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Abstract: As global arid conditions worsen and groundwater resources diminish, drought stress
has emerged as a critical impediment to plant growth and development globally, notably causing
declines in crop yields and even the extinction of certain cultivated species. Numerous studies
on drought resistance have demonstrated that DNA methylation dynamically interacts with plant
responses to drought stress by modulating gene expression and developmental processes. However,
the precise mechanisms underlying these interactions remain elusive. This article consolidates the
latest research on the role of DNA methylation in plant responses to drought stress across various
species, focusing on methods of methylation detection, mechanisms of methylation pattern alteration
(including DNA de novo methylation, DNA maintenance methylation, and DNA demethylation),
and overall responses to drought conditions. While many studies have observed significant shifts in
genome-wide or gene promoter methylation levels in drought-stressed plants, the identification of
specific genes and pathways involved remains limited. This review aims to furnish a reference for
detailed research into plant responses to drought stress through epigenetic approaches, striving to
identify drought resistance genes regulated by DNA methylation, specific signaling pathways, and
their molecular mechanisms of action.

Keywords: plant; epigenetics; DNA methylation; drought stress; mechanism; research advances

1. Introduction

DNA structure in plants, like other organisms, consists of a double helix formed by
nucleotide sequences. These nucleotides contain the bases adenine, thymine, cytosine,
and guanine, which pair specifically (A with T and C with G) to form the genetic code.
Plant DNA encodes the instructions for building and maintaining the plant, including the
development of various traits and the regulation of metabolic processes [1]. Modifications of
DNA methylation affect gene activity, which in turn affects plant growth and development
and adaptation to adversity; throughout the process, these modifications regulate gene
activity without altering the DNA nucleotide sequence. Thus, epigenetics has become
a popular area of study in recent years. This allows genes to change their function and
expression, which can then be passed down to offspring in a stable manner in response to
environmental changes [2]. This preserves organisms’ normal growth and development and
enables them to adapt to stress brought on by unstable environmental factors. Epigenetic
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modifications include DNA methylation, histone modifications, chromatin remodeling, and
non-coding RNA (ncRNA) etc., which affect the structure and accessibility of chromatin,
thus dynamically regulating gene expression [1].

DNA methylation has become one of the most thoroughly investigated research
fields among categories of epigenetic modification, with the rapid advancement in high-
throughput sequencing technologies for genome DNA methylation. As a conserved epige-
netic modification, DNA methylation is a widespread covalent modification in biological
genomes, which can regulate the corresponding functions of genomes without changing
the primary structure of DNA molecules. It plays a vital role in gene regulation and genome
stability [3]. DNA methylation is a form of chemical modification of DNA, which occurs
by the transfer and covalent binding of methyl groups (CH3-) from S-adenosylmethionine
(SAM) to sites on the DNA sequence where methylation can occur, such as adenine N-6,
guanine G-7, and cytosine C-5 [4]. The process is catalyzed by various DNA methyltrans-
ferases (DNMT) after DNA replication. The DNA is further modified by DNA methylation
to form N6-methyl purine (N6-mA), 7-methyl guanine (7-mG), and 5-methyl cytosine
(5-mC) [5,6]. Among them, 5-mC occurs most frequently in eukaryotic organisms in the
methylation site enriched region and has a role in regulating the transcription of biological
genes [7]. It also allows organisms to respond to the environmental changes by maintain-
ing genome stability, regulating gene expression, and altering genetic phenotype without
altering DNA sequences.

The United Nations Intergovernmental Panel on Climate Change (IPCC) reports
that the average temperature will rise by 1.8–4.0 ◦C by 2100 and that many regions of
the world will face environmental change problems due to increased drought. Under
the circumstances of external water stress coupled with lower water tables, drought has
become a major threat to crop cultivation worldwide [8]. The impact of drought has been
exacerbated by climate change in recent years, as drought stress has led to stunted crop
growth, devastating effects on crops, and severe yield losses [9]. Drought is a significant
contributor to agricultural production loss, particularly affecting least developed countries
(LDCs) and low to middle income countries (LMICs). It has been identified that over
34% of crop and livestock production losses in these regions are attributed to drought,
resulting in an economic impact estimated at approximately USD 37 billion. Notably, the
agricultural sector bears the brunt of drought impacts, accounting for 82% of all such
impacts. This underscores the profound effect of drought on food production and economic
stability (FAO: http://www.fao.org/ (accessed on 7 April 2024). In recent years, DNA
methylation has often been found in plants in response to biotic and abiotic stresses. For
example, in biotic stress, the total DNA methylation level of rice was decreased in response
to bacterial infection [10]; in abiotic stress, there was an increased genome-wide level of
methylation in rice under high salt stress [11]; under heat stress, different levels of heat
stress induced different levels of DNA methylation in Arabidopsis thaliana [12]; cold stress
caused rice’s demethylation of the promoter region of cold tolerance genes [13]; and UV
stress induced demethylation of the promoter region of key factors in Arabidopsis [14],
leading to differential DNA methylation. In response to different patterns of climate change,
drought stress caused an increase in the overall methylation level of linseed [15]. One study
of cotton (Gossypium hirsutum L.) was a two-year field trial to assess cotton yield and its
stability, linking DNA methylation patterns to plant development and yield under field
conditions [16]. Our goal in the current review is to examine research progress regarding
DNA methylation responses to drought stress to identify potential opportunities for the
improvement of crop breeding for drought resistance.

2. Characteristics of DNA Methylation Modifications

In 1925, 5-mC was first discovered in the hydrolysis product of tuberculinic acid from
the nucleic acid of the tubercle bacillus [17]. In subsequent studies, higher levels of DNA
methylation modifications of 5-mC were also found in plants [18].

http://www.fao.org/
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DNA methylation is based on the nature of the target gene and its function is reflected
in the regulation of gene expression, transposon silencing, chromosomal interactions, and
genetic characteristics [4].

