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Abstract: To accommodate the production and manufacture of complex and customized marine
components and to avoid the empirical nature of process planning, machining operations can be
automatically sequenced and optimized using ant colony algorithms. However, traditional ant colony
algorithms exhibit issues in the context of machining process planning. In this study, an improved ant
colony algorithm is proposed to address these challenges. The introduction of a tiered distribution
of initial pheromones mitigates the blindness of initial searches. By incorporating the number of
iterations into the expectation heuristic function and introducing a ‘reward–penalty system’ for
pheromones, the contradictions between convergence speed and the tendency to fall into local optima
are avoided. Applying the improved ant colony algorithm to the process planning of large container
ship propeller shaft machining, this study constructs a ‘distance’ model for each machining unit
and develops a process constraint table. The results show significant improvements in initial search
capabilities and convergence speed with the improved ant colony algorithm while also resolving
the contradiction between convergence speed and optimal solutions. This verifies the feasibility and
effectiveness of the improved ant colony algorithm in intelligent process planning for ships.

Keywords: ant colony algorithm; process planning; large container ship propeller shaft; ship intelligent
manufacturing

1. Introduction

In recent years, with the advent of Industry 4.0 and Industry 5.0, the shipbuilding
industry has gradually transitioned towards intelligence and digitization [1]. However,
the complexity of multivariable and time-varying factors remains a major challenge in the
production of ship components [2]. Specifically, the production of large container ship
propeller shafts, characterized by complex processes and customization, renders traditional
process planning methods inadequate. Consequently, the role of computer-aided process
planning as a bridge between customized design and actual manufacturing is becoming
increasingly prominent. Statistics show that computer-aided process planning can reduce
the workload of process planning for new parts or products by approximately 58% [3].
Traditional process planning methods, being overly reliant on experience, often lead to the
generation of multiple process routes for a single propeller shaft, necessitating numerous
trial-and-error experiments for time and cost estimation, resulting in inefficiency in the
production process [4]. Currently, there is a global effort to find effective solutions to these
challenges and to explore how to more quickly and effectively complete process planning
for different components [5]. Therefore, the quick and efficient automation of process
planning in the context of complex, multi-process, and customized manufacturing has
become an urgent problem to solve.

Process planning in machining involves selecting and sequencing machining opera-
tions (such as milling, drilling, and turning) for a given part, in compliance with design
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standards and manufacturing practices. It is one of the most complex dynamic decision-
making problems and a key aspect of computer-aided process planning. Researchers
have proposed various methods for process planning, including process reuse methods,
rule-based inference methods, machine learning-based methods, and heuristic algorithm
optimization-based methods, each with its own advantages and disadvantages, as depicted
in Table 1. Over the past few decades, heuristic algorithm optimization-based methods
have become increasingly mature and stable. Compared to other heuristic algorithms, the
ant colony algorithm stands out for its few adjustable parameters, strong positive feedback
capability, and ability to adapt to changes and handle complex dynamic environments.
Consequently, it has been widely applied to path planning problems in domains such as
robotics, network routing, and logistics. Zhang [6] utilized an improved elite ant colony
optimization algorithm to solve the grain emergency vehicle dispatch model, demonstrat-
ing its effectiveness in distribution scheduling. Sara Perez-Carabaza et al. [7] used an
ant colony algorithm to enable UAV trajectory optimization planners to quickly obtain
high-quality solutions. Xiang et al. [8] proposed an ant colony algorithm based on the
diversity of demand coverage, maintaining diversity in routes to effectively respond to
emerging customer requests. The increasing complexity of customized large parts has
extended production cycles when relying solely on experiential process route planning.
Traditional ant colony algorithms suffer from issues like prolonged reaction times, sig-
nificant initial search blindness, and the trade-off between convergence speed and local
optima. These challenges often result in extended processing times, imprecise process
planning routes, or even non-convergence in multi-step processing planning. Hence, this
study proposes an enhanced ant colony algorithm tailored for process planning. It aims
to mitigate local optima traps, enhance initial search capabilities, optimize convergence
speed, and potentially offer effective solutions for process planning of complex, customized
large parts. In the realm of intelligent manufacturing within the marine equipment sector,
the fabrication of propeller shafts for large container ships stands out for its significant
complexity and high degree of customization. In this study, focusing on the production
of large container ship propeller shafts, the shaft machining process planning problem is
analogized to a path optimization problem. A ‘distance’ model for various machining units
with differences and similarities is established. Using the improved ant colony algorithm,
machining units are selected and sequenced according to the constraint table, resulting
in an optimal process planning route. By innovating the initial pheromone distribution
method, a pheromone tiered distribution based primarily on basic process planning princi-
ples is proposed. Analyzing the optimal process routes in the first iterations of multiple
tests, the improved ant colony algorithm effectively resolves the issue of weak initial search
capabilities of the traditional algorithm, enhancing the guidance of subsequent searches.
Furthermore, by innovating the expectation heuristic function and pheromones updating
methods, a heuristic function factor based on the number of iterations and a pheromone
update method based on the ‘reward–penalty system’ are proposed. A decay coefficient
that changes with the number of iterations is incorporated into the expectation heuristic
function, strengthening the role of pheromones in the later stages of iterative searches
and avoiding the contradiction of increased convergence speed leading to local optima.
This study aims to apply the improved ant colony algorithm to the process planning of
large container ship propeller shafts, addressing issues such as empirical process routes,
blindness in algorithm searches, and contradictions in optimal convergence. It provides
technical and methodological support for the transition from Industry 4.0 to Industry 5.0 in
intelligent manufacturing and data support for the industrial application of the improved
ant colony algorithm.
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Table 1. Comparison of various process planning methods.

