most conventional banana improvement programs have screened landraces and se-
lected those with considerably high fertility for genetic hybridization. For example, IITA
in Nigeria selected 12 plantain landraces [12], whereas in Uganda, 37 out of 78 EAHBs
are considered fertile [23]. Quite often, the most preferred landraces are not included in
crossing schemes because they have a very poor seed set or have been rendered “infer-
tile”. For example, among the EAHBs, ‘Nakitembe’ and ‘Mbwazirume’ are some of the
most preferred landraces, but they do not set seed [23,25]. The selected landraces have,
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therefore, been “overused” in sexual hybridization, thus exhausting genetic variability in
these particular landraces. The only changes made are the male parents used; yet, it is
essential to change female parents as well. Consequently, the available gene pool for given
banana types in various genetic improvement programs has been under-utilized. There is a
need to increase seed set and/or overcome sterility in bananas, but no consistent deliberate
measures have been put in place to achieve this goal.

Shepherd (1954) [31] found out that increasing moisture around freshly pollinated
bunches increased seed set; however, the numbers were not significant. On the other hand,
the use of PGM during pollination significantly increases seed set in bananas [10]. The
increase is a small fraction of the potential seed set, as the vast majority of ovules abort
after pollination [11]. In the Matooke landrace ‘Enzirabahima’, PGM has been shown
to increase seed set per 100 fruits per bunch from 1.6 to 2.8 seeds [10], but the potential
seed set is 36,540 seed per 100 fruits [11]. Additionally, seed set increase with the use
of PGM has happened in seed-fertile landraces; thus, there is a need to explore other
breeding techniques to break pollination barriers and broaden the parental base for sexual
hybridization in improvement programs.

Self-incompatibility (SI) is not yet well understood, but it has been suggested to occur
in bananas. The type of SI that occurs in bananas is gametophytic SI, where pollen tubes
are arrested in the style [31]. Bananas are usually pollinated with more than enough pollen
to fertilize all ovules [8], but the majority of pollen tubes are arrested and do not reach
the ovules [31]. This suggests a SI system in bananas. SI in Musa spp. is also supported
by the observation of pollination of closely related M. acuminata Colla and M. balbisiana
Colla clones, which yielded more seed than self-pollinations [32]. The rationale of early
pollination was, therefore, for pollen tubes to reach the ovules before the formation of
glycoproteins, which are said to be responsible for SI. Early pollination may not have
worked because premature stigmas are said to delay or prevent penetration by pollen
tubes [33]. In Citrus, a study demonstrated that bud pollination is the most efficient
means of overcoming SI, compared to stress treatment and chromosome doubling [34].
The approach of early pollination was not effective for bananas, and thus it may require
modifications to become effective.

Banana anthesis starts at about 15:00 h and continues through the night until about
09:00 h of the next day, depending on the genotype, group, and sex of the flowers [29].
Evening pollination was aimed at having ovules fertilized as soon as possible. Ovules
are said to disintegrate within 24 h of flower opening [8]; thus, pollination as soon as
flowers open is critical. This endeavor did not work, because the male parent that was
used, ‘Calcutta 4’, opens its male flowers between 01:00 and 06:30 h [29]. This implied that
pollen viability had reduced at the time of pollination in the evening [8]. However, there
are other genotypes whose male flowers open as early as 18:20 h [29] that could be used as
pollen sources if they have traits of interest. Additionally, techniques that overcome pollen
tube inhibitors have to be used in combination with evening pollination.

Salt treatment is used in brassicas to overcome SI through inactivation of proteins that
cause it on the stigmatic surface [35]. In this study, the approach was to dip banana bunches
in a saline solution long enough for the salt to be absorbed into the styles. However,
this was not enough to overcome sterility in the seed-sterile banana landrace. More
presumably fertilized large ovules observed in saline treated bunches suggest that more
pollen tubes reached the ovules and resulted in fertilization. Pollen tube arrest in the styles
is, therefore, not the major contributor to sterility, as there was no seed set increase in the
seed-sterile landraces.

All plant physiological processes are virtually driven by PGRs, and this applies to
seeded and seedless phenotypes in bananas. Among the PGRs tried, salicylic acid, which
interferes with auxin signaling and the auxin transport inhibitor TIBA, may potentially
unlock the female sterility mystery in bananas. PGR-treated bunches that set seed were few;
thus, these results cannot be considered very reliable. In a period of plus or minus 15 days,
there were bunches that set more seed than those treated with PGRs. This implies that seed
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set after treatment with PGRs could have been a coincidence. Additionally, PGRs had no
effect on the inherently sterile ‘Mlelembo’, ‘Mbwazirume’, and ‘Nakitembe’ landraces. For
PGRs to be effective, the right ones have to be identified and applied at the right time, at an
optimum rate, and in the right way.

It was very difficult to control the phenolic compounds released in the experimental
ovule cultures; thus, ovule culture is a less viable option for overcoming sterility in bananas.
Even with successful initiation of the cultures, embryos did not develop. This could have
been as a result of early harvesting of fruits before embryos were big enough for ovule
culture. In seedless bunch grape ovule cultures, samples that were picked 60 days after
pollination yielded the highest percentage of embryos compared to 40, 20, and 10 days after
pollination [22]. Unfortunately, banana ovules abort about 14 days after pollination; thus,
they cannot be picked when embryos have had considerable development [11]. Abscisic
acid, which has been implicated in seed development, also did not have an effect on ovule
development in culture.

5. Conclusions

Banana breeding programs have screened edible bananas for female fertility and
have selected a set of fertile ones for sexual hybridization. Seed set from these female
fertile genotypes is still far below the potential, and they have been used for a long time.
Overcoming pollination barriers in edible female sterile banana genotypes is a key step
towards expanding the parental base and creating a wider progeny base for selection. The
use of PGM in pollinations can increase seed set by more than 50%, but only in female-fertile
genotypes. Other pollination techniques were, therefore, explored to overcome pollination
barriers. Early pollination may have to undergo modifications to have an effect in bananas,
as this method did not show promising results. For evening pollination to work, both male
and female parents have to open at about the same time before night fall. Ovule culture
cannot be used for overcoming sterility in bananas, but the use of PGRs, especially auxin
antagonists, should be given more attention, as results were inconclusive. Saline solution
treatment showed promise in increasing ovule fertilization rates, but this has to be used in
combination with other pollination techniques to be successful.
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