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2100 Gödöllő, Hungary; alhassani.leith@phd.uni-mate.hu
5 Department of Plant Protection, Omdurman Islamic University, Omdurman 14415, Sudan
6 Agribiotechnology and Precision Breeding for Food Security National Laboratory,

Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences,
2100 Gödöllő, Hungary
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Abstract: Okra (Abelmoschus esculentus L.) is a highly nutritious vegetable rich in vitamins, minerals,
and bioactive compounds, including polyphenols, offering numerous health benefits. Despite its
nutritional value, okra remains underutilized in Europe; however, its cultivation and popularity may
rise in the future with increasing awareness of its advantages. In agricultural practices, beneficial
soil microorganisms, such as arbuscular mycorrhizal fungi (AMF), Trichoderma spp., Streptomyces
spp., and Aureobasidium spp., play crucial roles in promoting plant health, enhancing agricultural
productivity together with improved crop nutritional value. This study aimed to investigate the
effects of individual and combined inoculation on the polyphenol content of okra fruits, as analyzed
by HPLC. Moreover, growth parameters and glutathione-S-transferase enzyme (GST) activities of
okra leaves were also estimated. Tested microorganisms significantly increased the yield of okra
plants except for A. pullulans strain DSM 14950 applied individually. All microorganisms led to
increased GST enzyme activity of leaves, suggesting a general response to biotic impacts, with
individual inoculation showing higher enzyme activity globally compared to combined treatments.
According to the polyphenol compound analysis, the application of tested microorganisms held
various but generally positive effects on it. Only the combined treatment of F. mosseae and Streptomyces
strain K61 significantly increased the coumaric acid content, and the application of Aureobasidium
strain DSM 14950 had a positive influence on the levels of quercetin and quercetin-3-diglucoside. Our
preliminary results show how distinct polyphenolic compound contents can be selectively altered via
precise inoculation with different beneficial microorganisms.

Keywords: okra; Funneliformis mosseae; Trichoderma spp.; Aureobasidium spp.; Streptomyces spp.; polyphenol

1. Introduction

Okra (Abelmoschus esculentus L.) is a significant member of the Malvaceae family. It
originated in Ethiopia; today, it is still a widely cultivated and consumed vegetable plant
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in tropical and sub-tropical regions [1]. Although the production of okra in Europe is
not significant, it has increased in recent years, reaching 8094.37 t in 2022. Because of
its origin, okra is frost-sensitive and vulnerable to drought conditions, and it thrives in
regions characterized by warm climates and ample sunlight [2–4]. Its optimal germination
temperature ranges between 28 and 32 ◦C; therefore, some warmer areas of Europe are also
suitable for okra cultivation.

Okra pods have gastronomical and health benefits related to their rich nutrient content
and essential mineral content [5–8]. They abound in microelements, like Fe, Zn, Mn, and
Ni [9]; moreover, they are also rich in various vitamins, such as vitamins C, B, E, and
K [10]. Both vitamins C and E maintain antioxidant functions and play a vital role in
reducing and controlling oxidative stress [11,12]. In addition, okra fruits are also rich in
polyphenols [13], which represent a diverse group of naturally occurring compounds found
abundantly in plants, characterized by the presence of multiple phenolic rings, and are
known for their antioxidant properties [14,15]. Polyphenols have been extensively studied
for their potential health benefits, including anti-inflammatory, anticancer, antimicrobial,
and cardiovascular protective effects. Their antioxidant attribution and their abundance
establish them as one of the major bioactive compounds of okra fruits [16–19].

Okra plants are not widely known and consumed in Europe; however, due to the
beneficial properties of this vegetable previously described, its popularity and relevant
outcomes will increase in the future. This opportunity requires the gathering of information
about the cultivation of okra plants, and considering global climatic trends, it is pivotal
to broaden the knowledge about the application of sustainable methods. Among these
technologies, there is a popular method of using beneficial soil microorganisms which play
crucial roles in promoting plant health and enhancing agricultural productivity. These
microorganisms have an impact on plants through various mechanisms, both direct and
indirect ways to influence nutrient acquisition, disease suppression, and stress tolerance.
Among the beneficial fungi, arbuscular mycorrhizal fungi (AMF) represent a major part of
plant–microbe interactions according to their abundance and great beneficial impacts [20].
Furthermore, they also improve the secondary metabolite production and nutritional values
of different crops [21]. Another beneficial fungus, Trichoderma asperellum, generally occurs in
soil, as does Streptomeyces griseoviridis, a Gram-positive bacterium; besides their antagonistic
trait, their saprophytic nature is also well-known. Both these genera are characterized
by the production of secondary metabolites, which provides opportunities for practical
applications [22,23]. In addition to these biocontrol microorganisms, Aureobasidium pullulans
has also emerged as a new alternative, further expanding the existing possibilities [24].