Method Researchers Characteristics

Process reuse method
Deng et al. [9]
Huang et al. [10]
Kowalski et al. [11]

This method is commonly adopted by enterprises but suffers from
inflexibility, leading to localized and fragmented process reasoning.

Rule-based reasoning method
Y. Zhang et al. [12]
Ma et al. [13]
Kang et al. [14]

This method improves the efficiency of process planning systems,
but predefined rules may cause confusion due to conflicting rules.

Machine learning-based method
Sugisawa et al. [15]
C. Zhang et al. [16]
Zhao et al. [17]

This newly emerging method lacks interpretability and fails to
consider processing efficiency.

Ant colony algorithm
optimization method

Toaza et al. [18]
(Gong et al. [19]
Liu et al. [20]

This approach is characterized by positive feedback, high
robustness, and parallelism, but its initial search capability is poor,
and it tends to get trapped in local optima.

Genetic algorithm
optimization method

Gómez et al. [21]
Jing et al. [22]
Sreenivasan et al. [23]

This approach has excellent robustness and global optimization
capabilities, but it has long solution times and requires adjustment
of multiple parameters.

Particle swarm algorithm
optimization method

Sarvaiya et al. [24]
Peng et al. [25]
Petrović et al. [26]

This approach has high precision and fast convergence but often
gets stuck in local optima when dealing with complex problems.

2. Description of the Ant Colony Algorithm
2.1. Traditional Ant Colony Algorithm

The ant colony algorithm (ACA) simulates the foraging paths of ants in nature to solve
combinatorial path optimization problems. The more ants there are on a path, the higher
the concentration of pheromones, leading to an increased likelihood of that path being
chosen by other ants.

Assuming at time t, the m ant is located at point i, its transition probability PM
ij is

determined by Equations (1) and (2).

Pm
ij =

{
τα

ij(t) × η
β
ij(t)/∑s∈C τα

is(t) × η
β
is(t) , j ∈ C

0 , j /∈ C

}
(1)

ηij(t) = 1/dij (2)

where C represents the set of points that the ants allowed to select at time t + 1; τα
ij(t) is the

pheromone function on the path <i, j> at time t, η
β
ij(t) is the expectation heuristic function

on the path <i, j> at time t; α is the heuristic factor, β is the expectation heuristic factor, and
dij is the Euclidean distance between points i and j.

To avoid excessive accumulation of pheromones, the pheromone level is updated after
each iteration. The pheromone level at time t + 1 is determined by Equation (3).

τij(t + 1) = (1 − ρ)τij(t) + ∆τij(t)

∆τij(t) =
n
∑

m=1
∆τm

ij (t)

 (3)

where ρ represents the pheromone volatility coefficient, with 0 < ρ < 1, ∆τij(t) denotes the
total increase in pheromone level on the path <i, j>, and ∆τm

ij (t) indicates the amount of
pheromone deposited by the m ant on the path <i, j> during the current iteration.
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Different pheromone update methods lead to different calculations of pheromone
increment. Among these, the ant cycle system, represented by Equation (4), is the most
commonly used.

∆τm
ij (t) =

{
Q/Lm, ant m passed through path < i, j > .

0 , otherwise
(4)

where Q is a constant representing the total amount of pheromone, and Lm is the total
length of the path traveled by the m ant in this iteration.

2.2. Improved Ant Colony Algorithm
2.2.1. Initial Pheromones

In ACA, the initial pheromone concentration is set to the total amount of pheromone Q,
which results in the initial searches being blind and random, with limited subsequent guid-
ance, making the algorithm more challenging. Hence, this study adopts a tiered pheromone
concentration distribution to avoid blind initial searches, as shown in Equation (5).

τij(0) = { δ ∗ Q}, j ∈C (5)

Here, δ represents the weight of the initial pheromone distribution with a value
between 0 < δ ≤ 1, and Q is the total amount of pheromone.

2.2.2. Expectation Heuristic Function

From Equation (2), it can be observed that the expectation heuristic function value
is inversely proportional to the distance from the next node to the destination point,
encouraging ants to choose shorter distances. However, in the later stages of the search,
more attention should be given to the influence of pheromone concentration on ant selection
while reducing the impact of the expectation heuristic function. Therefore, in this study, a
self-regulating coefficient ξ is introduced into the expectation heuristic function to reduce
its impact on the transition probability in the later stages of the search, as shown in
Equations (6) and (7).

ηij(t) = (1 / dij
)
× ξ (6)

ξ =

{
Imax − I/Imax, I = Imax

1/Imax, I ̸= Imax
(7)

Here, ξ is the self-regulating coefficient of the expectation heuristic function, I repre-
sents the current iteration number, and Imax is the maximum iteration number.

2.2.3. Pheromone Update Rules

In ACA, the pheromone update mechanism does not incorporate scenarios where
inferior paths are encountered during the iteration. In this study, on the basis of local
and global updates, a ‘reward–penalty system’ is introduced. It ‘rewards’ the best paths
and ‘penalizes’ the worst paths during the current iteration, as shown in Equation (8).
To prevent the algorithm from stagnating too early, upper and lower limits are set for
pheromone concentration, constraining it within the range [τmax, τmin]. The maximum and
minimum values of pheromone are calculated using Equations (9)–(11).

∆τij =


Q/Lbest, path < i, j > belongs the optimal path

−Q/Lworst, path < i, j > belongs the worst path

0 , otherwise

(8)
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Here, Lbest represents the best path in the current iteration, and Lworst represents the
worst path in the current iteration.

