
Citation: Chen, D.; Nie, M.; Wang, Z.;

Chen, H.; Wang, D. A Negative

Sample-Free Graph Contrastive

Learning Algorithm. Mathematics

2024, 12, 1581. https://doi.org/

10.3390/math12101581

Academic Editor: Michele Bellingeri

Received: 5 April 2024

Revised: 9 May 2024

Accepted: 16 May 2024

Published: 18 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Negative Sample-Free Graph Contrastive Learning Algorithm
Dongming Chen 1 , Mingshuo Nie 1,* , Zhen Wang 1, Huilin Chen 2 and Dongqi Wang 1

1 Software College, Northeastern University, Shenyang 110819, China; chendm@mail.neu.edu.cn (D.C.);
2071322@stu.neu.edu.cn (Z.W.); wangdq@swc.neu.edu.cn (D.W.)

2 College of Engineering, Computing and Cybernetics, Australian National University,
Canberra, ACT 2601, Australia; u7326198@anu.edu.au

* Correspondence: niemingshuo@stumail.neu.edu.cn

Abstract: Self-supervised learning is a new machine learning method that does not rely on manually
labeled data, and learns from rich unlabeled data itself by designing agent tasks using the input
data as supervision to obtain a more generalized representation for application in downstream
tasks. However, the current self-supervised learning suffers from the problem of relying on the
selection and number of negative samples and the problem of sample bias phenomenon after graph
data augmentation. In this paper, we investigate the above problems and propose a corresponding
solution, proposing a graph contrastive learning algorithm without negative samples. The model
uses matrix sketching in the implicit space for feature augmentation to reduce sample bias and
iteratively trains the mutual correlation matrix of two viewpoints by drawing closer to the distance
of the constant matrix as the objective function. This method does not require techniques such as
negative samples, gradient stopping, and momentum updating to prevent self-supervised model
collapse. This method is compared with 10 graph representation learning algorithms on four datasets
for node classification tasks, and the experimental results show that the algorithm proposed in this
paper achieves good results.

Keywords: complex networks; graph representation learning; self-supervised learning; data augmen-
tation; comparative learning

MSC: 05C82

1. Introduction

Graph neural networks (GNNs) are powerful deep learning tools used to model graph-
structured data and have shown outstanding performance in various graph learning tasks.
Despite the strong capabilities of GNNs, their effectiveness in deep graph learning largely
depends on high-quality input training graphs and real labels. The performance of GNNs
on real-world graphs is often fragile because of the lack of labeled training samples, which
may lead to overfitting and difficulty in generalization, thus losing their ability to solve
various downstream deep graph learning tasks. On the other hand, real-world graphs are
typically complex and inevitably contain redundant, erroneous, or missing features and
connections. Training GNN-based models directly in such cases may result in a severe
performance drop.

In the negative sampling-based contrastive learning method, negative examples play
a crucial role because a large number of negative samples are needed to ensure rich
information in the learned node representations and to guarantee the quality of the model.
This helps to avoid the problem of model collapse in representation learning methods.
However, this leads to a higher demand for computational resources, and the algorithm’s
effectiveness is to some extent dependent on the method of generating negative samples.
The generation of positive and negative samples is achieved through data augmentation,
which introduces sample bias [1]. This bias arises from changes in the graph structure

Mathematics 2024, 12, 1581. https://doi.org/10.3390/math12101581 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12101581
https://doi.org/10.3390/math12101581
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7863-1230
https://orcid.org/0000-0002-1862-1521
https://orcid.org/0009-0006-6730-7471
https://doi.org/10.3390/math12101581
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12101581?type=check_update&version=2


Mathematics 2024, 12, 1581 2 of 16

during graph augmentation, and the subsequent graph neural network encoding relies
on neighborhood aggregation to embed nodes. This means that node embedding are
heavily influenced by neighboring nodes, especially those with smaller degrees. When
neighborhood information is disrupted by data augmentation, it blocks the pathway for
nodes to acquire information from neighbors, resulting in significant fluctuations in node
embedding and biased augmented samples.

To address these issues, this paper proposes a negative sample-free graph contrastive
learning algorithm that conducts graph contrastive learning at the vector level. This work
aims to eliminate the need for negative samples and reduce the bias caused by graph
augmentation operations. The contributions of this paper are as follows:

1. Converting the adjacency matrix into a diffusion matrix as a perspective for graph
augmentation. Unlike other graph augmentation methods that disturb the graph
structure, this approach aggregates neighbors from another perspective, enabling the
model to learn rich graph information.

2. Since graph augmentation operates in the input space and the embedding distribution
is often difficult to predict or control after GNN influence, this paper performs feature
augmentation in the implicit space. By using covariance, the data distribution after
feature augmentation in the implicit space can be better controlled.

3. A target function [2] is used in this work, which starts from the embedding data them-
selves rather than the samples. It also incorporates the idea of reducing redundancy.
For the same input, the features obtained from the upper and lower branches should
have a similarity-cross-correlation matrix with a main diagonal close to the identity
matrix (i.e., the feature correlation matrix is close to the identity matrix), while the
off-diagonal elements should be close to zero. The idea of the target function avoids
the collapse problem in negative sample-free self-supervised models. Furthermore,
it does not require weight sharing, the same architecture for the upper and lower
branches, or inputs with the same properties, nor does it require a repository, etc.

2. Related Work

To improve the sufficiency and quality of training data, data augmentation is con-
sidered an effective tool that expands the given input data by slightly modifying existing
data instances or generating synthetic new instances from existing ones. In recent years,
the importance of data augmentation has been fully recognized in the computer vision and
natural language processing fields. Recently, data augmentation techniques have also been
explored in the graph field to push the performance boundaries of deep graph learning,
and promising results have been demonstrated. In addition to traditional image or text
data, graph-structured data has become more complex due to heterogeneous information
modalities and complex graph properties, providing a wider design space and additional
challenges for graph data augmentation.