DNA methylation is also crucial for maintaining genomic stability [19]. DNA methy-
lation in plants can maintain genomic stability by inhibiting transposon and exogenous
gene transcription to reduce genome disruptions such as translocation and recombination.
Recent studies have revealed that transposons show high methylation levels after ampli-
fication, which can indicate that transposons in a highly active state can be regulated by
DNA methylation and further act as a repressor.

DNA methylation modification of genes in general is often found to exhibit a negative
correlation with gene transcription [20,21], i.e., the higher the frequency and level of
DNA methylation, the lower the level of gene transcription, which in turn affects the
expression of the corresponding gene, this further increases the phenotypic differences
between organisms. This is the reason why the same organism with the same whole genome
sequence has different traits that are adapted to environmental changes [22]. This is in
contrast to the methylation that occurs on transposons, where CG methylation within the
gene region allows for moderate expression of the corresponding gene, mostly at different
tissue sites and does not silence the gene [23,24].

In most eukaryotes, the most frequent DNA methylation usually occurs in the cytosine
base, which contains CG, CHG, and CHH (H for A, T, or C, respectively) [20]. Among
these three types, the CG methylation level is significantly higher than the CHG or CHH
methylation types [25]. CG methylation can occur in the promoter region and part of
the pre-transcriptional region, as well as in the 3′ end and part of the post-transcriptional
region and may inhibit gene expression. There are two theories that explain this inhibi-
tion of expression. First, methylation that occurs in the promoter and enhancer regions
prevents the binding of transcription factors required for gene transcription, affecting gene
transcription and thereby inhibiting or even preventing gene expression; Second, cytosine
sites that have undergone methylation can attract proteins bound to them, causing histone
deacetylases and chromatin remodeling proteins to be attracted and chromatin to be com-
pressed. This structural change results in the inability to transcribe, thereby inhibiting gene
expression [21]. Although most DNA methylations occur in promotor regions and inhibit
gene transcription, such methylation also acts as a promoter in a small number of cases [3].

Compared with mammals, the proportion of 5-mC in plant genomes is relatively high,
and the genome-wide cytosine methylation level varies from species to species, ranging
from 6 to 25% in different species [26]. For example, in the model plant Arabidopsis,
5% of cytosine is methylated [27]; in contrast, 24.3% of cytosine is methylated in young
spikes of wild and cultivated rice, and in wheat it is over 20%. This significant difference
is caused by the enrichment of repetitive sequences. The level of cytosine methylation
also varies significantly in different regions of the same genome, and several studies have
demonstrated that cytosine methylation levels are tissue-, organ-, and developmental stage-
specific [20]. DNA methylation of transposable elements (TEs) is strikingly similar across
species and DNA repeat sequences, with 50% methylation differences between ecotypes [4].
Methylation polymorphisms were found to occur most frequently in the upstream or
downstream regions of genes after repressing the transcription of related genes, making
its level negatively correlated with gene expression levels. Although the effect is not
significant, studies on plants have mostly shown that DNA methylation also occurs in the
gene body. However, it has been discovered in a study of poplar that methylation in the
gene body significantly inhibits gene transcription more than methylation in the promoter
region [28].

The first genome-wide methylation map of plants was published in 2016 by Zhang
et al. [29] using the model plant Arabidopsis thaliana as a guide. The map’s findings revealed
that more than one-third of the expressed genes in the genome were methylated. There
is a significant difference in that only 5% of the genes are methylated in the promoter
region. Based on this genome-wide methylation map, it was found that Arabidopsis genes
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that were methylated in the gene region were expressed and could reach high expression
levels. Subsequently, Inagaki et al. [30] found that gene region methylation was higher
in transcribed regions than in non-transcribed regions; however, the mechanism of this
association is unclear. Graaf et al. [31] evaluated the mutation rate per CpG site per haploid
per generation in Arabidopsis and found that the forward mutation rate (i.e., methylation
gain rate) was about 2.56 × 10−4 and the reverse mutation rate (i.e., methylation loss rate)
was about 6.30 × 10−4 in Arabidopsis, and these methylation mutation rates are about five
times higher than the mutation rates found by Ossowski et al. [32].

3. Methylation Detection Methods

DNA methylation detection technologies are significant in epigenetics research, offer-
ing insights into gene regulation and its role in development, disease, and environmental
responses. These methods enable the identification of methylation patterns across the
genome, elucidating how epigenetic modifications influence gene expression and con-
tribute to biological diversity and complexity. Moreover, knowing the dynamics of DNA
methylation helps in exploring the developmental processes, environmental adaptability,
and evolutionary mechanisms of organisms to improve stress resistance and productivity
of crop plants [33]. Thus, the development and refinement of DNA methylation detection
technologies continues to be a cornerstone of epigenetic research, with broad implications
for biology and medicine. Therefore, by conducting a thorough search using PubMed and
Google Scholar, these methods were identified as techniques for detecting DNA methyla-
tion, each offering different advantages, such as coverage, resolution, and cost.

3.1. Methylation Sensitive Amplified Polymorphism (MSAP)

MSAP is based on the amplified fragment length polymorphism (AFLP) method [34].
Methylation-specific isoschizomer HpaII and MSPI with a restriction endonuclease and
genomic DNA, instead of AFLP functional enzymes and target bands, double digestion
in order to obtain DNA fragments of different sizes, then join the enzymatically cleaved
DNA fragments with the corresponding restriction endonuclease as a junction, then design
the primers according to the junction. Although both enzymes can recognize the same
site and have different methylation sensitivity, the amplified bands are different, based
on which the methylation level of gDNA can be detected. Due to the high methylation
specificity stemming from the coordinated activity of two methyltransferase enzymes,
gDNA methylation levels can be further refined to distinguish between holo- and hemi-
methylation states [35]. This assay is mostly used in early DNA methylation studies.

