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Abstract: In this paper, we explore the known connection among sustainability, resilience, and well-
being within the framework of active inference. Initially, we revisit how the notions of well-being
and resilience intersect within active inference before defining sustainability. We adopt a holistic
concept of sustainability denoting the enduring capacity to meet needs over time without depleting
crucial resources. It extends beyond material wealth to encompass community networks, labor,
and knowledge. Using the free energy principle, we can emphasize the role of fostering resource
renewal, harmonious system–entity exchanges, and practices that encourage self-organization and
resilience as pathways to achieving sustainability both as an agent and as a part of a collective. We
start by connecting active inference with well-being, building on existing work. We then attempt
to link resilience with sustainability, asserting that resilience alone is insufficient for sustainable
outcomes. While crucial for absorbing shocks and stresses, resilience must be intrinsically linked with
sustainability to ensure that adaptive capacities do not merely perpetuate existing vulnerabilities.
Rather, it should facilitate transformative processes that address the root causes of unsustainability.
Sustainability, therefore, must manifest across extended timescales and all system strata, from
individual components to the broader system, to uphold ecological integrity, economic stability, and
social well-being. We explain how sustainability manifests at the level of an agent and then at the
level of collectives and systems. To model and quantify the interdependencies between resources and
their impact on overall system sustainability, we introduce the application of network theory and
dynamical systems theory. We emphasize the optimization of precision or learning rates through the
active inference framework, advocating for an approach that fosters the elastic and plastic resilience
necessary for long-term sustainability and abundance.
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1. Introduction

An understanding of the distinctive features and implications of sustainable and unsus-
tainable practices gives us a good sense of its underlying patterns. Unsustainable practices
exhaust system resources, precipitating the deterioration of its constituents [1,2]. The
notion of sustainability is conceptualized through the environmental, economic, and social
domains that are inherently linked to each other [3]. Ecologically unsustainable practices
can lead to economic unsustainability [4,5]. Such practices span from the over-extraction of
natural resources [6,7] to environmental contamination [2,4]. Notable examples include
disproportionate water use in arid zones [8,9] and accelerated deforestation, e.g., of the
Amazon basin [10,11]. This can lead to the decline of agents within the system, such as
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plants [12,13] and animals [13–15], as well as the decline of human populations that depend
on those resources [16]. For example, the over-extraction of groundwater in California
has led to a depletion of aquifers, impacting agriculture and local ecosystems [17]. We
can also point to the degradation of coral reefs attributable to ocean acidification and con-
tamination [18]. With the decline of these reefs, dependent marine species are compelled
to seek alternative habitats or confront potential extinction, triggering a decline of entire
ecosystems and a cascade of negative implications for the human population.

The significance of sustainability for humanity is directly connected to the phe-
nomenon of climate change. Unsustainable practices have contributed to the current
state of climate change through the excessive use of fossil fuels, which has led to increased
greenhouse gas emissions and accelerated global warming [19,20]. This, in turn, has caused
the loss of biodiversity [21], ecosystem degradation, and impacts on food security in many
areas of the world, as it affects our capacity to grow crops or yield benefits from the sale
of crops. Such low regulation also entails higher food prices, which further reinforces
food insecurity.

Unsustainable practices also impact the economy by increasing unemployment. For
instance, in the United States, industrial dependence on non-renewable resources, such as
coal, has led to job losses and economic hardship for communities that once relied on coal
mining [22]. The lack of foresight and investment in alternative industries, as well as low
employment security, has exacerbated poverty and health issues in these areas [23–25].

Improper resource management adversely impacts individuals, both emotionally and
socially, thereby diminishing their well-being. The Flint water crisis is a notable example,
where the city’s water supply became contaminated with lead due to cost-cutting measures.
This situation led to a higher level of depression, anxiety, and general social unrest in the
affected community [26–29].

Unsustainable practices have critical negative effects on the environment, economy,
and society. This is enough justification for us to look for ways to promote practices that
are as sustainable as possible. But the issue seems thorny and hard to disentangle. Many
factors seem at play, which are interconnected in ways that make the issue hard to grasp.

An interesting starting point is the relationship between sustainability, resilience, and
well-being, which has been well established in the research field of ecological science.
Resilience includes (i) inertia, the ability to resist change when subjected to a disturbing
force; (ii) elasticity, the ability to flexibly return to good states following a perturbation;
and (iii) plasticity, the ability to expand the repertoire of good states and courses of action
in the face of a changing environment [30–32]. According to [30], these three dimensions
of resilience can be mapped onto high-precision beliefs, the ability to find characteristic
states, and the capacity for structural degeneracy and functional redundancy, respectively.
Redundancy refers to the capacity of multiple components to perform the same function.
Degeneracy, on the other hand, refers to the capacity of components to perform the same
functionality under one set of conditions but different functionalities under other condi-
tions. Refs. [30,33] quantify degeneracy by the entropy of posterior beliefs about the causes
of sensations, while redundancy is the complexity cost incurred by forming those beliefs.
(Ref. [33] provides a principled account of degeneracy and redundancy in terms of the free
energy principle (FEP) and active inference. They demonstrate how degeneracy can be
quantified by the entropy of posterior beliefs, while redundancy corresponds to the com-
plexity cost incurred by those beliefs. This formalization allows for the measurement and
comparison of degeneracy and redundancy in the same units, providing a solid foundation
for the study of resilience within active inference. Ref. [30] builds upon the work of [33] and
maps the three aspects of resilience (inertia, elasticity, and plasticity) onto specific elements
of active inference. Inertia is mapped onto high-precision beliefs, elasticity is mapped
onto the ability to seek out characteristic states, and plasticity is mapped onto functional
redundancy and structural degeneracy. This mapping provides a formal interpretation of
resilience within active inference, allowing for its quantitative study and simulation.) From
this perspective, degeneracy and redundancy are complementary: active inference tries to
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minimize redundancy while maintaining degeneracy. Miller and colleagues presented a
conceptual analysis of resilience using active inference and established a conceptual model
that can be used to explore different forms of resilience. Building on this paper, we extend
our paradigm from the resilience of an isolated system relative to a stressor to a system
in a niche. Well-being comprises both eudaimonic well-being, the capacity to fulfill and
develop one’s potential through the pursuit of goals that fit with one’s personal values—a
long-term component, and hedonic well-being, which is closer to momentary positive
affect and pleasures arising from social interactions and physical activities—a short-term
component [34]. (Refs. [34,35] demonstrate how active inference can be used to understand
and predict well-being. They relate well-being to a system’s ability to minimize prediction
errors (free energy) and anticipate future well-being by estimating the divergence between
its model and future observations (expected free energy).)

