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Abstract: A technique for the reduction in the CPU-time in the analysis of electromagnetic problems
using the Characteristic Basis Function Method (CBFM) is presented here, allowing for analysis of
electrically large cases where an iterative solution process cannot be avoided. This technique is based
on the use of the Adaptive Cross Approximation (ACA) for the fast computation of the coupling
matrix between CBFs belonging to adjacent blocks, as well as the Multilevel Fast Multipole Method
(MLFMM) for the computation of matrix−vector products in the solution of the full system. This
combination allows for a noticeable reduction in the computational resources during the analysis of
electrically large and complex scenarios while maintaining a very good degree of accuracy. A number
of test cases serve to validate the presented approach in terms of accuracy, memory and CPU-time
compared with conventional techniques.

Keywords: computational electromagnetics; numerical methods; full-wave analysis; moment methods;
macro basis functions
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1. Introduction

It is widely acknowledged that, while the Method of Moments (MoM) [1] is commonly
employed as a boundary element reference technique for the analysis of scattering or radia-
tion problems, its application in real world cases is hindered by very high computational
requirements posed by the size and density of the impedance matrix. Over the years, vari-
ous improvements have emerged to mitigate these restrictions through following different
strategies. Notable among these is the Fast Multipole Method (FMM) [2], or its multilevel
implementation (MLFMM) [3,4], which facilitates fast matrix−vector product calculations
during the iterative solution process and notably reduces memory requirements by storing
only the near-field coupling terms. Nonetheless, it is important to note that certain practical
challenges may persist, presenting difficult convergences due to either the scale of the
problem at hand or the intricate geometric characteristics involved. The MLFMM can be
combined with additional approaches that allow for extending its applicability to larger
or more complex scenarios. The use of spherical harmonics can noticeably reduce [5] the
memory requirements for the storage of the Fourier Transforms of the basis functions
required by the MLFMM, maintaining the CPU-time of the iterative process. The efficiency
of FFT computations is combined with MLFMM in [6], allowing for the analysis of large
problems with mixed memory systems.

The interest in the use of techniques dealing with Macro Basis Functions (MBFs) [7–17]
has increased sharply during the last decade, based on the computational advantages
of reducing the effective numerical size of the problems under analysis. This family of
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methods requires the computation of a new set of basis functions defined on a number of
blocks in which the scenario has been previously partitioned. The new high-level basis
functions on a given block can be obtained by considering the set of currents induced by
the external sources (primary CBFs) and those induced by the rest of the blocks, (secondary
CBFs) [8] or by a number of sources artificially placed around each isolated block [9], in
which case the redundancy of the information contained in those current vectors is usually
minimized by performing the Singular Value Decomposition (SVD) and truncating the number
of singular vectors retained as the new base after setting a threshold on the magnitude of the
singular values. Each of those singular vectors is then identified as a Macro Basis Function
on that block. In [10], the authors describe an approach for the acceleration of the generation
of the MBFs by considering only near-field coupling terms for each isolated block, taking
advantage of the fact that the MBFs can be very effective even when the corresponding current
distributions used for their computation are not very accurate.

The Characteristic Basis Function Method (CBFM) makes use of MBFs called Charac-
teristic Basis Functions (CBFs), which are defined over blocks with typical sizes of one or a
few wavelengths. It is important to highlight, in the context of the work presented here,
that the CBFM can be effectively combined with MLFMM [10]. Existing works make use
of a preliminary ray-tracing analysis of the scenario to further reduce the size of the prob-
lem [11,12]. The CBFM requires a preprocessing stage for the generation of the CBFs and
the matrix that contains the coupling terms between CBFs, often called a reduced matrix.
The CBFs can then be reused when some blocks are replicated in the scenario, which can
reduce processing time [13]. A variation in the CBFM for the analysis of complex radome
antennas is described in [14], defining two domains containing currents that are updated
iteratively. The calculation of the reduced matrix can pose an important computational
bottleneck for MLFMM-CBFM when considering large blocks, since it is necessary to obtain
all the low-level impedance terms inside each block as well as between neighboring blocks.
In [15], the CBFs are used as a sparse base over which a Compressive Sensing approach is
used to analyze the bistatic RCS of 3D targets. The work described in [16] makes use of
CBFs in order to improve the alternating GMRES-Jacobi (AGJ) iterative solver, where the
reduced system is built based on the previous iterations. The authors of [17] have presented
a fast technique for the computation of the CBFs, making use of a Sparse Approximate In-
verse (SAI) matrix used as a direct operator to obtain an estimation of the currents induced
by a large number of plane wave sources on each block. A technique for the analysis of
scattering by dielectric objects based on the Poggio–Miller–Chang–Harrington–Wu–Tsai
(PMCHWT) formulation is shown in [18], where the bases for electric and magnetic currents
are orthogonalized via the SVD and applied as dual basis functions, with a Krylov-Calderón
preconditioner also being used for better convergence. In turn, ref. [19] shows a method
making use of piecewise sinusoidal (PS) basis functions for the approximation of surface
currents, making use of CBFs and a new generation strategy, setting a number of auxiliary
sources on the cubical surface bounding the entire target.