In our study, we inquire if these microorganisms’ combined application with AMF
shows possible synergistic combinations despite the fact that a major obstacle to beneficial
impacts may be their antagonistic properties. Moreover, we aimed to gain deeper insight
into how different inoculants influence the quantity of polyphenol components.

2. Materials and Methods
2.1. Plant Material and Maintaining the Strains

The commercial seeds of okra (Abelmoschus esculentus L. ‘Moench’ var. Lady Finger F1)
originated from a company (Agrimax group S.L.U, Barcelona, Spain).

Arbuscular mycorrhizal (AM) fungi, based on spore morphology and molecular
methods, were identified as Funneliformis mosseae (Glomerales, Glomeraceae). This strain
originated from the collection of the Department of Microbiology and Applied Biotech-
nology of the Hungarian University of Agriculture and Life Sciences, Hungary. F. mosseae
was propagated on maize (Zea mays L. ‘Golda F1’) growing on sterilized peat (Klasmann
TS3, 100 mg L−1 P2O5) and sand 1:3 (v/v) substrate for three successive propagation cycles,
each lasting 5 months. The most probable number (MPN) of infective propagules (approxi-
mately 35 infective propagules g−1) was determined following the method of Feldmann
and Idczack [25].
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Trichoderma asperellum strain T34 of a filamentous fungus, a commercial product named
Xilon (Kwizda Agro GmbH, Wien, Austria), was selected for this research. It was cultured
on Potato Dextrose Agar medium (Difco PDA, 20 g/L dextrose, 15 g/L agar, and 4 g/L
potato starch) at 25 ◦C (ambient temperature and illumination) for a week.

Aureobasidium pullulans strain DSM 14950 originated from Blossom Protect (SAN
Agrow Holding GmbH, Herzogenburg, Austria), a commercial product. It was cultured
on Potato Dextrose Agar medium (Difco PDA, 20 g/L dextrose, 15 g/L agar, and 4 g/L
potato starch).

Streptomyces strain K61, previously S. griseoviridis, was from Lalstop K61 WP (formerly
Mycostop, Danstar Ferment AG, Zug, Switzerland), which is also a commercial product.
We used dextrose, 15 g agar, and 4 g potato starch in 1 L of distilled and bacterial media,
Nutrient Agar (NA), 5 g of peptic digest of animal tissue, 3 g of beef extract, and 15 g of
agar in 1 L of distilled media to subculture it.

2.2. Experimental Design

The experiments were conducted during the summer of 2022 in the experimental
station belonging to the Plant Protection Institute—Hungarian University of Agriculture
and Life Sciences (MATE), located at 2100 Gödöllő, Pest, Hungary (coordinates: 47.594315,
19.368984).

The okra plants were initially cultivated in a greenhouse environment, which is
renowned for maintaining temperature conditions typically ranging between 18 and 35 ◦C,
and the duration of illumination was 12–14 h of light per day in a greenhouse. The applied
soil type in this experiment was sterilized sand mixed with horticultural soil (Klasmann
TS3, 100 mg L−1 P2O5) 3:1 (v/v); the juvenile plants were cultivated in small pots, and
subsequently, they were transferred to bigger pots containing 2 kg of sterilized soil mixture
with one plant in each pot. Soil pH was 6.7. Pots were placed in glasshouse benches in a
completely randomized design for each treatment. The plants were subjected to a watering
regimen, with irrigation occurring every two days or as needed, by monitoring the moisture
content of the soil.

Plants were treated with three microorganism strains and AMF individually and in
combination. The experiment setup contained 11 replicates of okra plants per treatment.

AMF inoculum was introduced to okra plants through an inoculation process involv-
ing the addition of 10 g mycorrhizal inoculum containing approximately 350 infective
propagules per plant. The control plants received the same amount of inoculum after it
was sterilized three times.

Spore suspensions (4.5 × 106 spores mL−1, 8.8 × 106 spores mL−1, and 1.1 × 106

spores mL−1, respectively) of T. asperellum strain (T34), A. pullulans strain (DSM 14950), and
S. griseoviridis (K61) were prepared after cultivation on PDA medium or Nutrient Agar at
25 ◦C for 7 days. Plants were irrigated with the respective suspensions at 20 D when they
had at least nine or more unfolded leaves on the main shoot.

Plants were harvested after 75 days.