There are many definitions of sustainability. In a hallmark report, Brundtland defines
sustainable development as “meet[ing] the needs of the present without compromising the
ability of future generations to meet their own needs”. Similarly, the National Research
Council describes it as “the reconciliation of society’s developmental goals with its environ-
mental limits over the long term” [36]. Based on these definitions, we can consider that
sustainable development is a process of change in which the consumption of resources, the
direction of investments, the orientation of technological development, and institutional
change all unfold harmoniously and enhance both the current and future potential to
meet human needs and aspirations. This definition already highlights the importance
of meeting the needs of the present without compromising the ability of future genera-
tions to meet their own needs. Twenty years later, to Crutzen, sustainability entails the
maintenance of resources within a range of levels to ensure survival in an ever-changing
environment. It is still arguably the greatest challenge of our time [37]. Evidently, in order
to promote a sustainable system, we must understand the interdependencies between
resources in the system, to promote resource renewal and harmony within the system,
and to encourage self-organization and resilience, such that it is possible to satisfy neces-
sities over time without exhausting the requisite resources [38]. These resources extend
beyond merely Earth’s material wealth, including community network effects, care work,
labor, and the accrued reservoir of knowledge inherited from preceding generations [38,39].
Numerous studies have examined how these concepts are interconnected and mutually
reinforcing [40–42]. For example, sustainability practices that maintain ecosystem health
and services can enhance the resilience of socioecological systems to disturbances, which in
turn supports human well-being that depends on the benefits provided by well-functioning
ecosystems [42,43]. Conversely, the erosion of ecosystem resilience through unsustainable
practices undermines the ability of ecosystems to deliver services vital for human welfare
over the long term [40,41]. This recognition of the linkages between sustainability, resilience
and well-being has important implications for efforts to address major challenges like cli-
mate change through nature-based solutions [42,44]. There is a need to explicitly consider
how nature-based solutions can simultaneously deliver across all three dimensions in an
integrated manner [41,43]. Therefore, the search for effective and integrated instruments
to promote sustainability remains an important task for scientists and practitioners. A
systems-based approach seems most promising from this perspective. Prior attempts in
the 1980s have linked sustainability to cybernetics. The Viable System Model proposed by
Stafford Beer in the 1980s [45] provided a foundation for the discussion on system viability,
leveraging the complexity and variety of systems applying principles of cybernetics to
describe the necessary and sufficient conditions for a system to be sustainable. It proposes
that a viable system must have five necessary interacting subsystems: implementation,
coordination, control, intelligence, and policy. These work together to ensure that the
system can respond effectively to various environmental disturbances, maintain its identity,
and continue to fulfill its purpose. One key limitation of the Viable System Model is that it
mostly is applicable to organizational structures and processes, but it says very little about
the cognitive and perceptual aspects of how agents within the system interact with and
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make sense of their environment. This approach therefore does not directly address the
role of beliefs, predictions, and active exploration in shaping the behavior and adaptation
of agents within the system—key components which make the system more chaotic and
harder to predict.

In this paper, we analyze the relationship that resilience and well-being hold in pro-
moting sustainability under active inference applying a systems approach. We contend that
sustainability, resilience, and well-being are emergent properties of complex systems that
arise from the interactions between multiple components/agents and their environment
over different spatial and temporal scales. This systems view highlights the hierarchical,
nested nature of these systems, where higher levels (e.g., socioecological systems) are com-
posed of interconnected lower-level systems (e.g., ecosystems, communities, individuals).
The resilience of the lower levels contributes to the sustainability of the higher levels. In
turn, sustainability also requires aligning the dynamics across levels to avoid the depletion
of resources over extended time horizons. Well-being can be viewed as a critical functional
output of these coupled human–natural systems. Active inference gives us a good way
to model the perception–action cycles and belief updating of agents within these systems
as they interact with their environment and other agents. Active inference is a unifying
framework derived from the FEP that applies to cycles of perception and action and all
the cognitive processes that depend on these cycles [30,34]. We will delve more deeply
into these concepts in the following sections. If we pull from the Viable System Model,
the notion of identity is particularly interesting as it brings us to consider how variational
density plays a role in active inference, i.e., a probability distribution that represents the
agent’s beliefs or expectations about the hidden states of the world, including its own
internal states and the external states that it cannot directly observe, which effectively
constitute its maintained identity—its ability to remain over time. Therefore, we value the
combination of systems thinking with active inference, as it allows us to develop integrated
models that capture both the macro-system dynamics and the micro-processes of sensing,
learning, and behaving that ultimately shape sustainable outcomes.

The central research questions of this paper are how to understand sustainability,
whether resilience alone is sufficient to lead to sustainable outcomes under active inference,
and how this informs well-being. We argue that focusing solely on individual resilience may
not adequately capture the complex interactions and dynamics that enable overall system
resilience. Sustainability, therefore, requires a more comprehensive consideration of the
interconnectedness between system components and the long-term viability of the system
as a whole. To address this, we propose a mathematical formalism grounded in active
inference that connects cognitive and social processes to more granular, physics-based
models. This formalism aims to facilitate the development of computational models that
can simulate the environment and our interactions with it, thereby informing the design
and implementation of effective policies and approaches for sustainability. The results
of this work can be utilized by modelers seeking to create sustainability simulations that
incorporate a wide range of interconnected variables across multiple scales. Additionally,
policymakers and decision-makers who wish to base their strategies on data-driven insights
and modeled suggestions can benefit from this approach. Existing tools often struggle to
properly map across scales, account for the intricate interdependencies within systems, and
identify self-organized, sustainable outcomes. Our proposed framework aims to bridge
these gaps and provide a more holistic understanding of sustainability.

2. Well-Being in Active Inference

Before delving into how well-being and resilience should be formalized within active
inference, it is necessary to outline some basic definitions. Specifically, we begin from
stating what a system and an agent are. We denote a system that comprises an agent by
four stochastic processes that interact as follows:
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ot

st µt

at

over some period of time t ∈ [0, T], where T is known as the time horizon. In this diagram,
ot represents the observations or sensory inputs of the agent at time t, st represents the
states of the external environment at time t, at represents the actions taken by the agent
at time t, and µt represents the internal states or beliefs of the agent at time t. The arrows
indicate the interactions and dependencies between these processes: ot depends on st
(environment states influence observations), at depends on µt (internal beliefs influence
actions), µt depends on ot and at (observations and actions update internal beliefs), and
st depends on at (actions affect the environment states). Furthermore, an agent, over said
period of time, is the whole of processes (ot, at, µt)t∈[0,T]. In contrast, the external world or
environment is the process (st)t∈[0,T]. (µt)t∈[0,T] is the process that is internal to the agent.
Under some simple conditions, an agent is cognitive in the sense that its internal trajectories
are the parameters of beliefs about the external trajectories:

Qµ[t](s[t]) ≈ P(s[t] | o[t]), (1)

where ·[t] denotes a trajectory over time.
(The equations for active inference are derived from first principles of stochastic

processes, namely by postulating that the world and agent evolve together as a stochastic
process and interact via a boundary called a Markov blanket comprising sensory and
active states. Active inference just corresponds to implementing the equations of motion of
internal and active states given sensory states. The derivations for continuous generative
models are here [46,47] and those for discrete generative models are here [48]. A recent
review by [49] attempted to look at the empirical validity of both predictive coding and
active inference. For active inference, they found that most empirical studies so far have
mostly focused on fitting models to behavior in order to identify and explain individual
or group differences. So, active inference models tend to explain behavioral data. But it
is true that there has not been a strong focus on testing the unique predictions of active
inference against alternative models. It seems clear from this review that existing work
demonstrates the promise of the active inference approach.) Consider an individual living
in a forest. This individual may observe the world around it and infer how this forest
works. Thus, the individual builds a representation of the world, which they can use to
acquire what they need. On this basis, we can deal with the concept of well-being and
how it can be described within active inference. According to [34], well-being inside an
agent/system is about calibrating one’s internal model to the environment to minimize
prediction error both presently and in the future. This concept is further explored by [50],
who discuss resilience in the context of active inference. We can measure well-being using
information theory, specifically through mutual information, which quantifies a system’s
ability to predict and adapt to environmental shifts. The mutual information between two
random variables, x and y, is given by

I(x, y) = H(x)− H(x|y) (2)

Here, I(x, y) represents the mutual information, H(x) the entropy of x, and H(x|y)
the conditional entropy of x given y. These are defined as H(x) = −∑i p(xi) log p(xi)
and H(x|y) = −∑i p(xi|yi) log p(xi|yi), and they measure the uncertainty or surprise
associated with x, and the remaining uncertainty of x when y is known.