3.2. High Performance Liquid Chromatography (HPLC)

HPLC is divided into normal-phase HPLC and reversed-phase HPLC, which, in the
study of calf thymus and salmon sperm, Kuo et al. [36] first detected DNA methylation
using reversed-phase HPLC (RP-HPLC) [37], suggesting that HPLC can be a reliable
method for detecting gDNA methylation levels. The DNA methylation peaks were obtained
by RP-HPLC using the products of hydrolysis by specific deoxyribonucleases, nucleases,
and bacterial alkaline phosphatases, and the DNA methylation levels were detected by
further calculating the 5-mC content of gDNA and its ratio to cytosine. On this basis, the
deformed HPLC was linked with PCR to form the DHPLC-PCR method system by Baumer,
and this method makes DNA methylation detection more convenient and efficient [38].
As the research progressed, it was updated to high performance liquid chromatography-
mass spectrometry (HPLC-MS) [39], which further improved the method technique for
5-mC detection.

3.3. Methylated DNA Immunoprecipitation-Sequencing (MeDIP-Seq)

MeDIP is a technique that uses monoclonal antibodies or DNA methylation-binding
proteins that bind specifically to methylation sites to quantitatively capture enriched methy-
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lated DNA against 5-mC in the sample [40]. Highly methylated regions of gDNA can be
identified, but not at the level of single base methylation.

3.4. Amplified Fragment Single Nucleotide Polymorphism and Methylation (AFSM)

The AFSM test employs restriction endonucleases with varying sensitivity to methy-
lation to double cleave the genome and produce DNA fragments of various sizes for the
effective detection of DNA methylation [41]. This assay is based on the lower cost and
higher accuracy of second-generation sequencing technology [42,43]. AFSM is currently the
only method in the world that can simultaneously detect single-nucleotide polymorphisms
(SNPs) by high-throughput, insertion and deletion (inDels), and methylation sites in the
whole genome with high throughput.

3.5. Methylation Sensitive Restriction Endonuclease (MSREs)

MSREs are a class of restriction endonucleases that are methylation-sensitive at the
recognition site [44]. The fragment is obtained by cleaving the CpG sequence using its
isozyme, which is insensitive to methylation, and then analyzed by Southern Blot. The
MSREs method is a method that combines the sensitivity of methylation and the specificity
of restriction enzymes to identify the methylation status of CpG sequences. It is convenient
because it does not require detailed information about the sequence of the entire gDNA
and the primary structure of DNA, but its application is more restricted because it needs
a great deal of DNA with a high relative molecular mass and can only detect methylated
alleles with a high copy number ratio.

3.6. Bisulfite Sequencing PCR (BSP)

BSP was first proposed by Frommer et al. [45] to be applied to 5-mC detection, where
gDNA was first treated with hydrosulfite to react unmethylated cytosine C into uridine
U [46]. The PCR reaction was carried out by specific primers to convert uridine U to thymine
A, which was combined with high-throughput sequencing technology to distinguish 5-mC
from other bases. In a subsequent study by Bianchessi et al. [47] to detect methylation in
the mitochondrial DNA, non-coding region of endothelial cells, it was found that 5-mC
was not randomly scattered but aggregated within the DNA coding region. Many other
studies have shown that the BSP is still the most often used assay because it is accurate and
dependable and can identify the methylation status of individual CpG sites despite the
BSP’s limitations in detecting DNA methylation, such as the high cost and complexity of
the method [48].

3.7. High-Performance Capillary Electrophoresis (HPCE)

It is a kind of product separation using the principle that narrow pore fused silica
capillaries [49]. It can separate different chemical components from the complex to achieve
quantitative detection of modified DNA by using the different charge properties, structure
size, and chemical properties of DNA hydrolysis products in the background of the strong
electric field. The main drawbacks of using HPCE for DNA methylation detection are
high costs, complex sample preparation, technical demands, and dependency on chemical
modification stability, potentially affecting result accuracy.

3.8. TET Enzyme-Assisted Pyridineborane Sequencing (TAPS) and Enzymatic Methyl-Seq
(EM-Seq)

Both techniques use enzymatic and chemical reactions to complete sequencing to pre-
vent degradation by bisulfite stimulation of most DNA. TAPS uses TET1 oxidase to oxidize
5-mC and 5-hmC to 5-caC, which is chemically converted to DHU by the reducing agent
pyridine borane, which is then used as a template to be recognized by the corresponding
DNA polymerase for U base, producing a C to T conversion by PCR amplification prod-
ucts [50]. Similarly, EM-seq uses TET2 and oxidation enhancer to oxidize 5-mC and 5-hmC
to 5-caC, and then deaminates cytosine with APOBEC3A to deaminate the unmodified C
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to U, which is then recognized [51]. TAPS and EM-seq both offer precise DNA methylation
data but face challenges. TAPS is technically complex and costly, requiring specialized data
analysis. EM-seq is also expensive and technically demanding, which may restrict its use.
Cost and technical feasibility are key considerations for both methods.

3.9. Reduced Representation Bisulfite Sequencing (RRBS)

Reduced Representation Bisulfite Sequencing (RRBS) represents an economical ap-
proach for analyzing DNA methylation. This technique utilizes restriction enzymes, such
as MspI, to selectively digest the genome, thereby enriching for fragments from regions
with high CpG content [52]. Following size selection, these fragments are treated with
bisulfite, which converts unmethylated cytosines to uracil while preserving methylated
cytosines. The fragments are then sequenced using high-throughput methods to assess
methylation status. The primary advantages of RRBS are its cost-effectiveness and the
targeted analysis it provides of critical gene regulatory regions. However, the technique
does face challenges with coverage limitations and potential biases in fragment selection.
RRBS is particularly valuable for focused studies on methylation in CpG-rich areas, making
it indispensable for research into gene expression regulation.