2.3. Determination of the Root Colonization by Arbuscular Mycorrhizal Fungi

After the 75-day-old plants were harvested, root samples of 5 plants per treatment
were randomly taken to identify mycorrhiza colonization of the root. Root samples of okra
plants were washed thoroughly with tap water and then cut into 1 cm long pieces. The
roots were placed in a 10% aqueous solution of KOH (w/v). Roots and KOH were heated
in a water bath at 90 ◦C for 60 min; then, the solution was decanted, and the roots were
washed with running water; after that, the roots were washed with 5% vinegar (acetic
acid) for 1–2 min and put in 5% ink (Pelikan blue), and then the roots and the ink were
boiled for 2 min [26]. Root colonization was evaluated through visual observation using a
stereomicroscope with a magnification of 100×. To determine the colonization, the gridline
intersection method was used [27]. This involved observing the presence or absence of
mycorrhizal structures at the intersections between the root fragments and the gridlines.
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2.4. Assessment of the Growth Parameters

The shoot and root fresh weight (FW) of each sample were weighed after harvesting
(75D), and then each sample was dried in a hot-air oven at 70 ◦C for 2 days to determine its
dry weight (DW).

The yield of okra can be measured in terms of the quantity of pods harvested per
treatment. Fruit was collected from the plants between the 54th and 75th days.

2.5. Determination of Glutathione-S-Transferase Enzyme Activity

During the sampling process (D60) for measuring glutathione-S-transferase (GST)
enzyme activity, plant leaves (the third leaf from the top of the plant, which is healthy)
were collected and stored at −80 ◦C until utilization.

Leaf tissue (500 mg) was suspended in 100 µL of Cell Lysis Buffer; then, leaves were
homogenized with a mortar and pestle. Samples were centrifuged for 10 min at 4 ◦C and
13,300 rpm using a cold microcentrifuge to remove any insoluble material. The supernatant
was transferred into a clean tube and kept on ice. GST activity was measured based on
the method of Habig et al. [28]. The soluble protein level of all extracts was determined
according to the method of Bradford [29].

2.6. HPLC Analysis of the Polyphenol Compounds

For the purpose of conducting phenol analysis, the fruit of the okra plants was physi-
cally harvested by handpicking every two to three days, starting from the commencement
of the flowering and fruiting period. It was then preserved in a biotechnology laboratory
of MATE at a temperature of −20 degrees Celsius.

Then, 300 mg of lyophilized (freeze-dried) whole okra fruits was taken and crushed
in a crucible mortar in the presence of 1–2 g of quartz sand. The phenolic compounds
were extracted by adding methanol containing 2% orthophosphoric acid. The macerate
was then transferred to a centrifuge tube and subjected to ultrasonication for 15 min
at 40 ◦C in a water-bath ultrasonic device (model RK-165-BH Bendelin Sonorex, Berlin,
Germany) followed by mechanical shaking at room temperature for 20 min. The extract
was centrifuged for 5 min at 5000 rpm (M-Universal, MPW Med. Instrument, Warsaw,
Poland). The supernatant was decantated into a round-bottom flask, and the solvent was
evaporated to dryness under vacuum at 45 ◦C. The residues were redissolved in 5 mL of
1:1 methanol/L% orthophosphoric acid and finally purified through a 0.45 µm, 25 mm
cellulose acetate syringe filter before injection into the HPLC apparatus.

A Hitachi Chromaster HPLC instrument (Tokyo, Japan) containing a Hitachi Chro-
master Model 5160 gradient pump (Tokyo, Japan), a Hitachi Chromaster Model 5260
autosampler, a Hitachi Chromaster Model 5310 column oven (Tokyo, Japan), and a Hitachi
Chromaster Model 5430 diode-array detector (Tokyo, Japan) was used with Agilent Open-
Lab EZChrom A.04.10 software (Santa Clara, CA, USA) for operation and data processing.

The separation of phenolic compounds was performed on an Ascentis phosphor-
conditioned C18 phase (C18-PCP, from Supelco, Bellefonte, PA, USA) with gradient elution
of 1% ortho-phosphoric acid (A) and acetonitrile (B) according to a recently developed
protocol (under publication). The gradient elution started with 1% B in A, changed to 20%
B in 20 min, stayed isocratic for 10 min, changed to 30% B in 5 min, stayed isocratic for
10 min, and finally turned to 1% B in 5 min. The DAD detection was between 190 nm and
700 nm. The quantification was based on recording the area at the maximum absorbance
wavelength of each compound and relating it to that of the standard solution.