However, due to the inherent non-Euclidean nature of graph data, it is difficult to
directly apply data augmentation strategies designed for images to the GNN field. Here,
this paper categorizes data augmentation strategies for graph data into three types: feature-
based augmentation, structure-based augmentation, and sampling-based augmentation.

2.1. Feature-Based Augmentation

Feature masking (FM) [3–5]. The data augmentation technique based on node feature
masking is to generate new graph data by randomly masking a part of the node’s features,
e.g., randomly selecting some nodes and then setting their features to zero or some other
specific values to simulate the situation where some nodes are missing from the data as
shown in Figure 1. This method can simulate the situation of some nodes with incomplete
attributes in the real world, increase the diversity of the data, and improve the robustness
of the model at the same time. In addition, the data augmentation technique based on node
feature masking can also reduce the model’s dependence on certain node features, thus
improving the model’s generalization performance.



Mathematics 2024, 12, 1581 3 of 16

Figure 1. Masking node features.

Feature shuffling [6] is a technique used in graph neural networks (GNNs) to random-
ize the node and edge features, where the input features of the GNN will be randomized
while other parts (such as the network topology) remain unchanged, and then the output of
the GNN is computed as shown in Figure 2. The impact of each feature on the performance
of the GNN can be measured by comparing the original inputs with the outputs after the
features are randomly arranged.

Figure 2. Shuffled features.

2.2. Structure-Based Augmentations

Edge perturbation (FD) [5] is a graph structure perturbation strategy that mainly
changes the structure of a graph by randomly adding or removing a certain percentage of
edges. Its goal is to introduce a certain amount of randomness while keeping the general
structure of the graph unchanged, to test whether the semantics of the graph is robust
to such differences in edge connection patterns. When applying edge perturbations, this
paper also follows the default uniform distribution for adding/removing each edge.

Node dropping (ND). Randomly removes a portion of nodes from the graph to perturb
the integrity of the graph, and the probability of removal of each node follows the default
independent homogeneous distribution, constrained a priori to the fact that the removed
nodes do not affect the semantic information of the entire graph.

2.3. Sampling-Based Augmentation

For a graph G = (X,A), sampling-based augmentation transforms both the feature
matrix X and the adjacency matrix A. The underlying assumption is that the semantics of
the graph will be preserved in its local structure, as shown in Figure 3.

In graph neural networks, sampling-based data augmentation is a common technique
used to increase the diversity and quantity of the training dataset, thus improving the



Mathematics 2024, 12, 1581 4 of 16

generalization ability of the model. Specifically, this technique is used to train a model by
randomly selecting several subgraphs (i.e., samples) in the original graph data and using
them as inputs. These subgraph can be selected randomly, based on the properties of nodes
or edges in the graph, or based on some specific rules. With the sampling approach, several
different subgraph can be generated, allowing the model to learn more different graph
features, thus improving its generalization ability. In addition, the sampling method can
effectively reduce the size of the graph dataset, thus making training more efficient.

Figure 3. Sampling-based augmentation.

Uniform sampling [7] is a commonly used sampling method whose main goal is to
randomly select a subraph from the graph. The uniform sampling process is to randomly
select a node from the original graph as the center node of the subgraph, and from this
center node, traverse the graph along the edges and collect neighboring nodes as needed.
Maximum distance or other traversal constraints can be set as per requirement. The col-
lected nodes and the edges between them are formed into a subgraph. Due to the random
selection of nodes from the original graph, uniform sampling increases data diversity and
helps to improve the generalization ability of the model.

The random walking sampling method [8] selects a subgraph from the graph by
random walking. This method can be done by randomly selecting a node from the original
graph as the starting point of the random walk. Starting from the current node, a neighbor-
ing node is randomly selected as the next node. Each walking selection will be based on
the weights of the edges or other probability distributions. The above process is repeated
until a predetermined walking length is reached. The nodes visited during the walking
process and the edges between them are formed into a subgraph. Randomized walking
sampling preserves local structural information in the graph because neighboring nodes
are visited during the walking process. Randomized walking sampling can control the
size and structure of the subgraph by adjusting parameters such as walking length and
probability distribution. However, it has some limitations, such as incomplete information
coverage and high computational complexity.

Importance sampling [9] is a method of selecting subgraph based on the importance of
nodes or edges. Importance sampling has the advantage of extracting parts with higher in-
formation value, thus improving the learning effect, and by selecting only important nodes
or edges, it can effectively reduce the size of the subgraph and reduce the computational
complexity, but there is also the advantage that calculating the importance of the nodes
or edges may require additional computational costs, especially for large-scale graphs.
Moreover, importance sampling may ignore some non-important parts of the graph that
may also be valuable for the learning task.

Knowledge-based sampling (KBS) [10] is a method that combines a priori knowledge
or domain knowledge to select a subraph. The method utilizes existing knowledge to
filter nodes and edges in the graph to extract more representative and valuable subgraphs,
which in turn improves the performance of graph self-supervised learning. The algorithmic
process is to collect a priori knowledge or domain knowledge, which can be about the
properties of nodes and edges in the graph, or about the topology of the subgraph. Based
on the collected knowledge, a weight or score is assigned to each node or edge. Sort the



Mathematics 2024, 12, 1581 5 of 16

nodes or edges according to the weights or scores. Select the nodes or edges with higher
weights or scores to form the subgraph. A threshold can be set or a certain percentage
of nodes or edges can be selected. It has the advantages of utilizing existing knowledge,
extracting high-quality subgraph, and interpretability, but also has limitations of relying on
the quality of knowledge, possible bias, and higher computational cost.

2.4. Evaluation Indicators

The F1-score is a commonly used metric for evaluating the performance of binary or
multi-category classification models, especially when the dataset is unbalanced in terms of
positive and negative samples. The F1-score is a harmonic mean of the precision and recall
rates, which takes into account both the precision and recall rates of the model. The F1-score
is the average of Precision and Recall. The F1-score is higher only when both Precision and
Recall are higher. This makes the F1-score an important model performance evaluation
metric, because in many cases, we would like to have a model with a high level of both
Precision and Recall, rather than favoring one over the other. The F1-score provides us with
an effective way to measure the combined performance of the model in terms of Precision
and Recall with a single metric. This is particularly important in practice, as we often want
models to strike a good balance between accuracy and recall.

