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Abstract: The effectiveness of farming relies heavily on the condition of machinery and equipment,
as well as maintaining the ideal soil conditions for the desired yields. Soil cultivation tools endure
substantial stress and wear, emphasizing the need to study their durability surrounding soil contact.
Our research focuses on enhancing the lifespan of worn-out ploughshares through various heat
treatment methods and hot metal spraying. By remelting the surface of ploughshares using a flame
or laser, we aim to identify the most effective treatment for agricultural production. The improved
surface treatment of the furrows in field tillers can significantly cut costs and enhance tillage efficiency.
Our preliminary findings suggest that the metal spraying and remelting of nickel alloy hold promise
for achieving these goals.

Keywords: hot metal powder spraying; agricultural machinery; laser remelting; surface treatment

1. Introduction

Coating technologies represent a cornerstone in the advancement of various industries,
offering a multitude of applications aimed at enhancing component performance and
longevity. From gas turbines to biomedical implants, these coatings play a pivotal role in
mitigating wear, corrosion, and thermal stresses, thus contributing to the efficiency and
reliability of critical systems [1,2].

In the realm of gas turbines, Thermal Barrier Coatings (TBCs) such as YSZ coatings
have emerged as indispensable solutions for preventing superalloy blade failure. Tech-
niques like Atmospheric Plasma Spray (APS) and Cold Gas Spraying (CGS) have further
revolutionized the field, offering not only enhanced mechanical and thermal properties but
also significant advancements in component lifespan and operational efficiency [2,3].

Based on the research of a German research group [4], we can say that the nuclear
industry relies heavily on Thermal Spray Coatings (TSCs) to bolster the corrosion re-
sistance of crucial structures such as drip shields and waste packages. The advent of
cold spray technology presents a promising avenue for the deposition of protective coat-
ings, addressing challenges associated with fuel claddings and the mitigation of stress
corrosion cracking.

In the aerospace sector of the USA, coatings serve as a frontline defense against the
wear, erosion, and oxidation in engine components. Techniques like Atmospheric Plasma
Spray (APS) enable the precise and uniform application of coatings, thereby ensuring
optimal performance even in the most demanding operating environments [5].

In India, biomedical applications leverage advanced coating technologies to promote
the biocompatibility and osseointegration of implants. Highly crystalline nano hydroxyap-
atite (HA) coatings, deposited using methods like inductively coupled radio frequency (RF)
plasma spray, showcase promising results in enhancing the biological response of implant
materials [6,7].

Moreover, the automotive industry has explored the potential of coating technologies
to improve the wear resistance and durability of components. Amorphous iron-based
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coatings, applied using powder and wire flame spray techniques, demonstrate superior
performance characteristics, thereby enhancing the reliability of automotive systems.

Thermal spraying is a process that allows for the deposition of molten, semi-molten, or
solid particles onto a substrate, enhancing the performance and functionality of components.
As a result, it finds applications across various industries, including the automotive, energy,
and medical sectors. The process is highly versatile, and almost any material that melts and
does not decompose can be utilized. An important advantage is that it does not require
significant heat input, allowing even materials with very high melting points to be applied
to components without altering their properties. Additionally, it offers us the ability to
replace worn or deteriorated coatings without modifying the properties or dimensions of
the parts. Through a wide range of techniques and coating materials, thermal spraying can
enhance desirable characteristics without thermally affecting the components [1].

Agricultural activities are fundamentally determined by the condition of power and
soil cultivation machinery. The active components of machinery used in soil cultivation are
subjected to significant wear during operation (Figure 1). Several research groups in the
international literature have focused on improving the wear resistance of soil cultivation
elements [8–13]. Achieving the desired yield is greatly influenced by the establishment
and maintenance of proper soil conditions. Cultivator blades, therefore, wear out very
quickly, forcing farmers to continuously repair and replace them [14–16]. The aim of this
research is to increase the wear resistance of these blades, thereby significantly extending
their lifespan. Although this solution may be more expensive initially, it quickly pays
off due to reduced maintenance and operating costs. In this study, we aim to answer the
question of what wear results can be obtained when blade tips are produced using hot
metal spraying, and how effectively the layer applied by hot metal spraying can protect
their surface from mechanical impacts. During hot metal powder spraying, the powder is
sprayed in a semi-molten state onto the preheated workpiece for fusion purposes [17–22].
Alloys are bonded to the base metal by diffusion. Figure 2 shows the formation of a molten
layer of hot metal spray on the surface of stainless steel, under 500× magnification. The
sprayed layer’s diffusion zone and the base metal can be seen. In our research, half of the
blades treated with hot metal spraying were remelted with a flame, and the other half with
a laser.
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Figure 2. The formation of a molten layer of hot metal spray on the surface of stainless steel,
500× magnification: (A) sprayed layer, (B) diffusion zone, (C) base metal [23].