τij(t) =


τmax, τij(t) ≥ τmax

τij(t), τmin≤ τij(t) ≤ τmax

τmin, τij(t) ≤ τmin

(9)

τmax = Q/(1 − ρ) fbest (10)

τmin = τmax/2n (11)

Here, fbest represents the best path in each iteration, and n is the number of nodes
traversed by the ants.

3. Application of the Improved Ant Colony Algorithm in Process Planning
3.1. Construction of a Process Planning Model

The production and manufacturing of large container ship propeller shafts belong
to a personalized customization process. Traditional process planning relies heavily on
the experience of workers, resulting in low efficiency and accuracy. The goal of process
planning is to obtain the optimal mechanical machining sequence combination while
meeting processing requirements. By comparing the differences and similarities in the
machinery, tools, fixtures, clamping positions, and processing characteristic units used in
each machining unit of the large container ship propeller shaft, a ‘distance’ model for the
shaft’s process planning is established, as shown in Equation (12). The model assumes that
the manufacturing resources of the enterprise will not change in the near future.

d
(
mi, mj

)
= WF∆

(
Fmi , Fmj

)
+ WS∆

(
Smi , Smj

)
+ WM∆

(
Mmi , Mmj

)
+WCT∆

(
CTmi , CTmj

)
+(WC + WCP)·max

(
∆
(

Cmi , Cmj

)
, ∆

(
CPmi , CPmj

))
(12)

where WF, WS, WM, WCT , WC, and WCP represent the weights of the machining feature unit,
machining stages, machining machines, machining tools, machining fixtures, and clamping
positions, respectively.

(
Fmi , Fmj

)
,
(

Smi , Smj

)
,
(

Mmi , Mmj

)
,
(

CTmi , CTmj

)
,
(

Cmi , Cmj

)
,

and
(

CPmi , CPmj

)
are the machining feature unit, machining stages, machining machines,

machining tools, machining fixtures, and clamping positions of machining units mi and
mj. ∆(x, y) is the discriminant function between machining units mi and mj, as shown in
Equation (13).

∆(x, y) =

{
0, x = y

1, x ̸= y
(13)

3.2. Constraint Conditions and Processing Methods

For the sorting of machining processes, there are generally four basic principles:
(a) process the datum surface first; (b) perform roughing before finishing; (c) machine
the surface before machining the hole; and (d) machine the primary surface before the
secondary surface.

According to the four basic constraints of part processes in the improved ant colony
algorithm (IACA), the initial distribution of pheromones for each machining unit is first im-
proved. Based on different initial pheromone distribution weights δ, the initial pheromone
values for corresponding machining stages are calculated using Equation (5). Secondly,
a constraint table Rmx is added to each machining unit. Assuming that the machining
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unit mi must be machined before machining unit mj, the existence of mj is included in the
constraint table Rmj . All operations performed before mj are stored in Rmj . When selecting
mj, it is necessary to first check whether the constraint table Rmj is an empty set. If it is an
empty set, there is a certain probability of selecting mj.

3.3. The Specific Steps

Applying IACA to the process planning of large container ship propeller shafts, the
algorithm flow is shown in Figure 1, with specific steps as follows:
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Figure 1. Flowchart of IACA process planning.

Step 1: Initialize parameters. Set parameters such as the number of ants m, the total
pheromone amount Q, the heuristic factor α, the and expectation heuristic factor β.

Step 2: Calculate initial pheromones. Calculate the initial pheromones τij(0) using
Equation (5).

Step 3: Select the process. Place ants at points where the constraint table Rmx is an
empty set as starting points. Add this point to the ant’s path and remove this point from
the constraint tables Rmx of all processes. Then, calculate the probability of selecting the
next process based on whether the constraint table Rmx is empty and Equation (1).

Step 4: Update pheromones. Perform both local and global pheromone updates and
apply the ‘reward–penalty system’.

Step 5: Update the expectation heuristic function. Update the expectation heuristic
function based on the number of iterations.

Step 6: Complete the search. Check if the termination conditions are met and calculate
the length of the process planning path using Equation (12).
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4. Model Verification and Analysis
4.1. Application of the Process Planning Model

(1) Division of Machining Units for Large Container Ship Propeller Shaft

The machining steps for the large container ship propeller shaft are roughly as follows:
blank machining, roughing, semi-finishing, stress relief treatment, finishing, drilling, and
checking. To improve the model’s practicality and minimize machining errors, we drew a
scaled model of the actual-sized shaft, retaining all machining steps. By subdividing the
shaft, the machining details of each step could be clearly depicted, as illustrated in Figure 2.
The shaft segments mainly included right flange f1, transition shaft end f2, front common
shaft end f3, composite shaft end f4, rear common shaft end f5, tail vertebral body f6, and
threaded shaft end f7. A detailed analysis of the machining steps for each shaft segment is
shown in Table 2.
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Table 2. Detailed machining attributes of each shaft end.