The F1-score is also known as the balanced F-score, and it is calculated as shown in
Equation (1):

F1 − score =
2 ∗ precision ∗ recall

precision + recall
, (1)

For multi categorization problems, there are two commonly used ways to calculate
the F1-score: Micro-F1 and Macro-F1.

Micro-F1 is to count the TP, FP, and FN obtained in all categories, then calculate the
overall Precision and Recall, and then finally use these two to calculate the obtained F1-
score. In this method, all categories are treated as a whole to calculate the F1-score, so
the prediction results of each sample are treated equally, which is often a better way to
evaluate the F1-score in the case of category imbalance. This situation is often a better way
of evaluation.

Macro-F1, on the other hand, is obtained by first calculating the F1-score for each
category and then averaging the F1-scores for all categories. In Macro-F1, all categories
have the same weight and are considered equally important regardless of the number of
samples in the category. Therefore, Macro-F1 gives more importance to models that achieve
good performance in each category

In short, Micro-F1 considers the proportion of all samples that are correctly predicted
and is more concerned with the predictive accuracy of the broad categories, whereas
Macro-F1 focuses on the mean of the predictive accuracy of each category and places more
importance on the balance of predictions between categories. The choice of whether to
use Micro-F1 or Macro-F1 when dealing with data with imbalanced categories needs to be
determined based on the specific task requirements.

3. A Graph Contrastive Learning Algorithm without Negative Samples
3.1. Definition of Symbols

This subsection gives specific definitions of the relevant concepts in the proposed
algorithmic framework and the explanations corresponding to the symbols that appear,
as shown in Table 1.

Definition 1 (Adjacency matrix). The adjacency matrix is used to represent the relationship
between vertices, e.g., for an adjacency matrix, if there is an edge between the nodes, the element
in the adjacency matrix is 1, otherwise it is 0. For undirected graphs, whose adjacency matrix is
symmetric, the value of the element on the main diagonal is 0. The adjacency matrix can be used to
quickly determine whether there is an edge connection between any two vertices.



Mathematics 2024, 12, 1581 6 of 16

Definition 2 (Graph diffusion matrix). A graph diffusion matrix is defined as a symmetrically
normalized adjacency matrix where each element represents the probability of transferring from one
node to another and the sum of the weights of all the outgoing edges of each node is one.

Definition 3 (Intercorrelation matrix). An intercorrelation matrix is a measure of similarity
between two vectors or matrices.

Table 1. Definition of related symbols.

Symbolic Define

G given graph
V nodes set of the graph
E edge set of a graph
X eigenmatrix of the graph
A adjacency matrix of the graph
d degree of nodes
S graph diffusion matrix
α diffusion coefficient
W weighting matrix
H node representation
Z output node representation
C Intercorrelation matrix
λ objective function hyperparameters
b batch size
P affine transformation
F dimension

3.2. Algorithm Design and Implementation

Previous graph contrastive learning algorithms have achieved good results, where
most of the models are based on positive and negative samples for comparison, and the
negative samples to avoid the problem of model collapse. However, the effect of this
method depends on the number of negative samples, and the algorithm uses a large num-
ber of negative samples, which requires more arithmetic resources, and puts forward
higher requirements for hardware devices. In this paper, we propose graph contrastive
learning method without a negative sample, named WNS-GCL, where the core idea is
to train two neural networks by reducing the redundancy between their outputs, specif-
ically by minimizing the distance between the outputs of the two networks of the two
networks. The model framework is shown in Figure 4, where GAL denotes the graph
augmentation layer.

Figure 4. The overall framework of WNS-GCL model.

In the following, the components of the model are described in detail: graph data
augmentation, graph encoder, projection head, and loss function.



Mathematics 2024, 12, 1581 7 of 16

3.2.1. Graph Data Augmentation

The graph data augmentation method used in this paper is the combined data aug-
mentation (node feature masking and deletion of edges operation) strategy with better
experimental results in Section 3, as well as the algorithm used in this paper, which is based
on the randomized walking sampling (see the graph in Section 2.3).

Graph diffusion networks: acquiring graph representations can be categorized into
two types: based on graph theory and based on node space structure. Graph diffusion
networks (GDNs) are a synthesis of these two approaches and can integrate more neighbor
information. Graph diffusion networks can effectively extract and integrate information
from graph data by fusing these two approaches. The core of these networks is the graph
diffusion process, which works by converting the adjacency matrix into a graph diffusion
matrix, as shown in Equation (2):

S =
∞

∑
k=0

θkTk , (2)

where θk is the weighting factor that determines the global-local information ratio, T is the
generalized transition matrix, ∑∞

k=0 θk = 1, λi is the eigenvalues of T, and λi ∈ [0, 1], to
ensure convergence.

The two most commonly used methods in graph diffusion networks are Personalized
PageRank (PPR) and Heat Kernel. The algorithm in this paper is the PPR method, which
is used to generate the graph diffusion matrix, based on the idea of random walking.
Moreover, PPR iteratively propagates the importance of the nodes in the graph by iterating
the importance of the nodes so as to achieve a personalized ranking of each node. Here,
Trw = AD−1 is the transition matrix ,Tsym = D− 1

2 AD− 1
2 is symmetric transition matrix,

D is the degree matrix, θPPR
K = α(1 − α)Ks weighting factor, α is the transfer probability

in random walking, and α ∈ (0, 1). The formula based on PPR diffusion is shown in
Equation (3):

SPPR = α
[

In − (1 − α)D− 1
2 AD− 1

2

]−1
, (3)

The algorithm in this paper adopts the graph diffusion network method, and the
experimental effect is improved. The initial intention of the construction of the graph
diffusion network is to optimize the information transfer mechanism of the graph neural
network, so that the model can obtain more global information in the training process.