These equations are meant to represent the system’s ability to maintain an accurate
model of the world, which is essential for resilience, as discussed by [50]. The FEP further



Systems 2024, 12, 163 6 of 22

quantifies well-being with an agent’s actions directed toward minimizing free energy. In
other words, it shows that internal states and active states of an agent evolve to minimize
free energy:

µt, at ↘ F[Qµ[t](s[t])] := EQµ[t](s[t])[log Qµ[t](s[t])− log P(s[t], o[t])]

= DKL[Qµ[t](s[t]) | P(s[t])]︸ ︷︷ ︸
Complexity

−EQµ[t](s[t])[− log P(o[t]|s[t])]︸ ︷︷ ︸
Accuracy

(3)

Here, the Kullback–Leibler divergence DKL[Qµ[t](s[t]) | P(s[t])] measures the discrep-
ancy between the agent’s prior beliefs p and its approximate posterior beliefs q—the best
guess the agent has about the world based upon observed data. This is the complexity
term of F, which scores the complexity of the agent’s model of the world. In contrast,
EQµ[t](s[t])[− log P(o[t]|s[t])] is the accuracy term, which measures how well the agent’s
model fits the observed data. Under the FEP, agents maximize the accuracy of their model
of the world while minimizing its complexity. In the literature, a high free energy is
associated with stress on the system [51], i.e., low well-being.

The Expected Free Energy (EFE) extends this concept to future states or trajectories of
states, and it is conditioned upon a sequence of actions undertaken by the agent.

The (−log) distribution of active paths, given some past data observed by the agent
(e.g., past observations; denoted as h) can be expressed by an expected free energy:

− log P(a[t] | h) = EP(s[t],o[t]|a[t],h)[log P(s[t] | a[t], h)− log P(s[t], o[t] | h)]

= DKL
[ Predicted paths︷ ︸︸ ︷

P(s[t] | a[t], h) |

Preferred paths︷ ︸︸ ︷
P(s[t] | h)

]︸ ︷︷ ︸
Risk

+EP(s[t]|a[t],h)
[
H[P(o[t] | s[t], h)]

]︸ ︷︷ ︸
Ambiguity

(4)

This means that the more likely an active trajectory, the more it minimizes expected free
energy. The Risk term quantifies the divergence between the predicted paths (the distribu-
tion of states given an action sequence and past observations) and the preferred paths (the
distribution of states given only past observations). In other words, it measures how much
the predicted outcomes of an action sequence deviate from the agent’s preferred outcomes
based on its prior beliefs. An agent that minimizes risk will favor actions that lead to states
consistent with its preferences.

The Ambiguity term, on the other hand, measures the expected uncertainty in the
mapping between states and observations given an action sequence and past observations.
It quantifies the agent’s lack of confidence in its ability to predict the sensory consequences
of being in a particular state. An agent that minimizes Ambiguity will prefer actions that
lead to states with more predictable sensory outcomes, reducing its uncertainty about
the world.

By minimizing EFE, an agent effectively balances the drive to fulfill its preferences
(minimizing Risk) with the drive to reduce uncertainty about the world (minimizing
Ambiguity). This allows the agent to adaptively navigate its environment, seeking out
states that align with its goals while also gathering information to refine its internal models.

Any agent in the real world, in virtue of being cognitive, can be rewritten, expressed,
and simulated through the free energy and EFE minimizing equations of motion. This is a
correspondence between the prediction generative model and the preference generative
model on the one hand and the agent’s behavior on the other hand. The prediction
generative model P(s[t], o[t]|a[t]) encodes the agent’s representation of how its actions
influence the external world and how the external world causes sensations. In turns, the
preference generative model P(s[t], o[t]) encodes the agent’s preferred external and sensory
trajectories and the agent’s behavior as given by a[t], µ[t] in relation to observations o[t].
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In this way, as [34] suggest, the system tries to anticipate its future well-being by
estimating the divergence between its model and future observations. Thus, we can assess
the well-being of the system in terms of its ability to sustain actions that are self-evidencing,
across different levels, ensuring the overall system’s sustainability. Well-being is not just
about stability but also about maintaining a dynamic balance that allows for adaptation
and evolution. Indeed, each individual or entity has a generative model of hidden causes
of sensory data that is biased toward favorable outcomes. The free energy corresponds to
the evidence of the data according to this generative model. If the free energy is low, the
evidence is high and the data highly conform to the preferences—and vice versa. Well-being
cannot be separated from resilience, which is a fundamental component of it. Indeed, the
next section looks at resilience to show how it relates to well-being and how it can also be
formalized through active inference.

Continuing with the example of an individual living in a forest, we can explore how
well-being and resilience can be understood within the context of active inference:

The individual (agent) has an internal model of the forest (environment) that they
use to navigate and survive. Their well-being can be measured by how well their internal
model aligns with the actual state of the forest. If the individual can accurately predict and
adapt to changes in the forest, such as seasonal shifts or the availability of resources, they
will experience a higher level of well-being.

We can quantify this using mutual information. The mutual information between
the individual’s internal model and the actual state of the forest represents their ability
to predict and adapt to their environment. Higher mutual information indicates a better
calibrated internal model and, consequently, higher well-being.

In this context, the individual will strive to maintain an accurate and parsimonious
model of the forest (minimizing complexity) while ensuring that their model closely fits
their observations (maximizing accuracy). A lower free energy corresponds to a higher level
of well-being, as it indicates that the individual is successfully navigating their environment
and minimizing stress.

EFE extends this concept to future states, allowing the individual to anticipate their
future well-being by estimating the divergence between their model and expected future
observations. By minimizing EFE, the individual balances the drive to fulfill their prefer-
ences (e.g., finding food and shelter) with the need to reduce uncertainty about the forest
(e.g., exploring new areas).

Resilience in Active Inference

Broadly speaking, resilience is the ability to maintain well-being despite threats to that
well-being [50]. When viewed through the lens of active inference, resilience can refer to
one of three things: inertia, elasticity, and plasticity.

Inertia, which refers to the ability of a system to withstand change while maintaining
itself in roughly the same state, is inherently linked to the precision of beliefs [52,53]. It
corresponds to a generalization of inertia in physics, which describes the work required to
move a system away from its current trajectory. Within the context of active inference, high-
precision beliefs, akin to rigidity, predetermine the ability of agents to continue their current
course of action regardless of external disturbances [30]. However, while it makes systems
robust to possible insults to their integrity, rigidity in this sense is often accompanied by
reduced adaptability. The stable occupation of a region of state space by a system with high-
precision beliefs translates into selecting policies that do not lead to unexpected surprises:
agents with high-precision beliefs are generally not receptive to new information that is
inconsistent with their core assumptions [54]. As a result, agents with such beliefs are likely
to minimize the expected free energy by selecting only those actions that reinforce or at
least do not contradict their core assumptions.