Stock solutions for different phenolics (Sigma-Aldrich via Merck, Budapest, Hungary)
were prepared by dissolving 2–3 mg in 10 mL absolute ethanol or methanol and diluted
10 times with 40% ethanol in 1% ortho-phosphoric acid. The working solutions were used
for calibration curves, identification, and quantification of phenolic compounds; in case no
standard was available, the compounds were tentatively identified based on a comparison
of their spectral characteristics and chromatographic behavior with literature data [30–32].
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2.7. Statistical Analysis

RStudio 2024.04.0+735 software was used for statistical analysis. All data were evalu-
ated by one-way analysis of variance (ANOVA) with various microorganism applications.
Means were compared by Tukey post hoc test at p < 0.05, and Pearson correlation coeffi-
cients (R) among physiological parameters, GST enzyme activity, and polyphenol contents
of okra fruits were calculated. In addition, PCA was carried out to identify patterns, i.e.,
interactions among the studied variables and treatments, in the polyphenolic data of okra
fruits treated with different beneficial microorganisms and their combinations. The results
of the statistical analysis are presented in Tables A1–A5 in the Appendix A.

3. Results
3.1. AMF Colonization

The plants inoculated with arbuscular mycorrhizal fungi showed an appropriate level
of colonization (Figure 1); applying T. asperellum strain T34 (M + T) or A. pullulans strain
DSM 14950 (M + A) slightly decreased the colonization level; however, the application
of S. griseoviridis strain K61 (M + S) did not influence mycorrhizal presence. The highest
colonization level was reached by using AMF individually (M) and AMF combined with
S. griseoviridis strain K61 and was 84.68% and 85.16%, respectively.
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Figure 1. Root colonization level of the okra plants inoculated with arbuscular mycorrhizal fungi. M:
F. mosseae; M + T: F. mosseae and T. asperellum strain T34; M + S: F. mosseae and S. griseoviridis strain K61;
M + A: F. mosseae and A. pullulans strain DSM 14950. Mean values followed by the same alphabets
did not differ significantly based on Tukey’s test (p < 0.05).

3.2. Fresh and Dry Weight of Plant and Yield Quality

According to our results, the treatments in which we applied AMF increased the
plants’ fresh and dry weight (Figure 2). When we applied only T. asperellum strain T34 (T),
S. griseoviridis strain K61 (S), or A. pullulans strain DSM 14950 (A), the treatment did not
have a significant impact on the weights compared to the control plants (C). In the case of
the combined treatments, the beneficial effect of the AMF prevailed; when it was applied
with T. asperellum strain T34 (M + T) or A. pullulans strain DSM 14950 (M + A), the measured
shoot and root weights were the same as when we applied AMF individually (M); therefore,
we did not observe the antagonist effect of the other fungi. When we applied AMF and
S. griseoviridis strain K61 (M + S) in combined treatment, we recorded lower weight data
compared to the plants that were inoculated only with AMF.
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Figure 2. Average fresh and dry weight of the okra plants’ shoots and roots. C: no treatment;
M: F. mosseae; T: T. asperellum strain T34; S: S. griseoviridis strain K61; A: A. pullulans strain DSM 14950;
M + T: F. mosseae and T. asperellum strain T34; M + S: F. mosseae and S. griseoviridis strain K61; M + A:
F. mosseae and A. pullulans strain DSM 14950. Mean values followed by the same alphabets did not
differ significantly based on Tukey’s test (p < 0.05).

According to our results, the yield of the okra plants is significantly elevated by
the applied microorganisms (Figure 3), except for the treatment in which we applied
A. pullulans strain DSM 14950 individually (A). This yeast-like fungus also had a negative
effect on the beneficial impact of the AMF; in the combined treatment (M + A), we did not
record as high a yield as the other cases.
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Figure 3. The average yield of the okra fruits/plants. C: no treatment; M: F. mosseae; T: T. asperellum
strain T34; S: S. griseoviridis strain K61; A: A. pullulans strain DSM 14950; M + T: F. mosseae and
T. asperellum strain T34; M + S: F. mosseae and S. griseoviridis strain K61; M + A: F. mosseae and
A. pullulans strain DSM 14950. Mean values followed by the same alphabets did not differ significantly
based on Tukey’s test (p < 0.05).
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3.3. GST Enzyme Activity

We observed elevated levels of GST enzyme activity when we applied beneficial
microorganisms (Figure 4). Combined treatments also increased GST enzyme activity,
although when we applied AMF and S. griseoviridis strain K61 together, they did increase
the GST enzyme activity compared to the control plants (C) but not as much as other
treatments. Further studies are needed to broaden the knowledge about the interaction
between the applied microorganisms and their effect on the GST enzyme activity.
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Figure 4. GST enzyme activity in the leaf of the okra plants. C: no treatment; M: F. mosseae; T: T. as-
perellum strain T34; S: S. griseoviridis strain K61; A: A. pullulans strain DSM 14950; M + T: F. mosseae
and T. asperellum strain T34; M + S: F. mosseae and S. griseoviridis strain K61; M + A: F. mosseae and
A. pullulans strain DSM 14950. Mean values followed by the same alphabets did not differ significantly
based on Tukey’s test (p < 0.05).