It is worthwhile to mention an additional type of fast technique based on the com-
pression of the right-hand side vectors [20,21] or parts of the coupling matrix by taking
advantage of their low-rank approximation. This is especially well suited when the an-
alytical representation of the Green’s Function is not available, and the application of
multipole expansions can be difficult because of its dependence on an explicit form of the
Green’s Function kernel. The Dual-MGS method [22] or the Adaptive Cross Approximation
(ACA) [23] provide approximate QR decompositions without having to compute and store
all the coefficients of the original matrices. A fast evaluation of the Frobenius norm as
the convergence criterion for the ACA based on a stochastic approach is described in [24].
A multilevel subdivision approach for the analysis of dielectric objects is applied in [25],
making use of the Multiscale Adaptive Cross Approximation (MS-ACA) for an efficient
filling of parts of the impedance matrix. An additional work regarding the generation of
multilevel MBFs is described in [26], featuring a recursive decomposition of the impedance
matrix and its compression by means of a fast Adaptive Cross Approximation algorithm.
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A weighted-average ACA is proposed in [27] to mitigate the loss of error control in cases
where the matrix alternates between zero and non-zero sub-blocks. A kernel independent
Nested Cross Approximation (NCA) approach is presented in [28] for the solution of large
Volume Integral Equations (VIEs) with controlled accuracy. A fast parallel direct solver based
on the ACA is described in [29] where the off-diagonal blocks are compressed after performing
an LU decomposition. A combination of ACA and a Domain Decomposition Method (DDM)
is shown in [30] in order to address layered media scattering problems efficiently.

The main contribution of this work is the development of a numerical scheme that
makes use of the ACA for the generation of the near-field reduced matrix, compressing the
off-diagonal blocks and making use of CBFs, combined with MLFMM for the computation
of the final current distribution. Our primary goal is to use moderately large block sizes for
a better reduction in the number of unknowns while avoiding the computational penalty
in terms of CPU-time suffered by conventional methods. Section 2 of this paper lays out
the specific MLFMM-CBFM framework considered in this work and describes in detail
the reduced matrix filling using ACA. Section 3 presents some representative results, and,
finally, Section 4 contains the conclusions derived from this work.

2. Materials and Methods
2.1. CBF Generation and Block Size Considerations

The CBFM performs a substitution of basis functions with MBFs over the blocks,
allowing for a reduction in the number of unknowns without loss of accuracy. This
reduction results in an improvement in computational resources both in terms of memory
and CPU-time. This reduction is closely related to the size of the blocks: the larger the
size, the greater the reduction in the number of unknowns. To obtain this improvement,
it is necessary to include a preprocessing stage for the construction of the CBFs and the
reduced matrix. This additional CPU-time becomes greater as the block size increases. The
block size is generally chosen to be around λ, as it provides a considerable reduction in
the number of unknowns without rendering the technique inefficient. Figure 1a shows the
reduction in the number of unknowns when increasing the block size for a Perfect Electric
Conductor (PEC) sphere with a radius of 1 m, while the variation in the preprocessing time
needed for each block size is depicted in Figure 1b.
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Figure 1. Results obtained for different block sizes regarding (a) the number of unknowns and (b) the
CPU-Time required for the computation of the reduced matrix.

With these considerations, the benefit of seeking improvements that allow for enlarging
the block size while easing the CPU-time penalty seems clear, and it is the goal of the approach
proposed in this paper. The CBFM is especially efficient when the preprocessing time is com-
pensated by the faster iteration time in the solution process, making it especially well suited
for the analysis of problems with multiple right hand sides, as is the case with monostatic RCS.
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Note that there are some published works that deal with the reduction in the CBF generation
time [12] or that of the reduced matrix. The authors have developed in [31] a technique in
which MLFMM-MoM is used inside each block for the acceleration of the reduced matrix
computation, avoiding the need to obtain the full low-level coupling matrix.