3.10. Methylation Capture Sequencing (MCS)

Methylation Capture Sequencing is a sophisticated technique for DNA methylation
analysis that leverages the specific affinity of either Methylated DNA Immunoprecipitation
(MeDIP) or Methyl-CpG Binding Domain (MBD) proteins to selectively enrich methylated
DNA fragments [53,54]. Once enriched, these fragments are purified, amplified, and
organized into libraries that are optimized for sequencing. This method targets regions of
high methylation with enhanced sensitivity, offering a cost-effective alternative to whole-
genome sequencing. Despite its advantages, Methylation Capture Sequencing presents
certain limitations, including restricted coverage and data accuracy that depend critically
on the specificity and affinity of the utilized antibodies or proteins. Overall, this technique
is cost-efficient and versatile, proving especially effective for research projects focused on
specific methylation regions.

4. Mechanisms of Methylation Change Patterns
4.1. Mechanism of Methylation Action

DNA methylation is closely related to genome maintenance, parental imprint forma-
tion, and transcriptional regulation, and it is important to clarify the molecular mechanism
for further research. It is known that the dynamic changes of DNA methylation includes
three processes: de novo methylation, maintenance methylation, and demethylation.

4.1.1. De Novo Methylation

Although CG and CHG methylation can occur via de novo and maintenance methyla-
tion pathways, the asymmetric CHH methylation type exclusively relies on the de novo
methylation pathway. Following replication completion, unmethylated cytosine undergoes
methylation through the activity of the corresponding methyltransferase. De novo methy-
lation is mediated in plants by RNA, i.e., there is small interfering RNA (siRNA), scaffold
RNA, and the corresponding protein DNA methylation pathway [55]; the de novo methy-
lation can be divided into the classical RNA-directed DNA methylation (RdDM) pathway
(Figure 1) and the non-classical RdDM pathway. As shown in Figure 1, classical RdDM
is divided into two major steps. The first step is the synthesis of siRNA precursor RNA,
i.e., Pol IV-dependent RNA (P4RNA). The SAWADEE HOMEODOMAIN HOMOLOG 1
(SHH1) protein binds to the H3K9 histone modified by methylation of the lysine at the
ninth position of the tail through the Tudor-like fold structure of the SAWADEE structural
domain, and then recruits RNA polymerase Pol IV to the specific site to synthesize single
strand RNA (ssRNA) [56,57]. It was found that in Arabidopsis, this ssRNA, called P4RNA,
is a precursor of 24 nt siRNA. ssRNA is synthesized into double-stranded RNA (dsRNA) by
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RNA-dependent RNA polymerase 2 (RDR2) [56,57]. It is further cleaved by the cleavage-
like enzyme Dicer-like protein 3 (DCL3) into 24 nt siRNA [58,59], which requires the action
of RNA methyltransferase HUA ENHANCER 1 (HEN1) to prevent degradation by other
nucleases and maintain stability [60,61]. The mature 24 nt siRNA is loaded onto the effector
protein Argonaute 4 (AGO4), mainly AGO4, and degrades the new strand generated by
the action of RDR2 for pairing. The second step is transcription to produce scaffold RNA.
While the stable 24 nt siRNA is loaded onto AGO4, the scaffold RNA is transcribed from
the DNA damage repair (DDR) protein complex (DRD1/DMS3/RDM1), which interacts
with the suppressor of Variegation Homologous2/9 (SUVH2/9) protein to attract Pol V
to the specific site [62,63]. After complementary pairing of siRNA bases [64], it recruits
domain rearranged methylase 2 (DRM2) to complete the de novo methylation through
protein catalysis of multiple RdDM pathways. The main difference between non-classical
RdDM and classical RdDM is the small RNAs (sRNAs) that mediate methylation [65], i.e.,
sRNAs other than the 24-nt heterochromatic siRNA (hetsiRNA) can also mediate DNA
methylation to occur [65–69]. In addition, a few scaffold RNAs can also be obtained by Pol
II transcription [70]; AGOs other than AGO4 have also been partially found to mediate
DNA methylation [71,72].
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Figure 1. Classical RdDM pathway-mediated de novo methylation pattern. This figure illustrates the
key steps in the classical RNA-directed DNA methylation (RdDM) pathway for de novo methylation.
The process initiates with the recognition of target sites by the Pol IV complex associated with
H3K9me2, facilitated by SHH1. The activity of the Pol IV complex produces single-stranded RNA
(ssRNA) [56,57], which is then transcribed into double-stranded RNA (dsRNA) by RDR2. DCL3
processes the dsRNA to generate 24 nucleotide small interfering RNAs (24 nt siRNAs), which are
subsequently methylated by HEN1 to enhance stability [61]. The siRNA is then guided to the target
DNA sites in association with AGO4 [59]. With the assistance of RdDM pathway-related proteins,
Pol V synthesizes scaffold RNA at the target site [65]. This scaffold RNA binds to the siRNA-AGO4
complex, directing the DNA methyltransferase DRM2 to the correct location and catalyzing the
methylation process, culminating in de novo DNA methylation. The figure explicates the interactions
between the components of the RdDM pathway and their roles in targeted DNA methylation.