3.4. Effects of Biotic Treatments on Phenolic Compounds of Fruit

One of the important objectives of the present work is to investigate the effect of
mycorrhiza alone and in combination with microbes on the content of polyphenols in
okra fruits. The HPLC protocol applied to analyze polyphenols from the whole okra fruit
allowed for excellent separation of the main compounds and their derivatives, mainly
dimers and glycosides (Figure 5). To make the discussion easier and more meaningful, the
obtained results are arranged in groups for the main compounds.

Figure 6 shows the effect of mycorrhiza and antagonistic microorganisms on the
content of kaempferol derivatives in the whole okra fruit. The combination of arbuscular
mycorrhizal fungi with other microorganisms in different treatments (M, T, S, M + T, M + S,
M + A) caused a significant increase in the level of okra fruit phenols as compared to
the control treatment (C). The results presented in Figure 6 demonstrate the effects of
various treatments on kaempferol content in okra fruit, in conjunction with arbuscular
mycorrhizal fungi and other microorganisms. Figure 6 shows the impact of the combination
of mycorrhiza and microbe strains on the okra in increasing the percentage of fruit phenols
(kaempferol derivatives). The inoculation of the plants with T. asperellum strain T34 (T),
mycorrhiza fungi (M), Streptomyces strain K61 (S), M + S, M + T, M + A, and A. pullulans
strain DSM 14950 (A) increased the content of kaempferol by 38%, 29%, 27%, 22%, 20%,
17%, and 14%, respectively, compared with the control, and these increases were highly
significant. The highest increase in the content of the kaempferol derivatives was recorded
for T treatment.
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Figure 5. HPLC profile of phenolic compounds extracted from lyophilized okra fruits and separated
on C18-PCP column with gradient elution of acetonitrile in 1% orthophosphoric acid. Detection was
at 319 nm. Peak identification is shown in Table A6 in the Appendix A.
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Figure 6. Effect of AMF and antagonistic microorganisms on kaempferol derivatives in okra fruit.
C: no treatment; M: F. mosseae; T: T. asperellum strain T34; S: S. griseoviridis strain K61; A: A. pullulans
strain DSM 14950; M + T: F. mosseae and T. asperellum strain T34; M + S: F. mosseae and S. griseoviridis
strain K61; M + A: F. mosseae and A. pullulans strain DSM 14950. Mean values followed by the same
alphabets did not differ significantly based on Tukey’s test (p < 0.05).

The results presented in Figure 7 demonstrate the response of coumaric acid deriva-
tives to various treatments. Such important polyphenolic compounds exist in okra fruits
in a free form and as coumaroyl-hexoside. The treatments of M + S and M + A showed
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an increase in the content of the two derivatives as compared to the control group. It is
evident that a highly significant increase of coumaric acid and coumaroyl hexoside was
recorded for treatments of M + A and M + S, respectively. As compared to the control,
other treatments either decreased or had no significant effect on the level of coumaric acid
derivatives. The results showed that the plants’ inoculation with microbes increased the
level of coumaroyl derivatives by 43%, 22%, 12%, 9%, and 7% with M + A, M + S, M, S, and
A, respectively. As for T. asperellum strain T34, no significant effect on coumaric acid in the
okra plant was noticed.
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Figure 7. Effect of AMF and antagonistic microorganisms on coumaric acid and coumaroyl hexoside
content in okra fruit. C: no treatment; M: F. mosseae; T: T. asperellum strain T34; S: S. griseoviridis strain
K61; A: A. pullulans strain DSM 14950; M + T: F. mosseae and T. asperellum strain T34; M + S: F. mosseae
and S. griseoviridis strain K61; M + A: F. mosseae and A. pullulans strain DSM 14950. Mean values
followed by the same alphabets did not differ significantly based on Tukey’s test (p < 0.05).