Elasticity is the capacity of a system to return to a preferred state following a distur-
bance. Allostasis and homeostasis are the key examples of this dynamic [55]. Elasticity
requires planning over long-term time horizons, highlighting the significance of deep
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temporal models [56,57]. An example of allostatic and homeostatic elasticity is the abil-
ity of a person to regulate body temperature when running [58]. At the same time, bad
bootstraps can persist over time and eventually lead to the depletion of resources or paths
to well-being. An individual or system stuck in a bad bootstrap will be more vulnerable
to volatility. Thus, elasticity is also insufficient for capturing the essence of resilience. To
account for long-term resilience, structures of generative models should be adjusted to
enable a timely response to ever-changing environments.

Plasticity is the ability to adapt to a new situation, processing shocks and responses.
This can be formalized through inference at several scales, and in particular, through
structure learning, that is, changing the structure of the generative model and including
new state factors to accommodate the change. In certain environments characterized by a
high level of uncertainty, a simple avoidance of surprises is hardly sufficient for managing
errors effectively owing to the introduction of a cascade of surprising events [34]. In
this context, building resilience means ensuring that a model can function effectively in
uncertain environments exhibiting high risks, “consume” errors (so to speak) and grow
from them, and integrate information about these errors in its model of the world. Thus,
a plastic system is likely to grow in the face of adversity and respond with plasticity to
stressors that disrupt it [59].

All the above considered, we can claim that the conceptualization of resilience through
the notions of plasticity, inertia, and elasticity builds an effective framework to examine the
self-organization of complex structures, including social systems. But we are still missing
the connection between the systems which is not given by the resilience framework.

The interconnectedness of resources within a system can promote the renewal of
resources, ensuring the harmonious self-organization of the systems. Effectively, this entails
that agents within a system can rely on each other, as the elasticity and plasticity of one
system can feed into that of another system through their interconnectedness.

Resilience in isolation is insufficient to achieve sustainability. Resilience must be
manifested across extended timescales and throughout all strata of the nested hierarchy
within the system, encompassing the larger system as a whole. If resilience is only manifest
at the level of individual system components, it can lead to resource depletion, due to a lack
of diverse practices, practices based on non-renewable resources, and lack of consideration
for the interdependencies between resources among the system components [60]. Quantify-
ing the strength, nature, and direction of interdependencies requires tracking changes in
interdependencies, which adds an extra layer of complexity.

One way to model this is through the use of network theory, where the interdependen-
cies between resources in the system can be represented as a dynamic network of nodes
and edges with the depletion of one resource represented as the removal of a node from
the network. The impact of this on the system as a whole can be measured by connectivity
and robustness. Interdependencies between resources can be represented mathematically
through equations such as the following:

I(x1, x2) = ∑
x1,x2

p(x1, x2) log
(

p(x1, x2)

p1(x1)p2(x2)

)
, (5)

where I(x1, x2) represents the mutual information between two resources, indicating the
interdependency between them. This simplification is specifically for the case of two
variables, such as water x1 and fertilizer x2 if we choose an example from agriculture.

For scenarios involving more than two variables, the equation would be

I(x1, . . . , xn) = I(x1, . . . , xn−1)− I(x1, . . . , xn−1|xn) (6)

This recursive formulation handles multivariate interdependencies.
In the two-variable case, I(x1, x2) directly quantifies the dependency between these

variables. However, for multivariate cases, it is important to interpret interdependencies
considering synergistic, redundant, or unique information contributions.
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Continuing with the agricultural example, we assume the following probabilities:

• Joint probability: p(x1 = 1, x2 = 1 = 0.5, p(x1 = 1, x2 = 0) = 0.2, p(x1 = 0, x2 = 1) = 0.1,
and p(x1 = 0, x2 = 0) = 0.2.

• Marginal probabilities: p1(x1 = 1) = 0.7, p1(x1 = 0) = 0.3, p2(x2 = 1) = 0.6, and
p2(x2 = 0) = 0.4.

On these grounds, the impact of resource depletion can be represented as shown below:

D(x1, x2, . . . , Xn) = EP(x1,x2,...,xn)[cost(x1, x2, . . . , xn)] (7)

where D(x1, x2, ldots, xn) represents the expected impact of resource depletion, considering
the joint probability distribution P(x1, x2, . . . , xn) and a cost function cost (x1, x2, . . . , xn).
Expanding the expectation yields the equivalent expression:

D(X1, X2, . . . , Xn) = ∑
x1

∑
x2

. . . ∑
xn

P(x1, x2, . . . , xn) · cost(x1, x2, . . . , xn) (8)

where the sums run over all possible values of the variables xi. This gives the overall
expected cost due to resource depletion for the entire distribution of possible states of
the system.

The dynamics of precision and optimization of learning rates explain how the sys-
tem can actively seek out interesting slopes of error and maximize expected information
gain [30], leading to a more elastic and plastic form of resilience.

Let us continue with the example of an individual living in a forest and explore how
resilience can be understood. In the context of the forest, inertia could mean the individual
having high-precision beliefs about their environment, such as the location of food sources
and safe shelter. These beliefs make the individual more resistant to external disturbances,
as they are less likely to deviate from their current course of action. However, this rigidity
may also make the individual less adaptable to new situations.

If the individual’s usual food source becomes unavailable due to a seasonal change,
elasticity would allow them to find alternative food sources and eventually return to their
preferred state of having a stable food supply. This requires the individual to have a deep
temporal model of the forest, allowing them to plan over long-term time horizons.

Now, if a new predator appears in the forest, the individual would need to update
their generative model to include this new threat and adapt their behavior accordingly. A
plastic individual is more likely to grow in the face of adversity and respond effectively
to stressors.

We have now demonstrated how resilience is cast under active inference. We now dive
concretely into how well-being and resilience help us understand and promote sustainability.

3. Sustainability

The relationships between entities in a system and the system’s capacity to support
them over deep timescales must be intricately mapped to foster a resilient system. The
notion of resilience captured by relationships among system components and the compo-
nents themselves, therefore, is inherently linked to sustainability. To foster resilience and
sustainability, the system must optimize the trade-off between complexity and efficiency,
maximizing expected information gain and minimizing complexity. In this way, the system
is able to adapt and learn in an efficient manner while also maintaining a degree of elas-
ticity and plasticity necessary for long-term sustainability. Additionally, as an extension
of plasticity, by maximizing degeneracy and therefore the space the system can explore
while retaining some of its key functions, the system’s diversity and ability to adapt to
changing environments increases. Achieving sustainability involves fostering the renewal
of resources which are useful for the entities [61] and fostering a harmonious exchange
between the entities in the system and the system itself [62]. The achievement of sustain-
ability requires the establishment of a holistic system that addresses the main barriers to
sustainability and customized economic, environmental, and social sustainability practices.