4.1.2. Maintenance of Methylation

Maintenance methylation is performed based on semi-conserved replication, i.e.,
when the parental chain originally contains a methylation site, the methylation modifica-
tion occurs on the new synthetic chain paired with it. By this semi-conserved replication,
maintenance methylation allows methylation to occur at two symmetric sites, CG and
CHG, but maintenance of methylation at CHH asymmetric sites can only occur by de novo
methylation [73]. Further, CG-type methylation is thought to be maintained by a simple
replication mechanism that allows methylation to occur [55], whereas CHG-type methy-
lation is more complex and requires maintenance of methylation through a combination
of H3K9-containing and SRA-containing proteins [55,74,75]. However, the two are not
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independent of each other; rather, they influence each other. For example, CG methyla-
tion can act to maintain CHG methylation, while the specific site of CHG methylation
can determine CG methylation [76]. The maintenance of DNA methylation in plants is
associated with cytosine sequences and is regulated by different mechanisms catalyzed by
DNA methylation transferases (Figure 2). One of the first homologous mammalian pro-
teins catalyzing CG site methylation in plants, methyltransferase 1 (MET1), was identified
(Figure 2A) [77]. Chromomethylase (CMT)-specific transferases that maintain CHG methy-
lation are endemic in plants [78]. Specifically, it was demonstrated that the chromethylase3
(CMT3) with or without the loss of SUVH4 influenced whether DNA methylation levels
were significantly lower or higher [79]. This suggests that CMT3 and SUVH4 are associated
with CHG methylation. The histone methyltransferase SUVH4 structural domain binds
to the hemimethylated site through its SRA structure, causing histone H3K9 in this site
region to undergo methylation to produce H3K9me2, thereby recruiting CMT3 to interact
with the specific site, causing CMT3 to bind to nucleosomes, and hemi methylation to
become fully methylated and maintain the original DNA methylation [62,80] (Figure 2B).
It has been shown that the active state of the chromatin remodeling factor decreased and
that methylation 1 (DDM1) is important for the maintenance of MET1 and CMT3, two
methylation transferases [81]. DRM2 and CMT2 maintain the methylation of asymmetric
CHH through different pathways, with DRM2 maintaining the methylation status of the
RdDM target region through the de novo methylation pathway (Figure 2C) [82] while
CMT2 catalyzes the methylation of CHH containing histone H1 and heterochromatin [80].
In addition, it has also been shown that MET1 and CMT3 are involved in the maintenance
of asymmetrically methylated CHH [63,83]. However, overall, the RdDM pathway plays a
crucial role in the maintenance of CHH methylation.
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Figure 2. Mode of action of DNA methylation transferases involved in maintaining methylation. This
figure depicts the various maintenance methylation pathways catalyzed by DNA methyltransferases.
(A) CG maintains methylation. MET1 is a key maintenance methyltransferase for CG methylation [77].
It identifies the methylated cytosine on the parental DNA strand following replication and propagates
the methylation pattern onto the daughter strand, ensuring consistent CG methylation across cell
divisions; (B) CHG maintains methylation. SUVH4, through its SRA domain, recognizes H3K9me2,
a marker of heterochromatin, and recruits CMT3 to methylate cytosine in the context of CHG.
This is facilitated by a feedback loop where CMT3-mediated CHG methylation promotes H3K9
methylation by H3K9 methyltransferases, which in turn maintains the binding of SUVH4 and the
recruitment of CMT3 [78]; (C) CHH maintains methylation. Two distinct pathways maintain CHH
methylation. Pathway 1 involves CMT2, which methylates cytosine in the context of CHH in histone
H1-containing heterochromatin regions, indicating a role beyond CHG methylation [81]. Pathway 2,
the RdDM pathway, involves DRM2, which is guided by small interfering RNAs to target specific
DNA sequences for CHH methylation, a process that is critical for silencing transposable elements
and regulating gene expression.
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4.1.3. Demethylation

DNA methylation can inhibit biological gene regulation, and there must be a mecha-
nism in the organism that dynamically balances with methylation to maintain a stable state.
This mechanism is demethylation. Demethylation refers to the change of reverting a site
originally modified with methylation to cytosine. It may be classified into two types based
on the mechanism: passive demethylation and active demethylation [84].

Passive Demethylation

Passive demethylation inhibits the maintenance of de novo methylation and sym-
metric site methylation [85]. After passive DNA demethylation acts on DNA replication,
when the DNA strand with methylation modification is replicated semi-conservatively,
the methylation-dependent DNA transferase activity decreases or the concentration does
not reach the required level, and the corresponding site where the methylation modifica-
tion occurs is still cytosine, resulting in the loss of methylation of the newly synthesized
strand [86]. The final level of DNA methylation in the organism is reduced [3]. However,
this passive demethylation, based on semi-conserved replication, is far from meeting the
need to inhibit DNA methylation and prevent gene silencing, so active demethylation is
still the main way to cope with environmental changes.

Active Demethylation

Active demethylation is a specific enzymatic reaction involving DNA glycosylases
and cleavage enzymes such as repressor of silencing1 (ROS1), demeter (DME), demeter-
like2 (DML2), and demeter-like3 (DML3) enzymes [87,88]. In this process, the E3 ligase
enhances the stability of ROS1 to advance the reaction [89], recognizes the 5-mC at the site
of DNA methylation, and then hydrolyzes it to break the glycosidic bond and remove the
methylated cytosine from the DNA backbone [90]. In combination with the base excision
repair (BER) mechanism, the synthesized unmethylated cytosine is used to complete the
repair by completing the gap to achieve active demethylation [86,91]. This is also consistent
with Ikeda et al. [92] and Zhu’ s findings [93]. As shown in Figure 3, there are currently
three different pathways to achieve active demethylation, the first of which is mediated
by the first DNA active demethylation complex identified in plants, where the structural
domain protein neuronal pentraxin 1 (NPX1) and the methyl-CpG-binding domain protein
9 (MBD9) can preferentially recognize acetylated histone marks established by increased
DNA methylation 1 (IDM1) on CG-type methylation, thereby recruiting the INO80 chro-
matin remodeling complex SWR1 to specific chromatin to deposit variant H2A of histone
H2A.Z, which further recruits the ROS1 to specific target sites to complete demethyla-
tion [94]. The second one is mediated by RWD40, the first DNA demethylation complex
containing DNA demethylase ROS1 found in Arabidopsis. ROS1 recruits structural do-
main protein RWD40 to specific sites and interacts with DNA methylation binding protein
RMB1, zinc finger, and structural domain protein RHD1 to form the RWD40 complex,
which regulates endogenous site methylation of all methylation types. It can also regulate
the gene expression level of ROS1 through the ROS1 gene promoter, thus completing the
active DNA demethylation to regulate DNA methylation level [95]. Third, the AGENET
domain-containing protein 3 (AGDP3), identified by forward genetic screening, recognizes
and binds to the methylated histone H3K9me2 on the one hand, while on the other hand it
recruits ROS1 to target the genomic site and causes the methylated site to be demethylated
by base excision repair [96].
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Figure 3. Active demethylation mode of action of three different pathways. This figure illustrates
three pathways of the active DNA demethylation [94–96]. Three different active demethylation
pathways all require the use of ROS1 to achieve them.