Quercetin was found to exist in the extract of the whole okra fruit as quercetin-3-o-
glucoside, quercetin-di-glucoside, and quercetin-3-O-(melanoyl)glucoside. The impact of
the different treatments on the quantity of quercetin derivatives is shown in Figure 8. It is
of interest that A. pullulans strain DSM 14950 (A) treatment resulted in a highly significant
increase in the average content of quercetin, which was found to be due to higher activation
of quercetin-3-diglucoside biosynthesis. Interestingly, the combination of mycorrhiza with
A. pullulans strain DSM 14950 (M + A) yielded fruits with significantly higher levels of
quercetin 3-diglucoside as compared to other treatments, but not as high as those recorded
for A. pullulans strain DSM 14950 alone.

Distinct patterns were found in the accumulation of chlorogenic acid–catechin–glucoside
phenols in okra fruit under the influence of arbuscular mycorrhizal fungi and antagonistic
microorganisms M, T, A, and S and the combination of AMF with other microorganisms:
M + T, M + A, and M + S. Quantitative measurements allowed for the characterization of
phenolic content, with specific attention to variations induced by the microbial treatments.
The biotic treatments with M, M + T, M + S, Sg, M + A, T, and A increased the level of
these polyphenols by 163%, 116%, 86%, 79%, 63%, 29%, and 5%, respectively, and it was
found that M and M + T treatments significantly increased the content of chlorogenic
acid–catechin dimers in okra fruits as compared to the control (Figure 9).
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Figure 8. Impact of different biotic treatments on the content of total quercetin derivatives (a) and
quercetin 3-diglucoside (b) in okra fruits. C: no treatment; M: F. mosseae; T: T. asperellum strain T34;
S: S. griseoviridis strain K61; A: A. pullulans strain DSM 14950; M + T: F. mosseae and T. asperellum strain
T34; M + S: F. mosseae and S. griseoviridis strain K61; M + A: F. mosseae and A. pullulans strain DSM
14950. Mean values followed by the same alphabets did not differ significantly based on Tukey’s test
(p < 0.05).
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Figure 9. Effect of AMF and antagonistic microorganisms on chlorogenic acid–catechin–glucoside
in okra fruit. C: no treatment; M: F. mosseae; T: T. asperellum strain T34; S: S. griseoviridis strain K61;
A: A. pullulans strain DSM 14950; M + T: F. mosseae and T. asperellum strain T34; M + S: F. mosseae and
S. griseoviridis strain K61; M + A: F. mosseae and A. pullulans strain DSM 14950. Mean values followed
by the same alphabets did not differ significantly based on Tukey’s test (p < 0.05).
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It is evident from the results presented in Figure 10 that all treatments of mycorrhiza
alone or combined with other microbial strains, except for the combination of AMF with
S. griseoviridis strain K61 (M + S), promoted the biosynthetic pathways of sinapic acid
derivatives as compared to the control treatment. The highest increase in the content of
such dimers was found in fruits of okra treated with AMF combined with A. pullulans
strain DSM 14950.
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Figure 10. Effect of AMF and antagonistic microorganisms on total content of sinapoyl feruloyl
derivatives in okra fruit. C: no treatment; M: F. mosseae; T: T. asperellum strain T34; S: S. griseoviridis
strain K61; A: A. pullulans strain DSM 14950; M + T: F. mosseae and T. asperellum strain T34; M + S:
F. mosseae and S. griseoviridis strain K61; M + A: F. mosseae and A. pullulans strain DSM 14950. Mean
values followed by the same alphabets did not differ significantly based on Tukey’s test (p < 0.05).

In Figure 11, the synergistic impact of the combined application of mycorrhiza and
other microorganisms on di-caffeoylquinic acid levels in okra fruits is depicted. All
treatments except S and M + S treatments showed significantly higher contents of di-
caffeoylquinic acid in okra fruits. The highest increase in the concentration of this polyphe-
nol was found in M, M + T, and M + A with no significant variation between them in
their impact on di-caffeoylquinic acid. In particular, the S-type bacterial inoculation had a
remarkable negative impact on the metabolic pathway of this polyphenol, most probably
due to the partial inhibition of the enzymes involved in the biosynthesis processes of
di-caffeoylquinic acid. The combination of S with AMF slightly moderated the negative
effect of S on di-caffeoylquinic acid formation in okra fruit; however, the difference was
not significant.