2. Materials and Methods
2.1. Preparation of Samples for Soil Cultivation

The hot metal powder spraying of the experimental samples was conducted at the
welding laboratory of the Department of Mechanical Engineering, Faculty of Engineering,
University of Debrecen. We prepared 8 hot-metal-sprayed cultivator tines for the exper-
iment. The chosen raw tine is shown in Figure 3. We used a C60-grade hot-rolled steel
sheet for the cultivator tines. We have summarized the chemical composition of C60 steel
in Table 1.
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Table 1. Chemical composition % of C60 steel [24].

Cr + Mo + Ni = max 0.63

C Si Mn Ni P S Cr Mo
0.57–0.65 max 0.4 0.6–0.9 max 0.4 max 0.045 max 0.045 max 0.4 max 0.1

The first 4 tines (samples 1–4) were re-melted using a flame. The remelting process was
carried out using an acetylene–oxygen gas mixture. The second set of 4 tines (samples 5–8)
were also first treated by the aforementioned hot metal spray fusing, and then they were
remelted using a laser. In the case of two additional pieces (sample 9 and 10), laser
deposition welding was used. The cladding, specifically laser cladding, was performed
using Höganäs 60% Tungsten Carbide powder. This process was conducted by the laser
technology facility of BuBen Laser Budai Benefit Ltd (Halásztelek, Hungary). The cultivator
tines prepared for the experiment are summarized in Table 2.

During the process, the workpiece was heated to a temperature of approximately
250–300 ◦C. This is called the wetting process. The correct choice of raw material is
important, so that, during metal powder spraying, a good enough quality bond is created
between the applied metal powder and the workpiece. During metal powder spraying
(Figure 4), the temperature of the workpieces is very high, therefore, the nature of their
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cooling is important to ensure hardness. In our case, the workpieces were cooled in free air.
For the experiment, 10 cultivator tines were available.
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Table 2. Surface treatment processes for cultivator tines.

Number of Samples Applied Coating Deposition Technology Method of Remelting

1 hot metal spraying with Eutalloy® 10009 (BoroTec) (Castolin Eutectic, Lausanne,
Switzerland) alloy powder

Flame

2 hot metal spraying with N 60 Mogul alloy powder Flame
3 hot metal spraying with N 60 Mogul alloy powder Flame
4 hot metal spraying with N 60 Mogul alloy powder Flame
5 hot metal spraying with N 60 Mogul alloy powder Laser
6 hot metal spraying with N 60 Mogul alloy powder Laser
7 hot metal spraying with N 60 Mogul alloy powder Laser
8 hot metal spraying with 50% N 60 Mogul + 50% Tungsten Carbide Laser
9 laser cladding with Höganäs 60% Tungsten Carbide
10 laser cladding with Höganäs 60% Tungsten Carbide

The main advantage of laser remelting is that, in contrast to remelting with a flame,
we can control the temperature and the speed of the laser very precisely, as a result of
which, the heat treatment takes place with a high degree of control. So, reduced brittleness
in the raw material and a reduced dilution of the sprayed layer are expected, meaning
the transition zone between the base material and the sprayed layer is ideally mixed, thus
creating a cohesive bond. The finished experimental samples are shown in Figures 5 and 6.
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2.2. Preparation of Samples for Material Analyses and Ultrasonic Hardness Testing

For the metallographic and ultrasonic hardness examinations, we created 4 test sam-
ples (A, B, C, D), the surfaces of which were treated with hot metal spraying and remelted
using a flame on the left side (side “1”) and laser on the right side (side “2”) (Figure 7).