Matrix sketch [11]: after the GNN learns the node representation of the graph, it
directly enhances the node feature representation. Here, the covariance is used as a
constraint between the original feature matrix X and the augmented matrix X̃ (which
needs to limit the size of ||XTX − X̃TX̃|| ). In this paper, we convert the problem of feature
augmentation matrix into a matrix sketching problem. Matrix sketching is where a given
original feature matrix X ∈ Rn×d is passed through the following Equations (4) and (5),
where Equation (4) has to satisfy Equation (5) in order to obtain the augmented feature
matrix X̃ ∈ Rk×d:

X = PX + E , (4)

||XTX − X̃TX̃||2 ≤ εTr(XTX) , (5)

where P ∈ Rk×d in Equation (4) denotes the transformation matrix, E is the random noise
matrix, and ε is the error that controls the quality of the approximation ||XTX − X̃TX̃||2.
The transformation matrix P is used here to generate a sketch of the matrix by means of
random mapping [11].

Data augmentation is a stochastic process and the enhanced samples generated by
random mapping need to satisfy Equation (6). Equation (6) is such that the probability that
the covariance is constrained is at least guaranteed:

P(||XTX − X̃TX̃||2 ≤ εTr(XTX)) ≥ 1 − e−
ε2k
8 , (6)



Mathematics 2024, 12, 1581 8 of 16

3.2.2. Graph Encoder

The graph convolutional neural network encoder chosen for this algorithm encodes
the same graph after subgraph sampling and inputs it into the encoder to learn the rep-
resentation of the nodes, and the GNN encoder fi : Rn×n × Rn×d → Rn×d extracts the
hidden node features Hi ∈ Rn×d from the i-th augmented graph (Ãi, X̃i). Usually, multiple
encoders are applied to obtain hidden node features Hi for different views as follows:

H1 = f1(A1, X1), · · · , Hk = fk(Ak, Xk) , (7)

The GNN encoder is implemented as a two-layer graph convolutional network (GCN):

GCNl(X, A) = σ
[

D− 1
2 AD− 1

2 XWl

]
, (8)

f (X, A) = GCN2(GCN1(X, A), A) , (9)

where A = A + I is the adjacency matrix with self-loop, D is the degree matrix, σ(·) is the
activation function, ReLu(·)max(0, ·), and Wl is the matrix of the trainable weight layer.

3.2.3. Projection Head

The projection head θ(·) is a small network that maps representations to the space
in which the contrast loss is applied. It is implemented as a multilayer perceptron MLP
with one hidden layer (consisting of two fully connected layers with bulk normalization
(BN) and ReLU, and a third linear layer) to obtain Zi = θ(Hi) = W(2)σW(1)Hi, where σ
is the ReLU nonlinear activation function. Its role in the model is to: (1) eliminate two
representations of different information and (2) extend the dimension in a nonlinear way
so that the decorrelation of the embedded variables will reduce the dependence (and not
only the correlation) between the two representations of the vector’s variables.

3.2.4. Loss Function

The goal of this algorithm is to make the main diagonal of the intercorrelation matrix
as close as possible to the unit matrix as a loss function, in which the embedding matrix is
normalized along the batch dimensions, and after that the intercorrelation matrix C ∈ Rd×d

of the two viewpoints is computed with the goal of optimizing it to make it close to the
unit matrix. The optimized formula is:

ιβτ ≜ ∑
i
(1 − Cii)

2 + λ ∑
i

∑
j ̸=i

C2
ij , (10)

where λ is a hyperparameter greater than 0 used to balance the first invariant term with
the second redundant term and C is the intercorrelation matrix computed along the batch
dimension between the outputs of two identical networks:

Cij ≜
∑b z1

b,i, z2
b,j√

∑b(z1
b,i)

2
√

∑b(z2
b,j)

2
, (11)

where b indexes the batch samples and i, j indexes the vector dimensions of the network
output, C has dimension d × d, and d is the feature dimension of the model output.

The second term of Equation (10), by trying to make the off-diagonal elements of the
intercorrelation matrix closer to 0, aims at making the same dimensions of the two feature
vectors extracted from the same sample after going through different networks as similar
as possible, and to reduce redundancy between different dimensions.

This method draws on the strategy of reducing redundant information, and its core
idea is to implement comparative learning in the embedded features, which is a significant
difference since previous methods often perform this type of learning on samples. It strives
to make different feature dimensions represent as diverse information as possible as a



Mathematics 2024, 12, 1581 9 of 16

way to enhance the expressiveness of the features, which further ensures the correlation
between the two perspectives. At the same time, compared to loss functions commonly
used in graph self-supervised learning, this approach does not rely on specific techniques,
such as gradient stopping or momentum encoders.

4. Experimentation and Analysis
4.1. Experimental Dataset

In this section, four public benchmark datasets, i.e., Cora, Citeseer, Pubmed, and DBLP,
which are widely used in the field of graph neural network research, are selected for
experimental evaluation and the results are analyzed in comparison with the widely influ-
ential methods in recent years. Cora, Citeseer, and Pubmed belong to the citation network
datasets [12], which consist of papers and their mutual citation relationships constitute a
network, including citation relationships, co-authors, etc., which form the structure of the
graph. In these datasets, each node represents an academic paper, the citation relationships
between papers form edges, and each node contains word feature vectors and category
labels, which represent the content features and subject categories of the paper, respectively.
DBLP is a large indexing database of computer-based literature in the original XML format,
which is organized to form a citation network dataset. The specific nodes, edges, and other
information of these four datasets are shown in Table 2.

Table 2. Basic dataset information.

Dataset Nodes Edges Classes Features

Cora 2708 5429 7 1433
Citeseer 3327 4732 6 3703
Pubmed 19,717 44,338 3 500

DBLP 17,716 105,734 4 1639

4.2. Experimental Environment

In this paper, all the experimental codes are written in Python language and the
framework proposed in this paper as well as the benchmark models used in the experiments
are implemented based on the Pytorch framework. The details of the environment on
which the experiments depend are shown in Table 3.