4.2. Pattern Variation and Genetic Characteristics

Factors that cause changes in DNA methylation are classified as endogenous and
exogenous [97]. Exogenous factors are environmental changes that have a significant
impact on an organism’s ability to grow and are categorized as biotic and abiotic stresses.
Endogenous factors are methylation changes brought on by changes at the genetic level,
such as transposon insertions and deletions, chromosome rearrangements, and mutations
in methylation-related factors. However, it has been suggested that exogenous factors are
more influential than endogenous factors for heritable DNA methylation changes from a
long evolutionary perspective [98]. The level and status of DNA methylation is not fixed in
an organism, and there is a distinction between “transient” and “long-lasting”. The majority
of cases are “transient” and are dynamically regulated to meet the needs of the organism in
response to changes in DNA methylation through the involvement of a series of related
enzymes that target specific sites through different pathways [73]. The state and level of a
dynamic balance of DNA methylation, which can be passed on through DNA replication as
a relatively stable imprint of epistatic modifications, is generally in a relatively stable state
in the organism, but can be changed when stimulated and passed on to offspring, called
stress memory, which is a “long-lasting” situation [99]. Depending on the duration of the
memory, it can be divided into short-term somatic memory, which is caused by physiology
and metabolism for a few days or weeks, and long-term intergenerational stress memory,
which is inherited through mitosis and meiosis [55,100].

In the study by Williams [101], Arabidopsis thaliana regulates 5-mC glycosylases through
corresponding methylation genes as a way to respond to stress and to inherit this memory
across generations, giving offspring the ability to stably retain the associated resistance.

5. Effect of DNA Methylation on Plant Response to Drought Stress

Plants are rooted to a single point and they cannot change position to escape environ-
mental challenges. This makes drought, an abiotic stress, one of the major limiting factors
for the growth, development, and production of most plants worldwide [102]. Drought
stress can disrupt the relatively stable equilibrium built up in plants, causing disruptions at
the molecular level, resulting in physiological disorders, and further hindering growth and
development, affecting key indicators such as yield, and even causing plant death [73]. In
contrast, plants can also protect themselves against external damage by re-establishing the
regulatory mechanisms of cellular homeostasis. Studies have demonstrated that drought
stress can induce significant changes in DNA methylation levels, activate related signaling
pathways, alter the expression of corresponding drought genes, and affect plant growth
and development [103,104]. Among the gene families responding to drought stress, methy-
lation and demethylation were found in genes in a CG background [105]; therefore, DNA
methylation is thought to be involved in the regulation of plant drought stress response,
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and most DNA methylation variants can be transmitted from generation to generation,
altering the physiological and ecological changes of plant growth and development to
adapt to the environment [3,4].

5.1. Effect of DNA Methylation on Plant Growth and Development and Stress Resistance

DNA methylation is prevalent in the whole genome of plants and acts in different
tissue regions with different methylation patterns at different developmental periods, which
in turn specifically regulates genes to be expressed, or suppressed, in specific developmental
stages, thus ensuring cell differentiation and normal plant growth and development [73].
Candaele et al. found that DNA methylation transferase in maize leaves, after the cells
undergo a gradual movement of spatial gradients, induces CG and CHG methylation
of different backgrounds in the division, transition, extension, and maturation zones,
suggesting that DNA methylation plays an important role in regulating the growth and
development of maize leaves [106].

In recent studies, it has been found that the biological clock is closely associated with
DNA methylation. The biological clock is a complex regulatory system developed by plants
over a long period of evolution by which organisms can sense the changing temporal
patterns of their surroundings and adapt to environmental changes to survive [107]. DNA
methylation, however, can directly affect the biological clock of plants and participate in
the regulatory signaling network at the molecular level to meet and respond to the needs of
plant growth, development, and stress [108]. It has been revealed in many studies that DNA
methylation can regulate many key life activities of plants, such as flowering, immunity,
maturation, etc., through the biological clock [109–111]. In tomato [112], strawberry [113],
sweet orange [114], and pepper [115], it has been found that DNA methylation changes
dynamically with the growth and development of the organism, and the corresponding
changes in methylation levels can, in turn, act on the organism to promote or inhibit its
maturation. It has also been found that inhibition of DNA methylation transferase can
significantly prolong the biological clock in Arabidopsis [116].

Application of zebularine demethylation altered the development of drought-stressed
parental polygonum seedlings, with significant changes in leaf area, root length, and
biomass [117]; application of methylation inhibitor to spring wheat resulted in significant
phenotypic changes, reduced malondialdehyde (MDA) content, increased proline and solu-
ble sugar content, activated superoxide dismutase (SOD), peroxidase (POD), and catalase
(CAT) enzyme activities under salt stress, and caused plant dwarfing, and significantly
improved antioxidant capacity of wheat leaves under salt stress [118]. The exogenous
application of the DNA methylation inhibitor 5-azadC to potato significantly inhibited the
growth and development of potato, and the phenotype was significantly different from
that of the control, with a significant decrease in plant dry weight, plant height, number
of leaves, and total root length, and a significant increase in SOD and POD activity to
alleviate the abiotic stress [119]. Meanwhile, transcriptomic studies revealed that genes
of the MAPK signaling pathway, glutathione metabolism, glycolysis/gluconeogenesis,
phosphatidylinositol metabolism, and phytohormone signaling pathways in potato plants
responded to both drought stress and demethylation treatments [120].

5.2. Progress of DNA Methylation Involved in Drought Stress Response

Under abiotic stresses such as drought, DNA methylation regulates the expression of
genes and activates, through dynamic changes in patterns and levels of gene expression,
to cope with the damage caused by stress [4]. It has been shown that the polymorphic
changes in DNA methylation sites induced by drought stress accounted for 12.1% of the
genome-wide DNA methylation sites, thus affecting growth and development in response
to drought stress, and 29% of the methylation was retained even after the subsequent stress
was removed [121]. Therefore, DNA methylation is important for plant response to drought
stress. Table 1 shows the current studies on DNA methylation changes in different plants
species subjected to drought stress.
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Table 1. DNA methylation changes in different plants under drought stress.