2.2. Generation of the Reduced Matrix Using ACA and Solution via MLFMM-CBFM

The CBFM relies on the definition of a number of high-level basis functions (CBFs)
which can be expressed as weighted aggregations of low-level (conventional) basis functions:

Ji
k(s) = ∑Nk

n=1 αi,k(n)Bn(s) (1)

where Ji
k(s) refers to the i-th CBF on the k-th block, Nk is the number of low-level basis

functions contained in that block, Bn(s) denotes the n-th basis function on the block, and
αi,k(n) is the weight of the n-th low-level basis function for that CBF. Using this expansion,
the reduced coupling term between the i-th CBF contained in the m-th block and the j-th
CBF contained in the k-th block can be computed using the low-level coupling terms
as follows:

Z(R)
i,j =

〈
L
(

Jj
k(s)

)
, Wi

m(s)
〉
= ∑Nk

n=1 ∑Nm
p=1 αj,k(n)α

∗
i,m(p)Zn,p (2)

where the superscript (R) indicates that the term is related to the reduced matrix and not
to the conventional coupling matrix. Wi

m(s) represents the testing CBF, which can be
analogously expanded as a set of weighted low-level testing functions, as shown in (1).
If we consider the submatrix containing all the coupling terms between the source CBFs
on the k-th block and the testing CBFs on the m-th block, it is possible to express it more
compactly as: [

Z(R)
m,k

]
= [Am]H[Zm,k][Ak] (3)

where, as mentioned above,
[
Z(R)

m,k

]
is the sub-matrix containing all the coupling terms

between both blocks, [Zm,k] is the corresponding low-level coupling submatrix, and each
column of [Ak] contains the weights of all the low-level basis functions used to represent
each CBF on the k-th block, arranged as columns, as follows:

[Ak] =

 α1,k(1) . . . αMk,k(1)
...

. . .
...

α1,k(Nk) . . . αMk,k(Nk)

, (4)

taking into account that Mk stands for the number of CBFs in the block.
Considering how the reduced matrix can be obtained by source-testing block pairs

using (3), it becomes apparent that, as previously mentioned, one important computational
drawback from the use of large blocks is that we need to compute and store [Zm,k] in
advance. Note that, since the MLFMM is combined with CBFM, the reduced matrix does
not need to be complete, and the far-field interactions between CBFs will be considered
in the iterative solution process by means of efficient matrix−vector products involving
aggregation, translation and disaggregation stages [4]. It is, therefore, only necessary to
compute the coupling terms between CBFs located in the same and neighboring blocks.
Since the CBF generation involves isolating each block and obtaining the currents due to
a number of conveniently arranged sources, the reduced submatrix of each block can be
stored at that stage. For the off-diagonal submatrices, we propose making use of the ACA
factorization in order to obtain the following approximation:[∼

Zm,k

]
Nm×Nk

=
[
Qm,k

]
Nm×r[Rm,k]r×Nk

(5)
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where r is much smaller than either Nm or Nk, and the application of this factorization does
not need to have the full original matrix stored or to compute all its coefficients.

The ACA is exclusively based on algebraic manipulations [23] and does not depend
on the kernel of the integral equation (unlike MLFMM). It allows for the generation of
rows and columns of the original matrix on the fly to build the Q and R factors, making
use of a tolerance parameter ε that allows for controlling the degree of accuracy of this
compression process:

∥∥∥[Rm,k]Nm×Nk

∥∥∥ =

∥∥∥∥∥[Zm,k]Nm×Nk
−

[∼
Zm,k

]
Nm×Nk

∥∥∥∥∥ ≤ ε
∥∥∥[Zm,k]Nm×Nk

∥∥∥ (6)

where [Rm,k] is the error matrix, and ∥·∥ represents the Frobenius norm. Substituting (5) in
(3) results: [

∼
Z
(R)

m,k

]
= [Am]H

[
Qm,k

]
[Rm,k][Ak] (7)

which, due to the size of these matrices, can be calculated much faster than directly ap-
plying (3). Note that, since we are considering a compression based on a reduced rank
approximation of the original submatrices, we are not including diagonal submatrices in
the ACA factorization process, although, as previously mentioned, the full submatrix is
available after the CBF generation stage.