Systems 2024, 12, 163 10 of 22

It also involves practices that foster self-organization and resilience [63,64]. A system that
promotes the adoption of sustainable practices must be capable of detecting unsustainable
practices and responding to them in a swift manner by triggering their prevention. In other
words, it must be able to detect and prevent any threats to sustainability through effective
self-organization. Such a feature highlights the close link between sustainability and re-
silience [65,66]. The application of resilience within the context of sustainability involves
not only the ability to withstand shocks but also the use of various instruments to facili-
tate the recovery of economic, social, and environmental systems from the harm brought
about by unsustainable practices. A recent report by McKinsey outlines the integration
of resilience into sustainable and inclusive growth [67]. It shows that resilience is key for
meeting the challenges posed by crises to sustainable growth, ensuring that strategies across
public and private sectors are coordinated to reduce the adverse impact of disruptions on
sustainability, developing a holistic framework allowing each organization to use a com-
mon structure, language, and objectives for resilience, maintaining an effective framework
to invest in, detect, prevent, and respond to disruptions, and promoting an agenda that
explains the interconnectedness of crises [67]. The arguments laid out above illustrate that
the significance of resilience for promoting sustainability has already been recognized by
stakeholders, although the search for specific channels outlining the relationship between
these two notions as well as the specific tools based on resilience that could contribute to
the promotion of sustainability is ongoing. Furthermore, resilience is a homeostatic process,
in the sense that there is no planning involved in the processes underlying resilience: just
robustness (inertia), adaptiveness (plasticity), and reactivity (elasticity). Homeostasis refers
to the maintenance of a stable equilibrium in a system through self-regulating mechanisms
that counteract disturbances. In the context of resilience, this means that a system has
inherent properties (robustness, adaptiveness, and reactivity) that allow it to absorb shocks
and return to its original state without any conscious planning or intervention. While
this is crucial for short-term survival, it may not be sufficient for long-term sustainability.
In contrast, achieving sustainability might be considered an allostatic process. Allostasis
involves the active adjustment of a system’s parameters to maintain stability in response
to changing environmental demands. This concept can be applied to sustainability, as it
requires the deliberate and proactive management of a system’s components to ensure their
long-term viability and the harmonious exchange between entities and the system itself.
Fundamentally, sustainability entails each component of the system enabling any given
aspect of resilience as required such that the parts of the system feed off each other.

Promoting the regeneration of resources plays a great part in attaining sustainability.
This may encompass activities such as implementing sustainable agricultural and forestry
methods [68,69] as well as generating renewable energy [70,71]. Fostering sustainability
also entails collaboration across many entities and the prudent utilization of resources
such that we can ensure a harmonious interaction between the elements inside the sys-
tem [72–75]. Finally, practices that promote self-organization and resilience are essential for
attaining sustainability. These measures encompass activities like preserving biodiversity
and mitigating the risks of disasters [65,66].

All the above considered, the next section goes toward mapping sustainability to
active inference.

4. Tying It All Together: Sustainability to Active Inference

Sustainability under active inference is the capacity to find a cohesive steady state of
the system across different spatial and temporal scales such that the resilience of things
at each level of the hierarchy promotes the resilience of things across the hierarchy. This
entails a systemic aptitude to align actions and adaptations over extended time horizons,
fostering enduring harmonization with the environment, embodying a facet of resilience
and long-term viability.
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4.1. Abundance and Adaptive Capacity

The presence of abundance and the resulting redundancy enhances resilience [76].
Abundance serves as a guarantee of functional diversity, indicating that an ecosystem with
a wide range of plant and animal species is likely to have all its necessary functional tasks or
’niches’ fully filled [77]. Every species, by fulfilling its unique ecological role, increases the
overall resilience and flexibility of the system, hence improving its capacity to withstand
environmental stressors and disturbances [78].

Deep ecology emphasizes the positive effects of abundance that flow through different
levels of the food chain, strengthening the overall health and stability of the ecosystem [79].
In a wetland ecosystem, the presence of a large number of primary producers, such as
aquatic plants and algae, guarantees a strong population of primary consumers, such as
snails and insects [80]. Consequently, a well-functioning ecosystem is maintained, with
a diverse population of secondary consumers such as frogs and tiny fish, which in turn
provides sustenance for tertiary consumers such as birds and larger fish. The trophic
balance is crucial for ecological processes including nutrient cycling, energy transfer, and
habitat provision, which are essential for the overall health and resilience of the wetland
ecosystem [81].

An abundance of biodiversity, resources, and ecological niches contributes to the
adaptive capacity of ecosystems, since a diverse ecosystem with a variety of species and
functional roles can display multiple responses to changing conditions [77,82]. In turn,
ecosystems with limited diversity are more vulnerable to disruptions owing to the lack of
flexibility. A similar logic can apply to the adaptive capacity of economic and social sys-
tems. The abundance of resources, knowledge, and opportunities within society generally
contributes to adaptive capacity at both societal and individual levels [83]. Societies with
significant natural, economic, and human resources are capable of swiftly responding to
external shocks in an efficient manner, mitigating the negative effects of economic crises,
natural disasters, and other external factors. Whereas the adaptive capacity of ecosystems
is enabled by multiple functional roles and diverse flora and fauna, the adaptive capacity of
social systems is based on their resources and the functional roles of different social groups
and institutions [84]. The relationship between abundance and adaptive capacity manifests
itself similarly for environmental and social systems.

Economic systems follow the same logic to ensure economic sustainability. Changes in
the availability of financial resources, job opportunities, market demand, and other factors
affecting economic activities shape agents’ behaviors—as well as agents’ expectations about
particular resource availability [85]. The abundance of resources gives room to implement
effective risk management strategies, engaging in learning, and dynamically adjusting to
shocks [86]. At the level of economic systems, the abundance of the resources discussed
above results in a higher flexibility of economic systems and their resilience in the face of
economic crises, hostilities, shortages of resources, and other undesirable scenarios.

Thus, systems that promote abundance, but not overabundance (which could be cast
as complexity, and leading to depletion of resources), are more likely to be sustainable.
Those systems essentially have the right degree of redundancy. Maintaining abundance
over time entails having the possibility to grow strategies such that no one strategy is
overused or leaves the system open to vulnerabilities.

Continuing with the example of an individual living in a forest, we can explore how
abundance and redundancy contribute to resilience and sustainability.

In a forest ecosystem, abundance refers to the presence of a wide range of plant and
animal species, each fulfilling their unique ecological roles or niches. This functional
diversity enhances the resilience of the forest, as it ensures that all necessary tasks are being
performed, making the system more capable of withstanding environmental stressors
and disturbances.

For the individual living in the forest, this abundance translates to a more stable and
reliable environment. The presence of a diverse array of food sources, such as plants,
insects, and small animals, increases the individual’s chances of finding sustenance even if
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one particular food source becomes scarce. Similarly, the abundance of materials for shelter,
such as trees and vegetation, provides the individual with more options for constructing a
safe haven.

The positive effects of abundance flow through different levels of the food chain,
strengthening the overall health and stability of the forest ecosystem. A thriving population
of primary producers, such as plants and algae, supports a diverse community of con-
sumers, from insects to birds and mammals. This trophic balance is crucial for maintaining
the ecological processes that keep the forest functioning, such as nutrient cycling and
energy transfer.

The individual’s generative model of the forest would incorporate this abundance
and redundancy. The model would include a rich array of states representing the various
species, resources, and ecological interactions present in the forest. This diversity of states
allows the individual to adapt more effectively to changing conditions, as they can switch
between different strategies for finding food, shelter, and other necessities.