Species Processing DNA Methylation
Changes

Related Genes
or Access Associated Phenotypes References

Arabidopsis thaliana
(L.) Heynh.

After 7–30 dpg (days
post germination)

growth, stop water
treatment for 20 days

A significant 15% decrease
in the 5-meC content

Related to
DCL2/DCL3

pathway

Decreased homologous
recombination frequency
(Increased generally HFR,
DNA hypermethylation,

and higher
stress tolerance)

[122]

After 4 weeks of
growth, the treatment
group stopped water

for 20 days

DNA methylation levels in
the promoter region of

AtGSTF14 were
significantly reduced

by 10%

AtGSTF14 N.A. [123]

Populus trichocarpa

After 2 months of
growth, the soil

moisture content is
controlled at
about 10%

Significantly higher
methylation levels of
methylated cytosine,

upstream 2 kp, downstream
2 kb and repetitive

sequences (2–3% increase in
the whole genome)

C2C2, WRKY, MYB,
EIL gene family N.A. [124]

Populus tomentosa

After 2 months of
growth, soil moisture

content was
controlled at 20–25%

under 37 days

Significant reduction in
genomic DNA

methylation levels
GATA9, LECRK-VIII.2

Ceases leaf
photosynthetic activity;
Accumulation of ABA,

osmolytes such as glycine
betaine (BETA), proline

(PRO) and osmotic
regulator (ORS)

[125]

Solanum
lycopersicum

Grow for 3 weeks to
clean the roots and
place on blotting

paper under
incandescent light

until wilting occurs

Elevated CG methylation
level in exon 1 of Asr1 and
loss of methyl markers at

CNN sites (mainly
intron regions)

Asr1 N.A. [126]

Solanum pennellii

Seedlings are
removed from the
soil and placed on

filter paper

The DNA of the PKE1
promoter was highly

methylated in fruit and leaf
PKE1 N.A. [127]

Oryza sativa Different tolerant
cultivars

Elevated levels of genomic
methylation in response to

drought and salt
smRNA pathway N.A. [128]

28 ◦C, air dry 80 min,
rehydration 22 h after
the cycle of treatment

2 rounds

DNA methylation regulates
the expression of stress

memory transcripts
ABA Access Road

Relative water content
sharply dropped; the

endogenous contents of
ABA and JA

phytohormones
contents increased

[129]

After 2 weeks of
growth, treatment
with 20% PEG6000

for 12 h

Genome and ZFP promoter
and CDS region are highly

methylated
ZFP N.A. [130]

1/2 MS medium with
20% (w/v) PEG6000

JMJ710 demethylated
H3K36me2 both in vivo

and in vitro
JMJ710

The survival rates and
water loss in the
experiment with

detached leaves are
higher than check

[131]
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Table 1. Cont.

Species Processing DNA Methylation
Changes

Related Genes
or Access Associated Phenotypes References

Zea mays L.
Grown for 1 month,

drought treatment for
9 days

Total methylation levels
reduced around 20% in the

maize ABA-deficient
mutant vp10

ABA pathway Leaf relative water
content decreased rapidly [132]

Seedlings were not
watered until they

had three true leaves
and were re-watered

for six days when
significant wilting

was observed.

Sites nearest the MITE
insertion, were

hypermethylated in
ZmNAC111 promoter

ZmNAC111

Leaf photosynthesis rates
(PS), stomatal

conductance (SC) and
transpiration rates (TR)

were significantly smaller
than check

[133]

Grown for 1 month,
drought treatment for

9 days

DNA methylation in the
upstream region of the

DBF1 gene
DBF1

The average relative
water content was
significantly higher

than check

[134]

Stop watering for 15
d when growth

reaches the
5-leaf stage

DNA hypermethylation at
CG and CHG sites and

DNA hypermethylation at
CHH site in the middle of
ZmEXPB2 gene promoter

(around 20% decrease)

ZmEXPB2

Significant decrease in
fresh weight of whole

plant and 6th leaf length,
stunted secondary root
growth, and increased

primary root length

[135]

Hordeum vulgare L.
After germination,

water deficit
treatment for 10 d

High overall DNA
methylation level HvDRM N.A. [136]

After 7 d of growth,
stop hydroponics for

10 d

Methylation and
demethylation of different

regions of the
HvDME promoter

HvDME N.A. [137]

Solanum melongena L.
After 3 weeks of

growth, water was
stopped for 2 d

Upregulation of
demethylase expression

SmelMET1, SmelCMT,
SmelDRM N.A. [138]

Brassica juncea

Watering was
stopped for 15 d after

seed germination
until the leaves were
yellow and curled.

Gene body methylation
was increased in 90% of

sites (around 10%
decreased), while promoter

methylation was gene
function dependent

BAX inhibitor 1,
metacaspase

4, B3, DIE2/ALG10,
F-box, Bcl2

N.A. [139]

Morus alba
Grown for 2 months
(fresh leaves appear),

14 d water stop

0.5% Increased genomic
DNA methylation

Phenylpropanoid
biosynthesis and

other multi-pathways

Relative water content
(RWC) was decreased,

leaf lengths were shorter
[140]

Malus pumila Mill.

Grown for 4 months,
incubated with

Hoagland solution
containing 20%
PEG8000 for 6 h

(short-term) or 15 d
(long-term)

Increased DNA
methylation level of

MdRFNR1-1 promoter
MdRFNR1-1

The fresh weights of all
calli decreased; POD and
CAT activities were lower
in MdRFNR1 RNAi lines

than in GL-3 plants

[141]

Citrus unshiu Mac. Around 18–20% soil
moisture content

High global DNA
methylation level FLC, BFT

A significant increase in
the flowering branches,
whereas an apparent

decrease in
vegetative branches

[142]

Triticum aestivum L.