Shaft End Characteristics Machining Feature Unit Operation

f1

f1−1 Roughing, semi-finishing
f1−2 Boring, reaming
f1−3 Drilling
f1−4 Roughing, semi-finishing
f1−5 Roughing, semi-finishing
f1−6 Roughing, semi-finishing, finishing
f1−7 Roughing, semi-finishing, finishing

f2
f2−1 Roughing, semi-finishing, finishing
f2−2 Roughing, semi-finishing, finishing

f3 f3 Roughing, semi-finishing, finishing

f4

f4−1 Roughing, semi-finishing, finishing
f4−2 Roughing, semi-finishing, finishing
f4−3 Roughing, semi-finishing, finishing

f5 f5 Roughing, semi-finishing, finishing

f6 f6 Roughing, semi-finishing, finishing

f7

f7−1 Roughing
f7−2 Roughing
f7−3 Roughing
f7−4 Roughing, semi-finishing
f7−5 Drilling

(2) Initial Information Pheromone Distribution

While adhering to the four basic principles of process planning, it is also important to
consider the ‘concentration’ of each machining stage. For example, in Appendix A, if the
initial machining selection has the roughing unit m8 as the positioning reference for f1−5, at



J. Mar. Sci. Eng. 2024, 12, 841 8 of 19

this point, both the roughing unit m10 and the semi-finishing unit m11 for f1−6 can be chosen
simultaneously. This may lead to a lack of concentration at each machining stage. Therefore,
a hierarchical initial information pheromone distribution method needs to be adopted,
where the initial pheromones for the rough machining stage should be greater than those
for the semi-finishing stage, and the initial pheromones for the semi-finishing stage should
be greater than those for the finishing stage. In this study, the initial distribution weights
for pheromones satisfied the following: 1 ≥ δRoughing > δSemi Finishing > δFinishing > 0.

(3) Model Weight Coefficients

In the mathematical model for the process planning of large container ship propeller
shafts, weights represent the extent to which actual production conditions in the workshop
affect the process. Based on the actual workshop conditions, due to the large size of the
propeller shaft, changing the machining equipment will inevitably require the workpiece
to be re-clamped, which is very time-consuming. Therefore, the weight of machining
machines WM is the largest. The weights for machining fixtures WC and clamping positions
WCP are the second largest. Different machining stages will use different cutting parameters,
and the machining time will also vary. Therefore, the weight of machining stages WS ranks
third. In production, it is preferable to minimize the movement of the cutting tool along the
machining path and to machine from one end to the other as much as possible. Therefore,
the weight of the machining feature units WF ranks fourth. Tool changes during machining
have the shortest time, so the weight of machining tools WCT is the smallest. Specifically,
WM > WC/WCP > WS > WF > WCT . In this study, the total weight sum was set to 1,
and the actual values were determined based on the production line of the enterprise. For
example, WM = 0.3, WC = WCP = 0.2, WS = 0.15, WF = 0.1, WCT = 0.05.

(4) Machining Constraint Table

Each machining unit has a constraint table Rmx that stores the machining units that
must be performed before the current machining units. Based on the analysis of the
machining process for large container ship propeller shafts, constraint tables were set for
each machining unit, as shown in Table 3. Each pair forms a column, where ‘machining
units’ represent the machining units for large container ship propeller shafts, totaling
45 steps, and ‘constraint table’ signifies the constraint units of the machining units. Upon
the completion of machining a constraint unit from the constraint table, the corresponding
machining units will then have a certain probability of being selected. m8 and m43 are used
to machine the positioning reference holes on the left and right ends of the propeller shaft,
so m8 and m43 have no constraints in front of them and can be used as the starting positions
for machining.

The constraint table can guide the choices made by ants. First, select the initial
machining position in m8 or m43. If m8 is chosen, remove m8 from the constraint tables of
various machining units and bring out the machining units with empty constraint tables,
which are m5, m6, m9 and m10. Then, make a choice based on the calculated probabilities
and continue this process until all machining steps are completed. As shown in Figure 3.
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Table 3. Constraint table for each machining unit.

Machining Units
(mx)

Constraint Table
(Rmx )

Machining Units
(mx)

Constraint Table
(Rmx )

Machining Units
(mx)

Constraint Table
(Rmx )

m1 m5, m8 m16 m1 m31 m28
m2 m1 m17 m16 m32 m31
m3 m39 m18 m17 m33 m32
m4 m3 m19 m16 m34 m31
m5 m8 m20 m19 m35 m34
m6 m8 m21 m20 m36 m35
m7 m6 m22 m19 m37 m34
m8 / m23 m22 m38 m37
m9 m8 m24 m23 m39 m38
m10 m8 m25 m22 m40 m37
m11 m10 m26 m25 m41 m42
m12 m11 m27 m26 m42 m43
m13 m1, m10 m28 m25 m43 /
m14 m13 m29 m28 m44 m43
m15 m14 m30 m29 m45 m43

In each pair of columns, the former represents the machining units for large container ship propeller shafts, while
the latter represents the constraint units of the current machining units.

4.2. Parameter Optimization and Selection

The ant colony algorithm is primarily influenced by the calculation probability of
selecting path points and the method of updating pheromones. From Equations (1) and (3),
it can be seen that the ant colony algorithm has three main parameters: the heuristic factor
α, the expectation heuristic factor β, and the volatilization coefficient ρ. The range of values
for each parameter is shown in Table 4.

Table 4. Ranges of parameter values.

Parameter Value Ranges

α (0, 2]
β [4, 7]
ρ (0, 1)

To date, there is no comprehensive analysis method available to directly determine
the optimal parameter combination. Therefore, based on the practical issues of large
container ship propeller shaft process planning and the actual production circumstances
of the enterprise, we employed a single-factor control variable method. By systematically
altering one parameter at a time, we analyzed the individual impacts of each parameter
on algorithmic results, thereby determining the weighted optimal parameter combination.
The modeling environment was as follows: Windows 11 64-bit; processor: Intel (R) Core
(TM) i7-8750H; clock speed: 2.20 GHz; memory: 8 GB; algorithm simulation software:
PyCharm 2023.3.

The initial settings of parameters for the model simulation were as follows:
Ant_number = 100, Itermax = 200, Q = 100, β = 0.6, ρ = 0.3. The algorithm’s con-
vergence iterations and the best path length were tested for α values ranging from 0.7 to
2.0. The simulation experimental results are shown in Figure 4.