The abundance of resources in the forest also contributes to the individual’s adaptive
capacity, which is their ability to respond to external shocks and changes. With a wide range
of options available, the individual can more easily adjust their behavior and expectations
when faced with challenges, such as a sudden shift in weather patterns or the disappearance
of a particular food source.

4.2. The Mathematics of Sustainability

A system at steady state can exhibit dynamic behavior, as it constantly adapts and
evolves to maintain stability and avoid collapsing into an equilibrium state, i.e., death.
This means the system is able to maintain its own balance over time even as resources and
entities within it change. We can calculate the equilibrium point of the system given a set of
inputs and parameters. For example, a deep temporal steady state could be represented as

[x∗ = g(u, p)] (9)

where x∗ is the equilibrium point of the system, u is a set of inputs, and p represents a set
of parameters.

We can include the impact of resource depletion represented by D(x1, x2, . . . , xn) as a
factor influencing the equilibrium point of the system in the equation x∗ = g(u, p) as

[x∗ = g(u, p, D(x1, x2, . . . , xn))] (10)

This equation suggests that the equilibrium point of the system, represented by x∗, is a
function of a set of inputs u, a set of parameters p, and the impact of resource depletion
D(x1, x2, . . . , xn) on the system.

Additionally, it encompasses the system’s ability to uphold positive priors for the
subordinate levels of the systems and to foster a large fitness landscape which enables the
continued prediction over resources presence (plasticity). It also pertains to the system’s
capacity to withstand volatility at every level.

A good indicator of the system being at steady state for its different components is well-
being. Well-being in active inference is the capacity to tailor your model to the environment
in such a way as to minimize error and expect low error in the future [50]. Well-being
measurements, in this context, could indicate the sustainability of various components
within the system. This refers to the system’s capacity for stability and adjustment to
change. The calculation can be determined by analyzing the alteration in the system’s state
over a period of time based on a particular set of inputs and parameters. For instance, the
equation representing the resilience of systemic dynamics should be as follows:

∆x(t) = f (x(t), u(t), I(x1(t), x2(t), . . . , xn(t)), θ) (11)
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Here, the change in system state at time t, represented by ∆x(t), is a function of the
current state of the system x(t), a set of inputs u(t), the interdependency I(x1, x2, . . . , xn)
between resources xi(t), which are the various components of x(t), and some parameters θ.

In system dynamics resilience, the dynamical systems can thus be translated to

ẋ(t) = f (x(t), u(t), I(x1(t), x2(t), . . . , xn(t)), θ) (12)

where x(t) is the state of the system at time t, u(t) represents the input or external factors
that affect the system at time t, and θ represents the system’s parameters. Here, we omitted
the dependence on the mutual information since this is itself a function of x(t).

The input, u(t), may encompass exogenous factors such as external stressors, resource
availability, or environmental fluctuations. The inputs can be either continuous or discrete
and exhibit temporal variation, such as the quantity of rainfall, fluctuations in temperature,
or human actions such as deforestation.

The parameter θ represents the stable or gradually changing characteristics of the
system that dictate its behavior, such as the pace at which resources are used, the maximum
capacity of the environment, or the intensity of interactions between different components
of the system.

The system must predict future changes and resource needs. To model this, we
calculate the likelihood of future states given a set of inputs and parameters. For example,
the evolution of empirical priors could be represented in terms of a conditional distribution
such as

pθ(x(t + 1)|x(t), u(t))

scoring the likelihood of the system being in state x(t + 1) at time t + 1, given the current
state x(t), inputs u(t), and parameters θ.

We can include the interdependency I(x1, x2, . . . , xn) as a factor influencing the likeli-
hood of future states in the equation pθ(x(t + 1)− x(t), u(t)), which is

[pθ(x(t + 1)− x(t), u(t), I(x1, x2, . . . , xn))] (13)

This suggests that the likelihood of the system being in state x(t + 1) at time t + 1, given
the current state x(t), inputs u(t) and parameters θ, also depends on the interdependency
I(x1, x2, . . . , xn) between resources (x1, x2, . . . , xn).

In addition, to consistently predict the presence of resources, the system must sustain
a diverse fitness landscape at various levels. The concept can be succintly expressed as the
entropy of the probability distribution across different states, which quantifies the diversity
of the fitness landscape. This is represented as

[H(p) = −∑
i

p(i) log p(i)] (14)

where p(i) denotes the chance of the system being in state i, and the summing is performed
across all possible states. As the value of H(p) increases, the diversity of the fitness land-
scape increases, providing the system with a greater range of alternatives for adaptation.

To incorporate the influence of resource depletion expressed by D(x1, x2, . . . , xn), we
can deduct it from the entropy equation to obtain the fitness landscape:

[Φ(x) = −∑
i

p(i) log p(i)− D(x1, x2, . . . , xn)] (15)

The fitness landscape of the system F(x) is determined by the entropy of the distri-
bution of states −∑i p(i) log p(i) and the effect of resource depletion D(x1, x2, . . . , xn) on
the system.

Well-being, resilience and sustainability are all related to how well a system can avoid
succumbing to chaos, and they thrive from some degree of stability across space and time.
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Too much stability (i.e., low uncertainty, or entropy) is not necessarily the path toward
these states. Systems that are highly insensitive or resistant may have low resilience due to
limited capacity for adaptation and innovation. To achieve sustainability, a system should
handle stressors of varying intensities without exhausting its resources in the long term.

Systems enhance their fitness landscape by inhabiting the boundary between order
and unpredictability, which is commonly referred to as the edge of chaos. This location
provides a multitude of options into the system. This subtle threshold, near the point of
no return but never quite attaining it, signifies a domain of homeorhesis. Homeorhesis is
the term used to describe the state of dynamic stability or “steady change” shown by a
system that has achieved a non-equilibrium steady state. A system that remains within its
“comfort zone” (marked by low uncertainty or entropy) without pushing toward its tipping
point may become vulnerable to unforeseen issues, such as black swan events. These events
can result in severe consequences, such as the extinction of the system or its significant
destabilization and reduction [30]. Conversely, a system that approaches the edge of
chaos and consistently avoids reaching its critical point is better equipped to deal with the
unpredictability in its environment and minimize the difference between its predictions and
the potential volatility. This leads to a reduced probability of unexpected and significant
events occurring [87]. This system broadens the scope of its fitness landscape, reducing
the significance of any particular condition for its survival and eliminating the necessity
to completely exhaust resources associated with a single state. Implementing meticulous
subgrouping based on interdependencies enhances resource utilization and reduces the
points of failure within a system.

By adopting this approach, businesses can enhance their ability to produce precise
forecasts and adapt efficiently to fluctuations in their surroundings. Promoting the well-
being of individual entities within the system, over extended periods of time by using
priors from the higher level entities of the system, allows each subgroup to adapt their
behaviors to sustain the overall welfare of the system and reduce errors in predictions.
Sustainability and resilience are necessary to the ongoing processes that prevent the agent
from dissolving. By occupying a state of near chaos and enhancing the complexity of
the environment, entities within the system are able to adjust and react to alterations in
their surroundings, hence fostering resilience and sustainability [30]. Moreover, enhancing
degeneracy and reducing the likelihood of rare and unpredictable events, the system
becomes more adept at managing unforeseen disruptions, resulting in more sustainable
results. Sustainability is upheld through relationships that may be understood as a series of
interconnected cycles that adapt and are organized in a dynamic hierarchy across space and
time. Resilience and sustainability involve keeping the relationships between the entities in
a system rather than preserving the exact attributes of the system. This allows the entities
to adapt and move within a range while retaining a similar probability distribution. In the
next sections, we will look specifically at how this happens in both an agent and a system.