The reduced matrix can be obtained as discussed above and stored in compact form.
The non-neighboring coupling terms between CBFs do not require storage and are taken
into account by means of their corresponding multipole expansions with MLFMM-CBFM.
More specifically, the coupling term between CBFs m and n when both are located in the
non-neighboring blocks b1 and b2, respectively, is given by:

Zm,n = −j
ωµ

4π

{ ∼
J

m

b1

∗(
k̂
)
·TL

(
k̂·rm′n′

)(
I − k̂k̂

)
·
∼
J

n

b2

(
k̂
)

dk2 (8)

where
∼
J

n

b2

(
k̂
)

contains the contribution of the CBF m at the center of its block, denoted as
rn’ , on the directions of the Ewald sphere, which can be computed as follows:

∼
J

n

b2

(
k̂
)
=

∫
S Jn

b2(r)e
jk(r−rn’ )dS =

∑p αn,b2(p)
∫
S

Bp(r)ejk(r−rn’ )dS
(9)

and the translation operator is given by:

TL

(
k̂·r

)
= ∑L

l=0 (−j)l(2l + 1)h(2)
l (kr)Pl

(
k̂·r

)
, (10)

where h(2)
l is a spherical Hankel function of the second kind and Pl is a Legendre polynomial

of degree l.
The approach described in this section aims to improve the efficiency of existing

MBF-based techniques by making use of a low-rank compression of the coupling matrix
for each block in order to speed up the computation of the reduced matrix by means of
the ACA method, and the subsequent acceleration of the matrix-vector products during
the iterative solution process by applying the MLFMM, reducing at the same time the
memory requirements, since it is only necessary to store the near-field part of the reduced
matrix. Note that, even though ACA is notably faster than the full SVD, it offers a less
accurate approximation of the original matrix for the same error threshold. It is worthwhile
to mention that it is possible to combine both approaches as seen in [32], where ACA
is used as a preliminary stage using a safe threshold value (about ten times lower than
the desired one), and the result is post-compressed using the SVD with the final error
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threshold. This approach could also be used in the generation of the CBFs, compressing
the matrices containing the currents induced by the external excitations around each block
before applying the SVD to obtain the final CBFs.

3. Results

This section includes test cases selected in order to show the accuracy and efficiency
of the previously described approach.

The first example consists of the monostatic RCS computation of a 32λ dihedral
structure, taking into account an angular sweep for ϕ = 0◦ and θ ranging from 0◦ to 45◦ in
0.5◦ steps. The total number of unknowns using MoM has been 413,770, and this number
has been brought down to 36,158 when applying CBFM. Figure 2 compares the results
obtained using MLFMM-MoM, conventional MLFMM-CBFM and MLFMM-CBFM using
the proposed approach to obtain the reduced matrix via ACA compression.
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Good agreement can be observed between the three simulations. Table 1 shows the
comparison of the CPU-time required for the computation of the reduced matrix and its
influence on the total CPU-time, as well as the peak memory requirements.

Table 1. Comparison of computational resources for the first test case (Block size: 2λ).

MLFMM-CBFM
Conventional

MLFMM-CBFM
Proposed Technique

Reduced Matrix CPU-time 5998 s 3983 s
Total CPU-Time 22,320 s 20,296 s

Memory Requirements 9.05 GB 5.73 GB

The CPU-time required for the simulation using MLFMM-MoM has been 42,720 s,
where most of the time has been used in the system solution (42,546 s), since the prepro-
cessing time has been only 174 s.

The next test case considered has been the monostatic RCS of the geometry shown in
Figure 3 at a frequency of 25 GHz. This geometry has a size of 0.1 m × 0.02 m × 0.06 m.

An angular observation cut on the θ = 90◦ plane has been considered in this analysis,
with 181 samples in ϕ from ϕ = 0◦ to ϕ = 90◦. The predicted RCS is compared between the
conventional MLFMM-CBFM, the presented approach and a variation where the reduced
matrix has been computed using MLFMM-MoM instead of ACA (as seen in Figure 4). In
the latter case, we have made use of a previously developed approach, presented in [31], in
which the acceleration in the computation of (3) is based on the use of multipole expansions
and the corresponding aggregation, translation and disaggregation stages.
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Aside from the good agreement shown in these results, it is necessary to compare the
computational requirements of these simulations. Regarding the solution stage, MLFMM-
MoM has required 5792 s, and the total number of unknowns has been 69,655. With respect
to MLFMM-CBFM, we have considered two different block sizes: 2λ and 4λ. Tables 2 and 3
show the CPU-time and memory results for both configurations.