Coatings 2024, 14, x FOR PEER REVIEW 5 of 12 
 

 

 
Figure 5. The hot-metal-sprayed tines (source: self-made). 

 
Figure 6. The samples made through laser cladding (source: self-made). 

2.2. Preparation of Samples for Material Analyses and Ultrasonic Hardness Testing 
For the metallographic and ultrasonic hardness examinations, we created 4 test 

samples (A, B, C, D), the surfaces of which were treated with hot metal spraying and 
remelted using a flame on the left side (side “1”) and laser on the right side (side “2”) 
(Figure 7). 

 
Figure 7. Samples remelted with a flame on the left and with a laser on the right (source: self-
made). 

The material of the cultivator tines is a C60-grade hot-rolled steel sheet. At the 
beginning of the experiment, the main aim of the investigation was to examine the effect 
of laser re-melting on the sprayed layer. For this purpose, we utilized the SAU-TER HO 
ultrasonic hardness tester (Figure 8). The SAUTER HO measures the hardness of a test 

Figure 7. Samples remelted with a flame on the left and with a laser on the right (source: self-made).

The material of the cultivator tines is a C60-grade hot-rolled steel sheet. At the
beginning of the experiment, the main aim of the investigation was to examine the effect
of laser re-melting on the sprayed layer. For this purpose, we utilized the SAU-TER
HO ultrasonic hardness tester (Figure 8). The SAUTER HO measures the hardness of a
test specimen using a Vickers diamond tip, which is pressed onto the surface of the test
specimen with a specified force. Subsequently, the tip is vibrated by ultrasound. The
applied frequency was 7 MHz [25]. The minimum measurable thickness the ultrasonic
hardness tester can use for tests is 0.75 mm. For most samples, the thickness was 1.8 mm,
while for sample C2 it was 0.8 mm, indicating that the inspected volume contained the
treated zones. The device was set for measuring minimal thickness. Due to its speed, this
method is advantageous compared to conventional surface hardness testing. The device
calculates hardness values from the attenuation of ultrasound.
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During the hot metal spraying process, different layers were applied to steel plates of
the same material quality as the cultivator tine, thereby creating test pieces for the purpose
of examining the transitional layer formed between the applied layer and the base material.
The remelting of the test samples was carried out using a flame and laser. The composition
of the layers and the method of re-melting are detailed in Table 3. The finished samples
prepared for microscopic analyses are shown in Figure 9.

Table 3. Test samples.

Number of the Tine Applied Coating Deposition Technology Method of Remelting

A1 Hot metal spraying with Deloro 60 alloy powder Flame
B1 Hot metal spraying with N 40 Mogul alloy powder Flame
C1 Hot metal spraying with N 50 Mogul alloy powder Flame
D1 Hot metal spraying with N 60 Mogul alloy powder Flame
A2 Hot metal spraying with Deloro 60 alloy powder Laser
B2 Hot metal spraying with N 40 Mogul alloy powder Laser
C2 Hot metal spraying with N 50 Mogul alloy powder Laser
D2 Hot metal spraying with N 60 Mogul alloy powder LaserCoatings 2024, 14, x FOR PEER REVIEW 7 of 12 
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For a better understanding, we have summarized the composition of the metal pow-
ders used in Tables 4–7.

Table 4. The composition of the used Deloro 60 metal powder.

Nominal Composition [mass%] of

Ni Cr Si B C Fe
Base 7.5 4 1.5 0.25 3

Table 5. The composition of the used Mogul N 40 powder.

Nominal Composition of

Ni Cr Si B C Fe
Base 7.5 3.6 1.65 0.25 1.3
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Table 6. The composition of the used Mogul N 50 metal powder.

Nominal Composition

Ni Cr Si B C Fe
Base 14 3.7 2.5 0.5 4

Table 7. The composition of the used Mogul N 60 metal powder.