4.3. Processes Fostering Sustainability in an Agent

As stressed until now, resilience and all processes underlying it contribute to sustain-
ability. However, resilience is not enough, as resilient behavior may not be sustainable.
In short, sustainability implies resilience, but resilience does not necessarily ensure sus-
tainability. When considering how to achieve sustainability in an agent, in addition to
resilience, an important role is played by an allostatic process of preparedness over long
periods of time. By this, we mean planning and prevention to avoid surprising sensory
outcomes. Planning and prevention, or, in other words, optimal courses of action, are found
by minimizing EFE. A careful look at the EFE demonstrates two complementary ways of
ensuring sustainability, which comprise on the one hand risk minimizing behavior and
on the other hand ambiguity minimizing behavior. The former ensures that preferences
(i.e., needs) are continuously met over the timespan of planning. The latter, i.e., ambiguity,
ensures that the model is continually improved so that risk can continuously be success-
fully minimized. In other words, it ensures an information gain for future generative
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model improvement. This improvement can take place in several ways: with an inference
about the states of the environment, via learning the parameters of the dynamics of the
environment, or, as a third way, through learning the structure of the environment (i.e.,
structure learning). This means that given a generative model of trajectories, taking actions
that minimize EFE yields trajectories that are expected to be sustainable over the timespan
of planning. In particular, these trajectories yield outcomes that conform to preferences
and thus minimize free energy, and in addition, bring new information about the world
so that the generative model is improved over time in order to better predict the future.
Hence, subsequent EFE-minimizing actions have a higher chance of achieving free energy
minimizing outcomes. One fundamental issue in planning is that optimal policies for a
given time horizon might not be optimal for a longer time horizon (e.g., myopic policies).
Thus, we say that a policy is sustainable if it is a subpolicy of a sustainable policy. In practice,
sustainable policies are found by planning on the full time horizon. The right time horizon
for planning is the timespan over which the agent has preferences, i.e., the time horizon
that matters. However, this is not so straighforward. Indeed, it is often the case that an
agent’s preferences are precise in the near future and imprecise in the far future, which
leads to myopic behavior (e.g., smoking because it feels good in the moment but might
lead to health issues in the long run). To mitigate this, it helps to teach the agent about
the long-term consequences of its actions in relation to its fundamental preferences that
are necessary for survival (e.g., cancer). It is only when the consequences of a behavior on
long-term preferences and the certainty of that inference outweigh preference satisfaction
in the short term that myopic behavior will cease. Myopic behaviors for the self can be
attributed to a generative model where the inferences about the future consequences of
actions do not align with reality. Fortunately, the generative models can be improved
to stop these behaviors pre-emptively through the incorporation of new data acquired
thanks to ambiguity minimizing behavior, improving future inferences. These maladaptive
behaviors can also be stopped once the behavioral outcomes start to be in sharp contrast
with short-term preferences (e.g., pain or disease). What affects the agent has implications
for collectives, of course. In the next section, we will see how.

Continuing with our example, while resilience is crucial for the individual’s survival
in the forest, it is not sufficient to ensure long-term sustainability. Resilient behavior, such
as quickly adapting to a sudden food shortage, may help the individual survive in the
short term but could lead to unsustainable practices if not accompanied by proper planning
and prevention.

To achieve sustainability, the individual must engage in an allostatic process of pre-
paredness over long periods of time. This involves minimizing the Expected Free Energy to
find optimal courses of action that balance risk minimization and ambiguity minimization.

Risk minimization ensures that the individual’s preferences, or needs, are continuously
met over the timespan of planning. For example, the individual may plan to store extra food
during times of abundance to prepare for potential future scarcity. This helps minimize the
risk of going hungry during lean times.

Ambiguity minimization, on the other hand, ensures that the individual’s generative
model of the forest is continually improved, allowing for better prediction and minimization
of risk in the future. This can occur through inference about the states of the environment
(e.g., observing seasonal patterns), learning the parameters of the environment’s dynam-
ics (e.g., understanding the growth cycles of edible plants), or structure learning (e.g.,
discovering new food sources or shelter options).

By taking actions that minimize EFE, the individual can follow trajectories that are
expected to be sustainable over the timespan of planning. These trajectories yield outcomes
that conform to the individual’s preferences, thus minimizing free energy, while also
providing new information to improve their generative model for better future predictions.

However, the individual must be cautious of myopic policies, which may seem optimal
for a given time horizon but fail to consider longer-term consequences. For example,
overharvesting a particular plant species may provide ample food in the short term but lead
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to the depletion of that resource in the long run. To avoid such pitfalls, the individual must
plan based on the full time horizon that matters, considering their long-term preferences
and the consequences of their actions.

If the individual’s generative model does not accurately capture the long-term con-
sequences of their actions, they may engage in myopic behaviors that satisfy short-term
preferences but ultimately prove unsustainable. To mitigate this, the individual can in-
corporate new data acquired through ambiguity-minimizing behavior to improve their
generative model and make better inferences about the future. Additionally, if the out-
comes of their actions start to sharply contrast with their short-term preferences (e.g.,
experiencing hunger or illness due to resource depletion), the individual can adjust their
behavior accordingly.

4.4. Fostering Sustainability of Collectives

After having sketched how sustainability can be enhanced in an agent, we are going
to address what happens when we deal with a system of collectives, i.e., when there are
several agents interacting within one environment. To help clarify what we mean, here, we
denote a system comprising two agents:

o(1)t o(2)t

µ
(1)
t st µ

(2)
t

a(1)t a(2)t

Then, the collective (o(1)t , o(2)t , a(1)t , a(2)t , µ
(1)
t , µ

(2)
t ) is an agent by the definition in Section 2,

and the free energy principle and active inference apply. The same goes for any collective
comprising finitely many agents.

According to the free energy principle, any collective of agents can be described
by an (implicit) generative model such that the collective’s actions (i.e., the collection of
individual actions) minimize the expected free energy for this generative model. Crucially,
this generative model is generally not the product of the generative models embodied by
the agents within, and it cannot currently be obtained straightforwardly.

To figure out why the implicit generative model describing the collective is not the
product of the individual generative models, consider the following example: if it were, then
the free energy of the collective would be the sum of the free energies of the individuals [88].
Then, consider two interacting agents, which are harmful to each other. Each agent is
pursuing expected free energy-minimizing actions that increase the other’s free energy. This
generally implies that out of all possible actions that the agents could take, the actual ones do
not minimize the sum of free energies. However, these actions are certainly (tautologically
so) free energy minimizing for the collective of agents by the free energy principle. This
example illustrates a general point: although collectives take actions that minimize expected
energy according to the collective generative model, the preferences encoded within the
collective generative model may be misaligned with individual preferences in the group.
This is analoguous to active inference accounts of computational psychiatry that describe
maladaptive actions as free energy minimizing under a generative model with aberrant
preferences [89]; the implicit preferences reflecting the collective’s actions may be aberrant
from the perspective of the preferences of constituting individuals.