Principal component analysis of individual polyphenols was performed, and its result
is shown in Figure 12. The first two principal components (PC1 and PC2) explain 59.7% of
the total variation. Three components showed eigenvalues higher than 1 (Table A4 in the
Appendix A). PC1, covering 33.5% of the total variation, had negative associations with
quercetin and quercetin-3-diglucoside and positive associations with coumaric acid and
chlorogenic acid. In addition, 26.2% of the total variance was covered by PC2, which was
positively influenced by kaempferol, coumaroyl hexoside, chlorogenic acid, sinapoyl, and
di-caffeylquinic acid (Table A5 in the Appendix A).
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Figure 11. Effect of AMF and antagonistic microorganisms on di-caffeoylquinic acid in okra fruit.
C: no treatment; M: F. mosseae; T: T. asperellum strain T34; S: S. griseoviridis strain K61; A: A. pullulans
strain DSM 14950; M + T: F. mosseae and T. asperellum strain T34; M + S: F. mosseae and S. griseoviridis
strain K61; M + A: F. mosseae and A. pullulans strain DSM 14950. Mean values followed by the same
alphabets did not differ significantly based on Tukey’s test (p < 0.05).
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treatment; M: F. mosseae; T: T. asperellum strain T34; S: S. griseoviridis strain K61; A: A. pullulans strain 
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Figure 12. Principal component analysis of individual polyphenols in the fruits of okra plants. C: no
treatment; M: F. mosseae; T: T. asperellum strain T34; S: S. griseoviridis strain K61; A: A. pullulans strain
DSM 14950; M + T: F. mosseae and T. asperellum strain T34; M + S: F. mosseae and S. griseoviridis strain
K61; M + A: F. mosseae and A. pullulans strain DSM 14950.
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The biplot demonstrated relatively clear discrimination among the groups of the
control treatment and the treatments with beneficial microorganisms. Differences among
A, C, and M + S groups were discriminated by PC1, while PC2 distinguished between the
beneficial microbes and the control treatment.

Coumaric acid content showed a strong negative correlation with the sinapoyl, quercetin-
3-diglucoside, and quercetin contents of the okra fruits according to the Pearson correlation
analysis (Table A3 in the Appendix A). There were positive correlations between kaempferol
and chlorogenic acid, as well as between sinapoyl and coumaroyl hexoside.

Some of the polyphenolic compounds of the okra fruit showed a strong correlation with
the yield (Table A3 in the Appendix A); kaempferol and chlorogenic acid had a positive
association; meanwhile, quercetin-3-diglucoside and quercetin had a negative connection with
it. The kaempferol and the sinapoyl content showed a positive correlation with the GST enzyme
activity, while in the case of coumaric acid content, their connection was described negatively.
Obviously, strong positive relationships were also found between all the growth parameters.

4. Discussion

Okra is a highly nutritious vegetable due to its rich vitamin and mineral content. Fur-
thermore, the presence of bioactive compounds, including polyphenols, offers numerous
advantageous impacts on human health. However, despite its nutritional value and poten-
tial benefits, okra is not widely consumed in Europe, but its cultivation and popularity may
increase in the future with growing awareness of its opportunities; therefore, it is pivotal
to gather more scientific results about how cultivation methods influence its contents of
beneficial secondary metabolites. Vegetable plants like okra are exposed to several biotic
and abiotic factors that influence their secondary metabolic pathways and thereby alter the
quantity and quality of their bioactive compounds [33]. In our work, well-known beneficial
microorganisms like F. mosseae, T. asperellum strain T34, S. griseoviridis strain K61, and
A. pullulans strain DSM 14950 and their combinations were applied to test their influence
on okra’s growth and polyphenol content.

Among the applied microorganisms, F. mosseae and T. asperellum strain T34 showed
the best plant-growth-promoting effect, similar to the work of Ali et al. and Mwangi
et al. [34,35]. These tendencies were manifested both in individual and combined treatments.
Interestingly, mixed inoculation always caused higher growth responses than separate
inoculation, and a synergistic relationship between inoculants could be observed, but not for
M + T. Some references also highlight that microorganisms living in the rhizosphere could
influence the expression of plant–AMF symbiosis [36–38]. Estimating the root colonization
together with the growth parameters of okra, our results confirmed that the antagonism of
Trichoderma strain T34 against AMF could be compensated for by the saprophytic ability
of the mentioned fungi. The degradation of organic matter in the soil and the release of
nutrients by Trichoderma are well-known [39,40], and the bridge offered by the external
mycelium of AMF between the plant and nutrient-rich patches provides support for the
plant. In this way, even the putative negative effects of biocontrol strains, like Trichoderma
spp., can be compensated for.

Different classes of polyphenols, including flavonoids (e.g., flavonols, flavanols,
flavones, flavanones, anthocyanins), phenolic acids (e.g., hydroxybenzoic acids, hydrox-
ycinnamic acids), and other polyphenols (e.g., lignans, stilbenes), are important components
of okra fruits [41]. Although there are some studies about the polyphenol content of okra
fruits inoculated with or without AMF [42–44], our work is novel in the scope of changes in
various polyphenols in the fruit of okra under the influences of different microorganisms.