Table 3. Experimental environment.

Hardware Environment Parameters

OS Ubuntu18.04
RAM 8 GB, 50 GB

CPU Intel(R) Core(TM)i7-6700 CPU @3.40 GHz
(Intel Corporation, Santa Clara, CA, USA)

GPU NVIDIA RTX A2000 display memory 12G
(NVIDIA Corporation, Santa Clara, CA, USA)

Development Tool PyCharm
Development Language Python 3.8

4.3. Evaluation Metrics

During the experiments, the performance of the learned node representations is
evaluated by node classification as a downstream task, and Micro-F1 from the evaluation
metrics in Section 2.4 is used as the evaluation metric.

4.4. Experimental Setup

In order to be able to demonstrate the effectiveness of their algorithms, the following
ten algorithms that are representative of graph neural networks were chosen as compari-
son algorithms.



Mathematics 2024, 12, 1581 10 of 16

The Raw Features algorithm is based on the original node feature information. In the
model, the feature vector of each node is directly used as the input, without any preprocess-
ing or dimension reduction operation. The model represents each node as a vector, and the
dimension of the vector usually corresponds to the dimension of the node features.

The Node2vec algorithm is based on learning node embedding from randomized
walking sequences. The core idea of the algorithm is that by randomly walking over graph
data, a large amount of data containing node sequences can be generated. These sequences
can be considered as a “corpus” and can be used to train an embedding model that maps
nodes into a low-dimensional vector space.

The core idea of the DeepWalk algorithm is to generate a large amount of data con-
taining sequences of nodes by randomly walking over graph data, using a neural network-
based approach to training embedding models, which makes use of negative sampling
techniques in the Skip-gram model.

For the graph convolutional network (GCN), the core idea of the model is to utilize
the idea of the convolutional neural network (CNN) to perform convolutional operations
on graph data. Since the connectivity between nodes in graph data is non-Euclidean,
the convolution operation needs to be redefined. GCN uses a Laplace matrix-based ap-
proach to define the convolution operation, which can be interpreted through the spectral
graph theory.

The core idea of the SGC [13] model is to aggregate features from neighboring nodes
to the central node using a linear transformation without using the nonlinear activation
function and convolution operation in GCN. This linear transformation can be realized by
multiple identical weight matrices, thus reducing the number of parameters and computa-
tion of the model.

GAE [14], a graph self-encoder, learns to extract the representation of node embed-
ding from the input graph and reconstructs the original graph by treating the graph as
an input to a self-encoder. The model is mainly divided into two parts: encoder and
decoder. The core idea of the model is to use the representation of node embedding as an
intermediate hidden layer of the self-encoder and learn the node embedding by minimizing
the reconstruction error.

VGAE [14], a variational graph self-encoder, is an extension of the GAE model, uses
a probabilistic generative model to model the representation of node embedding, and
can learn embedding representations with randomness. The core idea of the model is to
consider the representation of node embedding as a probability distribution and then learn
how to sample the embedding representation of nodes from that distribution.

The DGI [15] model learns node representations by maximizing the mutual informa-
tion between node features and graph structure, which in turn enables unsupervised graph
node classification, node clustering, and other tasks. Its core idea is to utilize the idea of
self-encoder, which takes the node features and graph structure as inputs, maps the nodes
to a low-dimensional representation space through an encoder, and then reconstructs them
through a decoder so that the reconstructed results are as close as possible to the original
node features.

The GCA [16] model proposes a new graph comparison representation learning
method with adaptive augmentation, which incorporates various priors on the topological
and semantic aspects of the graph. The core idea is that an augmentation scheme based
on a node centrality metric is designed at the topology level to highlight important con-
nectivity structures. Node features are corrupted at the node attribute level by adding
more noise to unimportant node features to force the model to recognize the underlying
semantic information.

The COSTAMV [1] model proposes a new covariance-preserving feature space aug-
mentation framework to perform augmentation operations on hidden features for use in
graph contrastive learning.

In the model, Adam is uniformly used as an optimizer for training for the sake of
experimental fairness. The learning rate is 0.001 for Citeseer, Pubmed, and DBLP datasets



Mathematics 2024, 12, 1581 11 of 16

and 0.0001 for Cora. The Drop Feature Rate and Edge Removing Rate are set differently
depending on the dataset. The Hidden dimension is 256. The Epochs are 700, 1500,
1500, and 1000 for Cora, Citeseer, Pubmed, and DBLP, respectively. The Diffusion matrix
parameter is fixed to 0.2. A summary of all the parameter settings is shown in Table 4.

Table 4. Algorithm parameter settings.

Dataset Learning Rate Drop Feature Rate Edge Removing Rate Training Epochs Hidden Dimension α1

Cora 0.0001 0.3 0.4 700 256 0.2
Citeseer 0.001 0.4 0.2 1500 256 0.2
Pubmed 0.001 0.3 0.4 1500 256 0.2

DBLP 0.001 0.3 0.4 1000 256 0.2

4.5. Experimental Results and Analysis
4.5.1. Node Classification Task

The results of the node classification experiments comparing the model and the
ten baseline models on the three citation network datasets, i.e., Cora, Citeseer, Pubmed,
and DBLP, are shown in Table 5, with the highest experimental results in each dataset
denoted in bold.

In order to better observe the experimental results, this section further represents the
algorithm results in a bar chart as shown in Figure 5. From Table 5, it can be observed that
all the algorithms in this paper achieve the best results compared to the baseline algorithm.
On the Cora dataset, the algorithm improves by 3.3% on the Micro-F1 value over the
COSTAMV algorithm, which has the best results. On the Citeseer dataset, the algorithm
improves 0.1% on the Micro-F1 value over the COSTAMV algorithm, which has the best
results. On the Pubmed dataset, the algorithm is similar to the results of the DGI and the
GCA, but compared to the other algorithms, they show better performance; however, both
DGI and GCA model training need a large number of negative samples, while the algorithm
in this paper does not need negative samples for calculation. Thus, the algorithm does not
need strong arithmetic power, and from this point of view, the algorithm is better than
DGI and GCA algorithms. Finally, on the DBLP dataset, the algorithm improves by 0.9%
compared with the most effective COSTAMV algorithm.