The policy problem at the level of the collective says that an optimal policy at the
level of any individual (i.e., EFE minimizing for that individual) need not be beneficial for
the collective, in the sense that it may increase the free energy of interacting agents, as in
harmful behavior. From this, it follows that to achieve sustainability within a collective,
we need the collective’s actions (that reflect the collective’s implicit preferences) to be
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aligned with individual preferences. Then, as the group works together to ensure these
core preferences are satisfied over arbitrarily long timespans, it achieves a situation of
sustainability. Hence, fostering sustainability at the level of the collective entails modifying
the interactions between the agents within it so that each policy that is optimal at the level
of the individual and also minimizes the free energy of interacting agents. At best, the
EFE-minimizing policy of each individual together minimize the expected free energies of
each individual agent [90]. We thence talk about full symbiosis between agents.

On this basis, it is also interesting to consider how these problems and observations
translate at the level of public governance, for example when we consider the electoral
setting. Indeed, the feedback loop of election and re-election motivates democratically
elected leaders to align their actions to minimize each of their constituents’ free energies
in order for their own preferences to be fulfilled (e.g., re-election). Leaders may do so by
employing their own internal model of what the people desire and aim to fulfill those
preferences. However, there is the definite problem that policies that minimize the people’s
free energy within tenure are suboptimal to minimize their free energy in the long run
(i.e., the timespan problem for policies). Therefore, free energy-minimizing decisions for
the leader may not coincide with sustainable policies. To mitigate this, one might think of
increasing the feedback loops from people to decision-maker so that the impact of policies
beyond tenure have repercussions for the leader beyond tenure. This is but one way of
increasing the alignment between expected free energy-minimizing actions for the decision-
maker and minimizing the free energy of the people in the long run. Looking forward, one
can define the best actions from a decision-maker toward a collective as follows: given a
model of the collective’s preferences (e.g., the product of individual preferences), find the
action that minimizes the EFE for that model. This corresponds to aiming to minimize the
sum of free energies of each person within the collective. This is a selfless course of action
in the sense that it is based solely on the inferred preferences of the people as opposed
to the decision-maker’s own. It also says that an increase of free energy in an individual
can only be justified by a larger decrease on the other’s free energies. In other words, the
decision-maker should be an agent whose goal is to minimize an individual’s free energies
over time. Finally, the timespan that should be considered during planning the course of
action is the timespan over which the individual agents are inferred to have preferences.

If we recapitulate, to improve sustainability at the collective level in practice, we need
to increase interconnectedness and plasticity, that is to augment the number and strength
of two-sided interactions and feedback loops between agents (e.g., communication). This
entails that any harmful policy for another might be reciprocated, creating accountability
for each one’s actions, and a drive to select actions that benefit the collective so that the
collective benefits ourselves. To increasing plasticity means to shift an agent’s preferences
so that interactions result in a lower free energy for everyone. Depending on the context,
this may translate into differentiation or alignment. The former, i.e., differentiation, is
when agents must specialize to more effectively work together toward a common goal, e.g.,
preference biases toward doing the specialized activity that we do in society, such as habit
formation. By the latter, i.e., alignment, we mean agreement on common values and funda-
mental goals, e.g., Declaration of Human rights. We can refer aligment to-risk minimizing
behavior in an agent, as expressed in the previous section. Altogether, this might mean that
low-level (i.e., closer to sensory input) preferences become differentiated, while high-level
(i.e., fundamental) preferences become more aligned, so that agents naturally synchronize
to achieve their common fundamental preferences and minimize their free energy.

5. Conclusions

The analysis presented in this paper serves the dual purpose of quantifying sustainabil-
ity and promoting its development. We have reviewed the concepts of well-being, resilience
and sustainability. We have suggested that they are interconnected with the ability of a
system to prevent its dissipation and flourish with a certain level of stability. To achieve
sustainability, we can implement strategies such as operating at the boundary between



Systems 2024, 12, 163 18 of 22

order and chaos, enhancing the complexity of the environment, optimizing redundancy,
reducing the likelihood of unexpected and extreme events, establishing well-coordinated
subgroups, and refining the agent’s prior knowledge to better understand the system.
Sustainability and resilience are necessary to the ongoing processes that prevent the agent
from dissolving. By occupying a state of near chaos and enhancing the complexity of the
environment, entities within the system are able to adjust and react to alterations in their
surroundings, hence fostering resilience and sustainability [30]. Moreover, enhancing de-
generacy and reducing the likelihood of rare and unpredictable events, the system becomes
more adept at managing unforeseen disruptions, resulting in more sustainable results.
Agents can monitor their current state by monitoring and promoting their own well-being
over time.

To clarify the use of our proposition, we will now lay out the potential blueprint
for an application of our approach. Urban development is particularly interesting for
the application of sustainability and resilience methods. As we saw, active inference
allows policymakers to simulate and predict the outcomes of various urban development
strategies. Through this method, we can model how actions affect urban systems and their
ability to maintain equilibrium in the face of environmental, economic, and social stresses.
These models can incorporate data from various sources, including demographic trends,
economic data, environmental impacts, and infrastructure statistics. Consider a mid-sized
city facing rapid population growth and limited natural resources. The city’s government
could want to balance the need for expansion with the need to maintain a sustainable
environment all the while ensuring the well-being of its residents. They would collect
data about the current population and its expected growth, their consumption of water
and energy, the available green spaces and their usage, the use of public transportation,
infrastructure capacity, the housing development plans, the pollution levels and the health
of the population with the assumption that pollution impacts it. Using these data, the
government can model the relationships among these variables by laying out a state
space. The model can represent the conditions of the infrastructure, population density,
resource availability, and environmental quality. The city can model its possible actions like
zoning changes, investment to improve public transport, the development of green spaces,
and additional housing. The model would then predict outcomes like efficient resource
usage, pollution levels, resident well-being and economic growth through the assumed
relationships among these variables. The city’s government would define the system’s
preferences and let scenarios play out to find a non-equilibrium steady state that allows for
different scenarios to play out. The city’s government could then explore different scenarios.
They could explore how a high-density urban development might impact urban sprawl,
enhance public transportation and improve economic efficiency. Alternatively, they could
consider investing in a lot of green spaces and different types of sustainable infrastructure
(eco-friendly housing) to enhance environmental quality.

With this type of approach, we can thus implement meticulous subgrouping based on
interdependencies to enhance resource utilization and reduce the points of failure within a
system. Promoting the well-being of individual entities within the system, over extended
periods of time by using priors from the higher level entities of the system, allows each
subgroup to adapt their behaviors to sustain the overall welfare of the system and reduce
errors in predictions.

To promote sustainability, we can consider the interconnectedness between the many
components and the overall system and adopt a comprehensive approach toward the
well-being of all of them. This encompasses the safeguarding of natural resources, the
advancement of sustainable practices, and the cultivation of resilience and well-being
across all levels of the system. It also involves consistently updating environmental pro-
jections and implementing actions to minimize errors. This perspective opens the oppor-
tunity for data-driven ethics in the sense that the most ethical course of action—defined
as the one maximizing well-being, resilience and sustainability for the collective under
consideration—is that which minimizes the expected free energy of the collective.
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