The value of the heuristic factor α has a significant impact on the ant colony algorithm.
A lower α weakens the effect of pheromones, promoting exploration of new paths but
delaying convergence. Conversely, a higher α strengthens path dependence, reduces
exploration of new routes, and facilitates local optima. From Figure 4, it can be observed
that when the information pheromone factor α is small, both algorithms have poor search
capabilities and are prone to getting stuck in local optima. As α gradually increases,
the search capabilities of both algorithms improve. Moreover, the improved ant colony
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algorithm not only maintains high search capabilities but also achieves faster convergence
compared to the traditional ant colony algorithm. When α is in the range of [1.0, 1.2], both
algorithms exhibit fast convergence and good search capabilities. Specifically, when α = 1.1,
the search capabilities and convergence speed are excellent, with the improved ant colony
algorithm converging in 22 iterations and achieving a global optimal path length of 7.85.
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In the same environment, the parameters were set as follows: Ant_number = 100,
Itermax = 200, Q = 100, α = 1.1, ρ = 0.3. The algorithm was tested for different values
of the expectation heuristic factor β ranging from 4.5 to 5.5, and the results are shown
in Figure 5.

A smaller value of the expectation heuristic factor β can lead to an unclear direction in
the ant colony algorithm, prolonging the search time and resulting in slow convergence.
On the other hand, a larger β may lead to premature convergence to local optimal solutions.
From Figure 5, it can be observed that when β is small, both algorithms have an unclear
search direction and slow convergence. As β gradually increases, both algorithms converge
faster but may produce suboptimal search results, possibly getting stuck in local optima.
When β is in the range of [4.9, 5.1], both algorithms exhibit strong guidance during the
search and achieve faster convergence. Specifically, when β = 5.0, the improved ant colony
algorithm converges in 29 iterations and achieves a global optimal path length of 7.8.

In the same experimental setup with α = 1.1 and β = 5, the algorithm’s performance
was tested for different values of the volatilization coefficient ρ ranging from 0.1 to 0.9, and
the results are shown in Figure 6.

A smaller value of the volatilization coefficient ρ leads to slow pheromone evaporation,
increasing the risk of getting stuck in local optimal solutions. Conversely, a larger ρ causes
rapid pheromone evaporation, affecting the utilization of previous search experiences and
slowing down algorithm convergence. From Figure 6, it can be observed that when ρ
is too small, both algorithms produce suboptimal search results, indicating that they are
trapped in local optima. As ρ gradually increases, the search capabilities of both algorithms
deteriorate, and the convergence speed decreases. When ρ is in the range of [0.2, 0.3], both
algorithms exhibit good search capabilities and convergence speed. Specifically, when
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ρ = 0.2, the improved ant colony algorithm converges in 30 iterations and achieves a global
optimal path length of 7.8.
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4.3. Comparison with Other Algorithms

When αϵ[1.0, 1.2], β ∈ [5.0, 5.2], and ρ ∈ [0.2, 0.3], the performance of the ant colony
algorithm is superior. To validate the effectiveness and superiority of this algorithm,
model simulation experiments were conducted with the following improved ant colony
algorithm parameters: Ant_number = 100, Itermax = 200, Q = 100, α = 1.1, β = 5.0,
ρ = 0.2. To eliminate randomness, ACA, IACA, genetic algorithm (GA), and particle
swarm optimization (PSO) were each tested ten times. The average optimal path value,
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average number of iterations, and average runtime for each algorithm over the ten tests
were calculated and are recorded in Table 5. It can be observed that, compared to GA,
ACA and IACA exhibit significant advantages in convergence speed and final convergence
results, indicating that ACA and IACA are relatively simpler and more controllable in
adjusting algorithm parameters. Compared to PSO, ACA and IACA demonstrate better
iteration stability, suggesting that ACA and IACA are less prone to being trapped in local
optima and thus escaping the iteration process. In comparison to ACA, IACA achieves
further improvements in convergence speed and iteration stability while also avoiding the
contradiction between convergence speed and susceptibility to local optima. Additionally,
to compare the initial search capabilities and convergence speeds of ACA and IACA, we
further analyzed the optimal iteration results of the two algorithms, as shown in Figure 7.

Table 5. Comparison of process planning.

Algorithm Optimal Path Length Optimal Path Mean Length Average Number of Iterations Average Run Time

ACA 7.8 8.06 136 108 s
IACA 7.8 7.8 29 23 s

GA 8.2 8.4 153 125 s
PSO 9.0 9.6 74 58 s
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From Figure 7 and Table 5, it can be observed that in the ten tests conducted, both
ACA and IACA achieve an optimal path value of 7.8. However, the latter exhibits stronger
stability in terms of the average optimal path value. The initial iteration’s optimal path
value for ACA differs from the average optimal path value by approximately 48% to
74%. Moreover, the average iteration counts and average running times for the ACA
are relatively high, indicating that the initial search of the ACA is highly blind and lacks
strong guidance for subsequent iterations, resulting in slow convergence. In contrast, the
initial iteration’s optimal path value for the IACA is significantly lower than that of ACA,
differing from the average optimal path value by approximately 15% to 27%. Additionally,
the average iteration count decreases by about 79%, and the average running time decreases
by approximately 83%. This suggests that the improved algorithm avoids the blind search
in the initial phase, leading to improved convergence speed.