Although the algorithm slightly outperforms the suboptimal algorithm on the Citeseer,
Pubmed, and DBLP datasets, the algorithm has a significant improvement on the Cora
dataset, as well as the algorithm shows good algorithmic performance on all four datasets.

Table 5. Comparison of Micro-F1 values of node classification.

Method Training Data Cora Citeseer Pubmed DBLP

Rawfeatures X 64.8 64.6 84.8 71.6
Node2vec A 74.8 52.3 80.3 78.8
DeepWalk X,A 73.1 47.6 83.7 78.1

GCN X,A,Y 82.8 72.0 84.9 82.7
SGC X,A,Y 80.6 69.1 84.8 81.7
GAE X,A 76.9 60.6 82.9 81.2

VGAE X,A 78.9 61.2 83.0 81.7
DGI X,A 82.6 68.8 86.0 83.2
GCA X,A 82.8 71.5 86.0 83.1

COSTAMV X,A 84.3 72.7 85.9 84.4
WNS-GCL X,A 87.1 72.8 86.0 85.3

As can be seen in Figure 5, the performance obtained by using an objective function
with no negative sample loss sometimes even exceeds that of a negative sample-based
objective function, indicating a promising future direction, which provides a more efficient
negative sample-free solution for subsequent graph contrastive learning. In contrast to



Mathematics 2024, 12, 1581 12 of 16

the negative sample-based objective, the Barlow Twins loss avoids the need for negative
samples, thus significantly reducing the computational burden.

Figure 5. Micro-F1 of node classification experiment.

4.5.2. Ablation Experiments

The ablation experiments investigate the effect of different types of augmentation
on the model, Feature Aug. (which refers to feature augmentation in implicit space) and
Other Aug. (which refers to combinatorial augmentation performed on graphs as well as
graph diffusion). In order to minimize factors other than the augmentation strategy that
may affect the results, the other parameters of the model remain unchanged and only the
augmentation method is replaced.

As shown in Table 6, it can be observed that the performance of each dataset is
relatively low without using any data augmentation. This indicates that data augmentation
methods have a positive effect on improving the model performance. When only feature
augmentation (Feature Aug.) is used, the performance of each dataset is improved. This
suggests that feature augmentation methods can help the model learn more effective
feature representations and thus improve classification performance. When using only
other types of data augmentation, the performance is also improved, especially on the
DBLP dataset. This indicates that other types of data augmentation help the model to
better capture the information in the graph structure. When both feature augmentation
and other types of data augmentation are used, the highest performance is achieved on all
datasets. This indicates that the combination of feature augmentation and other types of
data augmentation methods can fully utilize the characteristics of the graph data to further
improve the model performance. Therefore, the algorithm in this paper uses a combination
of both augmentation methods.

Table 6. Comparison of Micro-F1 values of node classification with augmentation methods.

Other Aug. Feature Aug. Cora Citeseer Pubmed DBLP

× × 0.6912 0.6527 0.8424 0.7800
× ✓ 0.7757 0.6916 0.8474 0.8049
✓ × 0.8162 0.7186 0.8525 0.8291
✓ ✓ 0.8710 0.8710 0.8710 0.8710

4.5.3. Parameter Sensitivity Analysis

This subsection focuses on the parameter sensitivity of the model. Specifically, the ef-
fects of changes in the node output dimension, learning rate, and diffusion coefficient size,
as well as the parameters of the combined augmentation strategy on the node classification



Mathematics 2024, 12, 1581 13 of 16

performance, are investigated. Due to some similarities in different datasets, the Cora
dataset is used as an example for illustration. In order to be fair, other parameters except
test variables are kept constant during the experiment.

Node Output Dimension: the node output dimension directly affects the model
performance. As shown in Figure 6, as the node representation dimension increases,
the model performance first increases then stays the same, and then decreases. As the
node output dimension increases from 128 to 512, the results of node categorization show
an increasing trend up to 87.27%. This may be due to the fact that at lower dimensions,
the model may have difficulty capturing the complex features and structural information
of all the nodes in the graph. As the dimension increases, the model is able to learn richer
node representations, which improves the classification results. When the node output
dimensions continue to increase to 1024 and 2048, the effectiveness of node classification
decreases instead. This may be due to the fact that too high dimension leads to model
overfitting (i.e., the model is too sensitive to the training data) and the generalization
performance on the test data decreases. Another reason could be that a too high dimension
increases the computational complexity of the model, leading to a more difficult training
process, which affects the final classification performance.

Figure 6. Influence of different output dimensions on node classification performance.

Learning rate: the learning rate has a certain impact on the node classification perfor-
mance. Figure 7 shows the node classification performance with the size of the learning
rate. It can be seen that as the learning rate increases, the node classification classification
results show a weak increase followed by a decrease. When the learning rate increases
from 0.0001 to 0.0003, the node classification accuracy improves and reaches a peak of
87.24%. This suggests that lower learning rates may prevent the model from converging to
the optimal solution because smaller parameter updates require more iterations. On the
contrary, a slightly higher learning rate allows the model to find a suitable local optimal
solution more efficiently. When the learning rate was further increased to 0.0005, there was
a slight decrease in classification accuracy. This decrease can be attributed to oscillations in
the optimization process, which is caused by a learning rate that is too high to converge
stably to a suitable local optimal solution. As the learning rate increases to 0.0007, 0.0009,
and 0.001, the classification accuracy continues to decrease. This phenomenon may be
caused by overfitting due to the high learning rate. As a result, the model is too sensitive to
the training data, which reduces its generalization performance.