Table 2. Comparison of computational resources for the second test case (Block size: 2λ).

MLFMM-CBFM
(Rigorous)

MLFMM-CBFM
(MLFMM)

MLFMM-CBFM
(ACA)

Reduced Matrix CPU-time 1898 s 1023 s 798 s
Total CPU-Time 3285 s 2485 s 2127 s

Memory Requirements 2.07 GB 1.48 GB 1.28 GB

Table 3. Comparison of computational resources for the second test case (Block size: 4λ).

MLFMM-CBFM
(Rigorous)

MLFMM-CBFM
(MLFMM)

MLFMM-CBFM
(ACA)

Reduced Matrix CPU-time 3742 s 1823 s 1242 s
Total CPU-Time 4231 s 2301 s 1839 s

Memory Requirements 8.12 GB 3.02 GB 2.67 GB

The first conclusion that can be derived from the comparison between MLFMM-CBFM
and MLFMM-MoM is that the total CPU-time is lower when using CBFM for both config-
urations. MLFMM-MoM uses most of the simulation time for the system solution, while
MLFMM-CBFM balances the total time between the preprocessing and solution stages.

In addition, it can be observed that the proposed approach requires less CPU-time to
compute the reduced matrix than the rest. Note that this specific case contains parts where
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different surfaces are close to each other, which entails more near-field coupling terms, and
the use of ACA benefits greatly from not having to assemble the full near-field coupling
submatrices. There are also many adjacent blocks around the central part of the target,
where using the proposed approach contributes to the reduction in the CPU-time.

There is, in turn, a reduction in the memory requirements for the computation of the
reduced matrix. As mentioned in the previous section, the coupling submatrix between
off-diagonal blocks is not required to be stored with the presented approach, and it is
substituted by its factors Q and R with smaller sizes.

As the block size increases, the reduced matrix filling time using the conventional
approach increments significantly due to the need to obtain all the coupling coefficients of
the submatrices involved. The proposed approach based on ACA compression presents
a much smoother behavior with the block size. When using MLFMM instead of ACA
to obtain the reduced matrix, as the block size increases, it is necessary to consider new
MLFMM levels to compute the couplings, resulting in additional CPU-time, although it
presents a weaker dependence in regard to the block size than the conventional technique.

The last test case considered for the validation of the method described in this work is
the monostatic RCS of the aircraft shown in Figure 5 at a frequency of 150 Mhz. The set of
observation directions is given by θ = 90◦ and ϕ ranges from 90◦ to 270◦ in 0.5◦ steps. The
number of unknowns using MLFMM-MoM has been 107,770 and reduced to 9398 using
MLFMM-CBFM.
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Figure 5. Aircraft geometry.

Figure 6 shows a good agreement between the results returned by the proposed approach,
MLFMM-MoM and the conventional MLFMM-CBFM. The CPU-time required for the full
simulation using MLFMM-MoM has been 6456 s. The conventional MLFMM-CBFM analysis
has taken 4382 s, and the presented approach has required a CPU-time of 3252 s.
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4. Discussion

This paper presents a new technique based on the CBFM where the computation of the
reduced matrix is accelerated by introducing an ACA-based approach for the compression
of the off-diagonal near-field coupling submatrices. This method is then combined with
MLFMM for the analysis of the full problem. Several test cases have validated the improved
efficiency achieved by this approach compared to the conventional MLFMM-CBFM while
maintaining a good degree of accuracy. The contribution introduced by this approach
allows for increasing the block size, for a more pronounced reduction in the total number of
unknowns, while reducing the computational penalty of the preprocessing CPU-time that
arises with other conventional techniques. We have seen that using ACA for the block-wise
computation of the reduced matrix is in general faster than using MLFMM, and it is also
more efficient in regard to the memory required. Additionally, as expected, the number
of CBFs decreased drastically as we increased the block size in all the cases analyzed. We
believe that this improvement can be combined with future lines of work addressing, for
example, a faster generation of the CBFs by using a low-rank-based compression of the
matrix factorized by the SVD, with an efficient interpolation of the currents for dense
angular monostatic RCS analyses, or other approaches.
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