The optimized process routes of the two algorithms were compared with the existing
enterprise process route, as shown in Table 6. It can be concluded that, in the current
machining process route for large container ship propeller shafts, tool changes occur
11 times, workpiece clamping is changed five times, and the machine tool is changed
once. The optimized machining process route reduces tool changes to 8 times, maintains
workpiece clamping changes at five times, and machine tool changes at 1 time. Moreover,
it reduces two workpiece rotations and includes two additional drilling operations in the
optimized route. However, during detailed machining, the optimization result of ACA
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involves tool movement from both ends towards the center, while IACA adopts a tool
path that starts from one end to the other and then reverses at the end of machining. This
reduces unnecessary tool movements during machining, improves the continuity of the
machining path, and makes the entire machining process more compact and efficient.

Table 6. Large container ship propeller shaft process planning.

Large Container Ship Propeller Shaft Process Planning

Existing

Roughing f7−4, Drilling f7−5, Roughing f7−3, Roughing f 7−2, Roughing f1−5, Roughing f1−4,
Drilling f1−3, Roughing f1−6, Roughing f1−1, Roughing f1−7, Roughing f2−1, Roughing f2−2,
Roughing f3, Roughing f4−1, Roughing f4−2, Roughing f4−3, Roughing f5, Roughing f6, Roughing f7−1,
Semi-finishing f1−5, Semi-finishing f1−4, Drilling f1−3, Semi-finishing f1−6, Semi-finishing f1−1,
Semi-finishing f1−7, Semi-finishing f2−1, Semi-finishing f2−2, Semi-finishing f3, Semi-finishing f4−1,
Semi-finishing f4−2, Semi-finishing f4−3, Semi-finishing f5, Semi-finishing f6, Semi-finishing f7−4,
Drilling f7−5, Finishing f1−6, Finishing f1−7, Finishing f2−1, Finishing f2−2, Finishing f3, Finishing f4−1,
Finishing f4−2, Finishing f4−3, Finishing f5, Finishing f6, Boring f1−2, Reaming f1−2

ACA

Roughing f7−4, Semi-finishing f7−4, Drilling f7−5, Roughing f7−3, Roughing f 7−2,
Roughing f1−5-Roughing f1−4, Semi-finishing f1−4, Semi-finishing f1−5, Drilling f1−3, Roughing f1−6,
Roughing f1−1, Roughing f2−1, Roughing f1−7,
Roughing f2−2-Roughing f3-Roughing f4−1-Roughing f4−2-Roughing f4−3, Roughing f5, Roughing f6,
Roughing f7−1, Semi-finishing f1−1, Semi-finishing f1−7, Semi-finishing f3, Semi-finishing f4−2,
Semi-finishing f2−2, Semi-finishing f2−1, Semi-finishing f1−6, Semi-finishing f5, Semi-finishing f4−1,
Semi-finishing f4−3, Semi-finishing f6, Finishing f6, Finishing f2−1, Finishing f3, Finishing f2−2,
Finishing f5, Finishing f1−6, Finishing f1−7, Finishing f4−2, Finishing f4−3, Finishing f4−1, Boring f1−2,
Reaming f1−2

IACA

Roughing f7−4, Semi-finishing f7−4, Drilling f7−5, Roughing f7−3, Roughing f 7−2,
Roughing f1−5-Roughing f1−4, Semi-finishing f1−4, Semi-finishing f1−5, Drilling f1−3, Roughing f1−6,
Roughing f1−1, Roughing f1−7, Roughing f2−1,
Roughing f2−2-Roughing f3-Roughing f4−1-Roughing f4−2-Roughing f4−3, Roughing f5, Roughing f6,
Roughing f7−1, Semi-finishing f6, Semi-finishing f5, Semi-finishing f4−3, Semi-finishing f4−2,
Semi-finishing f4−1, Semi-finishing f3, Semi-finishing f2−2, Semi-finishing f2−1, Semi-finishing f1−7,
Semi-finishing f1−1, Semi-finishing f1−6, Finishing f1−6, Finishing f1−7, Finishing f2−1, Finishing f2−2,
Finishing f3, Finishing f4−1, Finishing f4−2, Finishing f4−3, Finishing f5, Finishing f6, Boring f1−2,
Reaming f1−2

5. Benefit Analysis of Process Planning
5.1. Working Time Quota Analysis

The working time quota, also known as the time quota, refers to the time required to
complete the processing of parts according to the product processing process in a certain
technical state and production organization mode. After actual investigation, the work
time quota of this enterprise is generally composed of three parts: basic processing time,
auxiliary processing time, and worker rest time. The basic processing time is the time
required for dimension processing of parts on the machine tool, mainly including turning
time and drilling, boring time, etc. The auxiliary processing time is the time spent on
various auxiliary operations in the processing of parts, mainly including part measurement
time, part turning and loading and unloading time, fixture and tool replacement time, the
time for adjusting and cleaning the machine tool, etc.

In actual production, compared to the existing processing technology route of the
enterprise, when using the optimized processing technology route by IACA for production,
the number of parts turning and drilling is reduced, and the time for workers to move back
and forth at both ends of the axis is reduced when transitioning between rough machining
and semi-precision machining and between semi-precision machining and precision ma-
chining. Through the recording of actual production times, the fundamental machining
times during production using optimized machining process routes are presented in Table 7.
As shown in Table 7, the machining times for each machining stages of various segments of
the large container ship propeller shaft were statistically analyzed, and the machining times
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for each machining stage of the shaft were summed to obtain the fundamental machining
times for each machining stage of the shaft. Concurrently, practical machining tests were
conducted for all three machining schemes, and the machining times for each scheme were
recorded, as shown in Table 8.

Table 7. The basic processing time.