Diffusion coefficient: the effect of graph diffusion scale factor on node classification
performance. When the input of the perspective is a graph diffusion matrix with different
scales, the diffusion coefficient is analyzed. From Figure 8, it can be observed that with the
gradual increase, the node classification performance shows a trend of increasing and then
decreasing. At a diffusion coefficient of 0.2, the results of the node classification experiment
reached the highest value of 87.13%. When the diffusion coefficient increases from 0.1 to 0.2,



Mathematics 2024, 12, 1581 14 of 16

the experimental results improve, which suggests that a larger diffusion coefficient in this
range may help the model to capture more local and global information, thus improving
the accuracy of node classification. However, when the diffusion coefficient continues
to increase to 0.3 and above, we can see a gradual decrease in the node classification
experimental results. This may be due to the fact that too large diffusion coefficients lead to
an increase in noise in the information diffusion process, making it difficult for the model to
capture effective features. In addition, too large a diffusion coefficient may lead to excessive
diffusion of information, which makes local features become less obvious, thus affecting
the classification performance.

Figure 7. Influence of different learning rates on node classification performance.

Figure 8. Influence of α on node classification performance.

Data augmentation method parameters: this section provides a sensitivity analysis of
the main hyperparameters of the data augmentation algorithms, focusing on the impact of
the control parameters pe and pf for the two data augmentation methods Feature Masking
(FM) and Edge Removing (ER). This analytical process uses the Cora citation dataset and
provides insights for the four parameters pe1 and pe2, as well as pf1 and pf2. In this
section, node categorization experiments are conducted over a parameter range of 0.1 to 0.7,
by which the impact of hyperparameters on accuracy can be more fully assessed. In order
to control the augmentation at the topology level and node feature level, pe = pe1 = pe2
and pf = pf1 = pf2. In performing the sensitivity analysis, only these four parameters are
adjusted in this section, keeping the other parameters stable. The related experimental
results are shown in Figure 9. The horizontal axis represents the Edge Removing parameter
probability and the vertical axis represents the Feature Masking parameter probability in
Figure 9.



Mathematics 2024, 12, 1581 15 of 16

Mathematics 2024, 1, 0 15 of 16

probability and the vertical axis represents the Feature Masking parameter probability in
Figure 9.

Figure 9. Influence of different hyperparameters on node classification performance.

Edge Removing parameter sensitivity analysis: as the Edge Removing parameter
probability increases, we can observe the fluctuation of the classification accuracy under
different Feature Masking parameters. At low Feature Masking parameter probabilities
(e.g., 0.1–0.3), an increase in the Edge Removing parameter probability leads to a decrease in
classification accuracy. This indicates that the model is more sensitive to the Edge Removing
parameter, which may be due to the fact that removing more edges destroys the topology
of the graph, making it difficult for the model to capture the structural information in the
original data.

Sensitivity analysis of the Feature Masking parameter: with the increase in the prob-
ability of the Feature Masking parameter, we can observe the change of classification
accuracy under different Edge Removing parameters. At low Edge Removing parameter
probabilities (e.g., 0.1–0.3), an increase in the probability of the Feature Masking parameter
leads to a decrease in classification accuracy. This indicates that the model is also more
sensitive to the Feature Masking parameter, which may be due to the fact that masking
more features makes it difficult for the model to obtain feature information in the original
data.

Parameter combination sensitivity analysis: When the probability of Edge Removing
and Feature Masking parameters increase simultaneously, the classification accuracy gener-
ally shows a decreasing trend. This indicates that the model is more sensitive under the
simultaneous action of these two parameters, probably because the topology and node
features of the graph are damaged at the same time, making it difficult for the model
to capture the effective information in the original data. In practical applications, it is
necessary to find a balance between these two parameters, so that the model can both learn
the information from the original data and have a better generalization ability.

5. Conclusions

In this paper, the graph contrastive learning algorithm relies heavily on negative
samples to ensure the effectiveness of the model, and the training algorithm requires a lot
of arithmetic power. In order to solve the problem that the experimental results rely to a
certain extent on the generation method of negative samples, as well as the problem of
sample bias in node embedding caused by the data augmentation, the algorithm of this
paper utilizes the way of matrix sketching in the implicit space for feature augmentation as
well as using the objective function, which does not require negative samples and compares
the algorithms on the vector level. The objective function that does not require negative
samples and compares at the vector level is used in four real network datasets to compare
node classification experiments with 10 other baseline algorithms, and the Micro-F1 values
are used to evaluate the effectiveness of the algorithms. The final experimental results prove

Figure 9. Influence of different hyperparameters on node classification performance.

Edge Removing parameter sensitivity analysis: as the Edge Removing parameter
probability increases, we can observe the fluctuation of the classification accuracy under
different Feature Masking parameters. At low Feature Masking parameter probabilities
(e.g., 0.1–0.3), an increase in the Edge Removing parameter probability leads to a decrease in
classification accuracy. This indicates that the model is more sensitive to the Edge Removing
parameter, which may be due to the fact that removing more edges destroys the topology
of the graph, making it difficult for the model to capture the structural information in the
original data.

Sensitivity analysis of the Feature Masking parameter: with the increase in the prob-
ability of the Feature Masking parameter, we can observe the change of classification
accuracy under different Edge Removing parameters. At low Edge Removing parameter
probabilities (e.g., 0.1–0.3), an increase in the probability of the Feature Masking parameter
leads to a decrease in classification accuracy. This indicates that the model is also more sen-
sitive to the Feature Masking parameter, which may be due to the fact that masking more
features makes it difficult for the model to obtain feature information in the original data.

Parameter combination sensitivity analysis: When the probability of Edge Removing
and Feature Masking parameters increase simultaneously, the classification accuracy gener-
ally shows a decreasing trend. This indicates that the model is more sensitive under the
simultaneous action of these two parameters, probably because the topology and node
features of the graph are damaged at the same time, making it difficult for the model
to capture the effective information in the original data. In practical applications, it is
necessary to find a balance between these two parameters, so that the model can both learn
the information from the original data and have a better generalization ability.