Drought primed for
24 h via the addition
of PEG 6000 at 10%
(−0.36 MPa), 15%

(−0.58 MPa) and 20%
(−0.91 Mpa) for 72 h
at the six-leaf stage

The CG and CHG
methylation rates were

decreased in TaP5CS and
TaBADH promoters

TaP5CS, TaBADH

Plant dry weight and leaf
area were significantly

reduced, ΦPSII and
increased ΦNPQ, higher
photosynthetic rate and
stomatal conductance

[143]
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Based on our review of previous studies, we found that in general, plants change the
extent of DNA methylation in response to drought stress. While two studies in Table 1
showed a genome-wide decrease in DNA methylation levels [122,125], and six studies
showed an genome-wide increase in DNA methylation levels [124,128,136,139,140,142],
an increase or decrease in methylation levels of the internal part of promoters of drought
response genes was specifically determined by the positive or negative regulation of the
gene under drought stress [126,127,130,134,135,137,140,143]. The proportion of methylation
changes in response to drought mostly ranged from 10 to 20%, but some showed only
slight changes, which may be related to tissue specificity [144]. In contrast, the proportions
and trends of methylation sites in the three contexts were different, with the trends of
symmetric methylation sites such as CG and CHG remaining the same, whereas most of
the CHH asymmetric methylation sites were opposite to the symmetric methylation sites,
which might be more sensitive to drought environment; this was confirmed in the study of
Zea mays L. and Populus tomentosa [125,135], although methylation of CG, CHG symmetry
sites were more sensitive to drought stress in other species of plants studied [126,143].

Recent studies, as outlined in Table 1, highlight the role of DNA methylation in
plant responses to drought stress. These investigations build on foundational research,
demonstrating significant changes in methylation patterns across various genomic regions
when exposed to drought conditions. Plants appear to employ this dynamic epigenetic
mechanism to adeptly manage environmental challenges. Importantly, these alterations
in methylation predominantly impact genes and pathways crucial to the drought stress
response, including water uptake and root architecture [135], osmotic balance [125], and
hormone signaling processes [125,129]. Studies have shown that changes in DNA methyla-
tion patterns can activate or suppress the expression of specific genes involved in drought
response. This regulatory modulation significantly affects the physiological and ecological
attributes of plants, notably enhancing their drought resilience. We suggest that through
such epigenetic modifications, plants precisely adapt their biological functions to better
cope with drought conditions.

6. Conclusions and Outlook

Abiotic stresses such as drought have a huge impact on plants and can affect a wide
range of plant growth and development, morphological indicators, and yield. Coupled
with the fact that drought stress, an environmental problem, is a global issue, research
related to drought tolerance and drought resistance in plants has been one of the key
focuses of researchers. Epigenetics, a relatively new topical issue with respect to regulation
of gene expression in response to environmental conditions, is also important as it can
produce intergenerationally transmissible changes in phenotypic traits without altering the
gene sequences.

The current review identifies efficient methylation detection technologies tailored to
their specific objectives, facilitating further studies in this field. The current review has
summarized the molecular mechanisms underlying the patterns and changes in DNA
methylation, thus assisting researchers of drought responses to streamline and accelerate
future efforts toward research progress.

Furthermore, we have summarized the details of the shifts in patterns, level changes,
and physiological and ecological responses of DNA methylation to drought stress in Table 1.
In our literature review, we identified numerous studies focusing on DNA methylation
and drought stress, indicating significant interest in this area. However, most studies only
demonstrated that plants exhibit DNA methylation changes at the whole genomic level
under drought conditions. This review concentrated on studies that showed specified
DNA methylation changes of pathways and genes, presenting data with defined changes
in ratios between drought and control, which provides a solid foundation for more detailed
investigations. These findings suggest that increased DNA methylation across the genome
primarily serves to deactivate non-essential functions related to stress resistance. Changes
in the methylation of promoter regions are tailored to the genes that respond to drought,
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influencing plant growth and development through various pathways, including the
biological clock. These results in alterations to plant morphology and physiology, enabling
adaptation to environmental shifts or survival under extreme conditions.

Efforts toward genetic improvement of crops using DNA methylation are still devoted
to discovering loci that respond to drought stress, and verifying whether their methylation
status is tightly correlated with plant drought resistance, then using advanced gene targeted
editing technologies and biotechnological approaches [145–147], such as CRISPR/Cas9,
to change the loci into a sustained methylated or demethylated state, so as to obtain new
germplasm with enhanced drought resistance.

However, more specific studies, such as the molecular mechanisms of DNA methy-
lation in response to drought stress, including the transmission of signaling molecules,
the activation of related pathways, and the investigation of transcription factors, have not
been adequately investigated; how DNA methylation occurs, and how it changes from a
short-term genetic effect to a long-term genetic effect in response to environmental stress
has not been clearly investigated [7]. Moreover, only a few studies of DNA methylation
response to environmental stresses directly related to field trials. Looking ahead, we recom-
mend that future research should focus on unraveling the complex interactions between
DNA methylation and other epigenetic mechanisms in regulating plant stress responses.
Detailed studies on the temporal and spatial patterns of methylation changes in response
to varying stress levels could provide insights into the flexibility and resilience of plant
epigenetic systems. Additionally, integrating epigenomic data with transcriptomic and
metabolomic profiles would offer a holistic view of the plant’s response to stress, facilitating
the identification of key regulatory nodes that can be targeted for crop improvement. In
response to the global drought problem and food security challenges, the development of
drought-resistant crop varieties by combining modern molecular breeding tools such as
gene editing and molecular marker-assisted selection with epigenetic studies is of great sig-
nificance for the breeding of drought-resistant varieties of plants and crops and germplasm
innovation research, which can enrich the new strategies of plants to adapt to the adverse
environments and solve the problem of food security during the earth’s climate change
process [85].
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