Shaft End Characteristics
Machining Stages

Roughing (min) Semi-Finishing (min) Finishing (min) Boring and Reaming (min)

f1

f1−3 17.7 / /

/
f1−1 f1−6 120 150 /

f1−4 76 95 /
f1−5 30 37.5 75
f1−2 / / 900

f2 81 101.3 202.5

/

f3 162.5 203.1 406.5
f4 595 743.8 1487.5
f5 230 287.5 575
f6 173 216.3 432.5

f7

f7−5 17.7 / /
f7−4 31.5 39.4 /

f7−1 f7−2 f7−3 33.5 / /
Basic Processing Time 1567.9 1873.9 3178.8 900

Table 8. Comparison of working time quotas for the three options.

Basic Processing Time (min) Auxiliary Processing Time (min)

Existing 7580.0 1148.4
ACA 7520.6 752.1
IACA 7520.6 712.1

From Tables 7 and 8, it can be concluded that in the basic processing time, both
the traditional ant colony algorithm and the improved ant colony algorithm optimized
processing routes reduce the number of drilling operations for f1 and f7 by two times,
resulting in a current drilling time of 35.4 min, saving approximately 59.4 min compared
to the existing enterprise process route. In the auxiliary processing time, the optimized
route reduces part turning by two times, saving approximately 300 min, and also reduces
tool changes by three times, saving about 96.3 min. The process route optimized by the
traditional ant colony algorithm saves about 455.7 min compared to the existing enterprise
process route. IACA further optimizes the tool path, effectively reducing tool movement
time, saving approximately 40 min again. Therefore, IACA saves about 415.7 min compared
to the existing enterprise process route.

5.2. Process Cost Analysis

Process cost generally refers to the manufacturing cost closely associated with the
production stage and the process. It consists of variable costs and fixed costs. Variable
costs mainly include labor wages, tool consumption expenses, etc., while fixed costs mainly
encompass equipment depreciation, maintenance fees, etc. When choosing among several
technically equivalent process options, it is common to compare the process costs of each
option, with the one with the lowest process cost considered the optimal solution.

The processing equipment used for large container ship propeller shafts are general-
purpose machine tools. Additionally, these propeller shafts are produced as single pieces,
so there is no need for specialized fixtures. Therefore, four cost factors, namely, machine
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operator wages, depreciation of general-purpose machine tools, tool maintenance costs,
and depreciation of general-purpose fixtures, were considered.

Machine operator wages:

CM = (TdZh / 60) × (1 + α) (14)

where Td represents the total time for a single unit, Zh is the unit time wage for machine
tool workers, and α is the additional wage rate for the compensation reward mechanism.

General machine tool depreciation cost:

CMd = PMRMTd/6000FωM (15)

where PM is the machine tool price, RM is the machine tool depreciation rate, F is the
machine tool working time, and ωM is the machine tool load factor.

Tool maintenance cost:
CCT = nPoTj/Te(n + 1) (16)

where n is the number of times a tool can be sharpened, Po is the cost of sharpening the
tool once, Tj is the basic machining time, and Te is the durability of the tool.

General fixture depreciation cost:

CCd = PCRCTd/6000FωC (17)

where PC is the fixture price, RC is the fixture depreciation rate, ωC is the utilization rate of
the fixture in production, and F is the fixture working time similar to the machine tool. As
shown in Table 9.

Table 9. Value of each process cost item.

Notation Value Unit Notation Value Unit

Zh 80 CNY/h n 5
α 10 % Po 3 CNY/times

PM 2,600,000 CNY Te 100 min
RM 10 % PC 40,000 CNY
F 1050 min RC 33 %

ωM 80 % ωC 100 %

Based on the calculations from the above formulas, the economic comparison of the
existing enterprise process route and the two optimized algorithms is presented in Table 10.
It can be observed that all the process costs for the optimized process routes are lower than
the current enterprise solution. Specifically, when comparing ACA and IACA in terms of
machine tool worker wages, the former decreases by CNY 668.4, while the latter decreases
by CNY 727.1. The depreciation cost of general machine tools decreases by CNY 23.5 for the
former and CNY 25.6 for the latter. Both algorithms result in a reduction of CNY 1.5 in tool
maintenance costs. As for the depreciation cost of general fixtures, the former decreases by
CNY 1 and the latter by CNY 1.1. In total, the process cost decreases by CNY 694.4 for the
former and CNY 755.3 for the latter. The improved ant colony algorithm reduces the cost
by an additional CNY 60.9 compared to the traditional ant colony algorithm.

Table 10. Comparison of the economics of the three options.

Machine Operator
Wages (CNY)

General Machine Tool
Depreciation Cost (CNY)

Tool Maintenance
Cost (CNY)

General Fixture Depreciation
Cost (CNY)

Existing 12,801.7 450.3 189.5 18.3
ACA 12,133.3 426.8 188.0 17.3
IACA 12,074.6 424.7 188.0 17.2
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6. Conclusions

In the face of a market characterized by complex multi-processes and extensive cus-
tomization of products, it is crucial to respond quickly and address the challenges of
process planning for intricate components or products. This study, after analyzing the
ACA’s application in solving process planning problems, focused on addressing issues such
as the algorithm’s blind initial search, contradictory convergence speed, and susceptibility
to local optimal solutions. Improvements were made to the initial pheromone distribution,
heuristic function update, and pheromone update methods in response to the challenges
posed by the traditional ant colony algorithm. The result was IACA, which was then ap-
plied to the process planning of large container ship propeller shafts. The main conclusions
are as follows:

1. Improved initial distribution of information pheromones: Based on the fundamental
principles of part process planning, a hierarchical distribution of pheromones is proposed,
reducing the initial search error by approximately 40%. This eliminates the initial search’s
randomness and provides better guidance for subsequent iterations.