5. Conclusions

In this paper, the graph contrastive learning algorithm relies heavily on negative
samples to ensure the effectiveness of the model, and the training algorithm requires a lot
of arithmetic power. In order to solve the problem that the experimental results rely to a
certain extent on the generation method of negative samples, as well as the problem of
sample bias in node embedding caused by the data augmentation, the algorithm of this
paper utilizes the way of matrix sketching in the implicit space for feature augmentation as
well as using the objective function, which does not require negative samples and compares



Mathematics 2024, 12, 1581 16 of 16

the algorithms on the vector level. The objective function that does not require negative
samples and compares at the vector level is used in four real network datasets to compare
node classification experiments with 10 other baseline algorithms, and the Micro-F1 values
are used to evaluate the effectiveness of the algorithms. The final experimental results prove
that the algorithm in this paper generates higher-quality node embedding representations
and achieves better results.

Author Contributions: Conceptualization, D.C.; Formal analysis, M.N., H.C. and D.W.; Funding
acquisition, D.C. and D.W.; Methodology, D.C., M.N. and Z.W.; Project administration, D.C. and
D.W.; Software, Z.W.; Supervision, D.C.; Visualization, M.N., Z.W. and H.C.; Writing—original draft,
Z.W.; Writing—review and editing, D.C., M.N. and H.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by the Applied Basic Research Project of Liaoning Province
under Grant 2023JH2/101300185, in part by the Key Technologies Research and Development Pro-
gram of Liaoning Province in China under Grant 2021JH1/10400079, and in part by the Natural
Science Foundation of Liaoning Provincial Department of Science and Technology under Grant No.
2022-KF-11-04.

Data Availability Statement: Dataset available on request from the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zhang, Y.; Zhu, H.; Song, Z.; Koniusz, P.; King, I. COSTA: Covariance-preserving feature augmentation for graph contrastive

learning. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC,
USA, 14–18 August 2022; pp. 2524–2534.

2. Bielak, P.; Kajdanowicz, T.; Chawla, N.V. Graph barlow twins: A self-supervised representation learning framework for graphs.
Knowl.-Based Syst. 2022, 256, 109631. [CrossRef]

3. Hu, W.; Liu, B.; Gomes, J.; Zitnik, M.; Liang, P.; Pande, V.; Leskovec, J. Strategies for pre-training graph neural networks. arXiv
2019, arXiv:1905.12265.

4. Zhu, Y.; Xu, Y.; Yu, F.; Liu, Q.; Wu, S.; Wang, L. Deep graph contrastive representation learning. arXiv 2020, arXiv:2006.04131.
5. You, Y.; Chen, T.; Sui, Y.; Chen, T.; Wang, Z.; Shen, Y. Graph contrastive learning with augmentations. Adv. Neural Inf. Process.

Syst. 2020, 33, 5812–5823.
6. Ren, Y.; Liu, B.; Huang, C.; Dai, P.; Bo, L.; Zhang, J. Heterogeneous deep graph infomax. arXiv 2019, arXiv:1911.08538.
7. Zeng, J.; Xie, P. Contrastive self-supervised learning for graph classification. Proc. AAAI Conf. Artif. Intell. 2021, 35, 10824–10832.

[CrossRef]
8. Qiu, J.; Chen, Q.; Dong, Y.; Zhang, J.; Yang, H.; Ding, M.; Wang, K.; Tang, J. Gcc: Graph contrastive coding for graph neural

network pre-training. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, Virtual, 23–27 August 2020; pp. 1150–1160.

9. Jiao, Y.; Xiong, Y.; Zhang, J.; Zhang, Y.; Zhang, T.; Zhu, Y. Sub-graph contrast for scalable self-supervised graph representation
learning. In Proceedings of the 2020 IEEE International Conference on Data Mining (ICDM), Sorrento, Italy, 17–20 November
2020; pp. 222–231.

10. Zhang, M.; Hu, L.; Shi, C.; Wang, X. Adversarial label-flipping attack and defense for graph neural networks. In Proceedings of
the 2020 IEEE International Conference on Data Mining (ICDM), Sorrento, Italy, 17–20 November 2020; pp. 791–800.

11. Liberty, E. Simple and deterministic matrix sketching. In Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; pp. 581–588.

12. Rozemberczki, B.; Kiss, O.; Sarkar, R. Karate Club: An API oriented open-source python framework for unsupervised learning on
graphs. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Virtual, 19–23
October 2020; pp. 3125–3132.

13. Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying graph convolutional networks. In Proceedings of the
International Conference on Machine Learning. PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6861–6871.

14. Kipf, T.N.; Welling, M. Variational graph auto-encoders. arXiv 2016, arXiv:1611.07308.
15. Veličković, P.; Fedus, W.; Hamilton, W.L.; Liò, P.; Bengio, Y.; Hjelm, R.D. Deep graph infomax. arXiv 2018, arXiv:1809.10341.
16. Zhu, Y.; Xu, Y.; Yu, F.; Liu, Q.; Wu, S.; Wang, L. Graph contrastive learning with adaptive augmentation. In Proceedings of the

Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 2069–2080.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.knosys.2022.109631
http://dx.doi.org/10.1609/aaai.v35i12.17293

	Introduction
	Related Work
	Feature-Based Augmentation
	Structure-Based Augmentations
	Sampling-Based Augmentation
	Evaluation Indicators

	A Graph Contrastive Learning Algorithm without Negative Samples
	Definition of Symbols
	Algorithm Design and Implementation
	Graph Data Augmentation
	Graph Encoder
	Projection Head
	Loss Function


	 Experimentation and Analysis
	Experimental Dataset
	Experimental Environment
	 Evaluation Metrics
	Experimental Setup
	 Experimental Results and Analysis
	Node Classification Task
	Ablation Experiments
	Parameter Sensitivity Analysis


	Conclusions
	References