Nominal Composition

Ni Cr Si B C Fe
Base 15 4.3 3.1 0.75 4.5

3. Results and Evaluations
3.1. Result of Ultrasonic Hardness Testing

The measurement was repeated three times for all samples. The results are shown in
Table 8. Based on the obtained results, it can be concluded that laser re-melting significantly
increased the hardness of the sprayed surface in the cases of samples A, B, and C.

Table 8. The results of the ultrasonic hardness test.

Number of Samples Remelted Hardness (HRC) Average (HRC)

A1 flame 49.1 49.4 54.1 50.9
A2 laser 56.9 55.8 58.9 57.2
B1 flame 38.7 39.2 37.5 38.5
B2 laser 48.6 48.7 48.6 48.6
C1 flame 48.7 43.8 45.5 46
C2 laser 62.5 63.8 64 63.4
D1 flame 57.6 58.9 59.5 58.7
D2 laser 58.6 58.8 58.9 58.8

3.2. Microscopic Analyses

Finally, the prepared test samples and their microstructures were examined using a
Zeiss Smartzoom 5 optical microscope (Oberkochen, Germany). We were interested in
understanding how deeply the laser remelting can penetrate the sprayed layer, as well
as what microstructural changes occur during the laser re-melting process. We aimed to
achieve the most suitable magnification to ensure the visibility of the base material, the
sprayed layer, and the diffusion zone.

During our microscopic examinations, we compared the microstructures of the tines
treated with flame re-melting and laser re-melting. Upon evaluation, it was observed that,
in each sample, the base material, the transitional diffusion zone, and the sprayed layer are
clearly distinguishable. Additionally, in the case of samples remelted with the laser, the
remelted layer is clearly discernible.

One of the advantages of the Zeiss microscope is that it is possible to analyze the sur-
face of samples and take very detailed surface images. In Figure 10, it can be observed that
the layer remelted by flame on the left side and by laser on the right side is clearly separated.

In Figures 11–14, the base material, the transitional diffusion zone, and the sprayed
layer are distinctly visible. Furthermore, the images also show that there is no mixing
(dilution) with the base material.

During the evaluation of these microscopic images, we found that the penetration
depth of the laser remelting can be obviously observed on samples A2, B2, and D2. In
sample C2, the laser completely penetrated the sprayed layer because the layer was too
thin. The thickness of the layer on the surface of sample C2 was 0.8 mm, while for the other
samples it was 1.8 mm thick. Since the laser completely melted sample C2 and melted the
other samples to a depth of 0.8 mm, we conclude that the laser penetration depth at the
applied settings (temperature was 1150 ◦C, feed was 3 mm/s) was 0.8 mm.
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Figure 14. Comparison of microscopic images of samples sprayed with N60 Mogul alloy powder and
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4. Conclusions

The interesting aspect of this paper is that, after the initial hot metal powder spraying,
we used laser remelting next to remelting with a flame. During our research, we prepared
two experiments. In the first experiment, we prepared eight tines for field testing purposes
using different types of powder, and then we remelted them with a flame or laser, and, in
addition, two samples were created by laser cladding them with tungsten carbide. Since the
testing of these can only be carried out at certain times of the year, the examination of these
10 tines will take place later, and we plan to publish the results after the agricultural season.

The second part of our investigation involved preparing samples for material analysis
and ultrasonic hardness testing. We treated the samples with four types of powders: Deloro
60, Mogul N40, Mogul N50, and Mogul N60. From these samples, we created pairs; one
side of the sample was remelted with a flame, while the other side was remelted with
a laser. In total, eight types of coatings were prepared for ultrasonic hardness testing
and microscopic analysis. The surface of the treated samples was then analyzed using an
ultrasonic hardness test and an optical microscope. During our microscopic examinations,
we compared the microstructure of the samples subjected to flame remelting after hot metal
spraying to the samples subjected to laser remelting.

Our research has achieved its original goal. In this paper, we have proven that surfaces
treated with hot metal spraying will be harder after laser remelting than flame melting.
During this evaluation, we found that the base material, the transitional diffusion zone,
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and the scattered layer were clearly visible on all samples. Furthermore, during the laser
remelting experiments, it was possible to find the parameters at which there is no dilution
between the laser-remelted layer and the base material.
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