2. Analysis of the role of heuristic functions in the ant colony algorithm: A mathemati-
cal model for calculating the heuristic function is introduced by comparing the similarities
and differences between machining units as a measure of distance. The introduction of a
decay factor ξ reduces the influence of the heuristic function on path selection in the later
stages, leading to a roughly 79% improvement in convergence speed.

3. Improved update mechanism for information pheromones: A reward–penalty
system is introduced, where ants that follow the optimal path are ‘rewarded’, while those
following the worst path are ‘punished’. This accelerates the algorithm’s convergence speed
while keeping the pheromone levels within specified bounds, preventing the algorithm
from getting stuck in local optima and experiencing premature stagnation.

4. Integration of process constraints: Real-world production constraints are considered,
and constraint tables are introduced for each machining unit based on the four fundamental
principles of part process planning and the actual production capabilities of the enterprise.
This allows the algorithm to perform process route iteration optimization in accordance
with the basic machining principles.

5. Benefit analysis: In practical production, the single-piece processing time for large
container ship propeller shafts is reduced by approximately 415.7 min, and the process cost
is reduced by approximately CNY 755.3. This demonstrates the feasibility and effectiveness
of applying the improved ant colony algorithm to the optimization of ship propulsion shaft
machining processes.
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Appendix A

Details of each machining unit of a propeller shaft for a large container ship.
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Machining
Unit

Machining
Feature Unit

Machining Stages Machining Tools Machining Fixtures
Clamping
Positions

Machining
Machines

m1 f1−1 Roughing Cutting tool 4225
Four-jaw chuck, lathe

f1−3 f7−2 Turning
machinesm2 f1−1 Semi-finishing Cutting tool 4225 f1−3 f7−2

m3 f1−2 Boring Boring tool Self-made special
fixture

f3 f5 Boring
machinesm4 f1−2 Reaming Reaming tool f3 f5

m5 f1−3 Drilling Drilling tool

Four-jaw chuck,
center rest

f3 f7−2

Turning
machines

m6 f1−4 Roughing Cutting tool 4225 f3 f7−2

m7 f1−4 Semi-finishing Cutting tool 4225 f3 f7−2

m8 f1−5 Roughing Cutting tool 4225 f3 f7−2

m9 f1−5 Semi-finishing Cutting tool 4225 f3 f7−2

m10 f1−6 Roughing Cutting tool 4225

Four-jaw chuck, lathe

f1−3 f7−2

m11 f1−6 Semi-finishing Cutting tool 4225 f1−3 f7−2

m12 f1−6 Finishing Cutting tool 4025 f1−3 f7−2

m13 f1−7 Roughing Cutting tool 4225 f1−3 f7−2

m14 f1−7 Semi-finishing Cutting tool 4225 f1−3 f7−2

m15 f1−7 Finishing Cutting tool 4025 f1−3 f7−2

m16 f2−1 Roughing Cutting tool 4225 f1−3 f7−2

m17 f2−1 Semi-finishing Cutting tool 4225 f1−3 f7−2

m18 f2−1 Finishing Cutting tool 4025 f1−3 f7−2

m19 f2−2 Roughing Cutting tool 4225 f1−3 f7−2

m20 f2−2 Semi-finishing Cutting tool 4225 f1−3 f7−2

m21 f2−2 Finishing Cutting tool 4025 f1−3 f7−2

m22 f3 Roughing Cutting tool 4225 f1−3 f7−2

m23 f3 Semi-finishing Cutting tool 4225 f1−3 f7−2

m24 f3 Finishing Cutting tool 4025 f1−3 f7−2

m25 f4−1 Roughing Cutting tool 4225 f1−3 f7−2

m26 f4−1 Semi-finishing Cutting tool 4225 f1−3 f7−2

m27 f4−1 Finishing Cutting tool 4025 f1−3 f7−2

m28 f4−2 Roughing Cutting tool 4225 f1−3 f7−2

m29 f4−2 Semi-finishing Cutting tool 4225 f1−3 f7−2

m30 f4−2 Finishing Cutting tool 4025 f1−3 f7−2

m31 f4−3 Roughing Cutting tool 4225 f1−3 f7−2

m32 f4−3 Semi-finishing Cutting tool 4225 f1−3 f7−2

m33 f4−3 Finishing Cutting tool 4025 f1−3 f7−2

m34 f5 Roughing Cutting tool 4225 f1−3 f7−2

m35 f5 Semi-finishing Cutting tool 4225 f1−3 f7−2

m36 f5 Finishing Cutting tool 4025 f1−3 f7−2

m37 f6 Roughing Cutting tool 4225 f1−3 f7−2

m38 f6 Semi-finishing Cutting tool 4225 f1−3 f7−2

m39 f6 Finishing Cutting tool 4025 f1−3 f7−2

m40 f7−1 Roughing Cutting tool 4225 f1−3 f7−2

m41 f7−2 Roughing Cutting tool 4225 f1−6 f5
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Machining
Unit

Machining
Feature Unit

Machining Stages Machining Tools Machining Fixtures
Clamping
Positions

Machining
Machines

m42 f7−3 Roughing Cutting tool 4225

Four-jaw chuck,
center rest

f1−6 f5

Turning
machines

m43 f7−4 Roughing Cutting tool 4225 f1−6 f5

m44 f7−4 Semi-finishing Cutting tool 4025 f1−6 f5

m45 f7−5 Drilling Drilling tool f1−6 f5
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