Our preliminary results, based on PCA, clearly showed that the estimated polyphenol
profile can be altered by the applied microorganisms. Coumaric acid, a well-known
antioxidant, increased significantly only with the combined treatment of F. mosseae and
S. griseoviridis strain K61. This finding is contradictory to other studies that reported
a positive effect of AMF on coumaric acid [45,46], where different plant species, like
cucumber (Cucumis sativus L.) or strawberry (Fragaria × ananassa Duch.), and AMF were
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used. This result highlights that different plant and AMF species isolates can modulate
plant metabolites on distinct levels.

Another important polyphenol is quercetin, which has antioxidant characteristics and
is also influenced by AMF [47]. Eftekhari et al. presented a generally positive effect on
quercetin using three different AMF strains and their combinations on grapes [48]. We
were not able to confirm these results for okra in the presence of one AMF strain. But at
the same time, the combined treatment of F. mosseae and A. pullulans strain DSM 14950
increased significantly the level of quercetin-3-diglucoside compared to other treatments.
Furthermore, the individual application of A. pullulans strain DSM 14950 led to more
elevated quercetin and quercetin-3-diglucoside contents.

As it is known, secondary metabolites in general are essential for the defense mechanism
of plants and can be influenced by microorganisms, like AMF [49]. These compounds, released
by both plants and AMF, act as signaling molecules during the symbiotic interaction between
plants and AMF. Plants’ responses to different stress factors cause secondary metabolism alter-
ations, resulting in changes not only in polyphenol compounds but also in other metabolites,
such as terpenoids [50,51]. Our GST enzyme activity measurements prove that the okra plants
detected the presence of all the applied microorganisms as a slight biotic stress factor that
resulted in elevated enzyme concentrations compared to the control treatment. The observed
negative correlation between GST enzyme activity and coumaric acid indicates that the cause
of this is the antioxidant activity of coumaric acid or the possibility that one monomer from
the enzyme family of GST (4-CA) binds p-coumaric acid [52].

Our results highlight the potential benefits of utilizing these microorganisms in combina-
tion with mycorrhiza as a means of enhancing okra fruit phenolic content and productivity.

5. Conclusions

The aim of this study was to assess how the tested biocontrol microorganisms affect
okra growth with a specific focus on the production of polyphenols in the fruit. Our
preliminary results indicate that all tested microorganisms had various but generally
positive effects on plant growth and yield, with the exception of A. pullulans strain DSM
14950 and S. griseoviridis strain K61 applied individually.

We were able to assign different microorganisms and their combinations to specific
polyphenol compounds and determine the relationships between them. These results
provide insights into how the content of specific polyphenol compounds can be selectively
influenced through targeted inoculation with different microorganisms.

Our results highlight the potential of tested microorganisms in agricultural practices
for improving crop quality and quantity. Further investigation in this field is warranted to
fully elucidate the scope of their potential applications and optimize their utilization.
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Appendix A

Table A1. Results of one-way ANOVA.

F Value P

Colonization 25.223 2.643 × 10−6 ***
Shoot FW 27.161 9.537 × 10−12 ***
Shoot DW 29.249 3.523 × 10−12 ***
Root FW 21.455 2.083 × 10−10 ***
Root DW 10.937 5.755 × 10−7 ***

Yield 47.42 4.1 × 10−15 ***
GST 297.68 2.2 × 10−16 ***

Kaempferol 17.36 2.933 × 10−9 ***
Coumaric acid 33.488 5.545 × 10−13 ***

Coumaroyle hexoside 30.239 2.243 × 10−12 ***
Quercetin 202.9 <2.2 × 10−16 ***

Quercetin-3-diglucoside 422.88 <2.2 × 10−16 ***
Chlorogenic acid 17.245 3.181 × 10−9 ***

Sinapoyl 63.176 <2.2 × 10−16 ***
Di-caffeyl quinic acid 8.7901 5.327 × 10−6 ***

*** significant at p < 0.001.

Table A2. Results of Tukey’s post hoc test (COL: colonization level; SFW: shoot fresh weight; SDW:
shoot dry weight; RFW: root fresh weight; RDW: root dry weight; Y: yield; GST: gluthatione-S-
transferase enzyme activity; KMP: kaempferol; CA: coumaric acid; CHex: coumaroyl hexoside; QCT:
quercetin; Q3DG: quercetin-3-diglucoside; CGA: chlorogenic acid; SIN: sinapoyl DCQH: di-caffeyl
quinic acid; C: no treatment; M: F. mosseae; T: T. asperellum strain T34; S: S. griseoviridis strain K61;
A: A. pullulans strain DSM 14950; M + T: F. mosseae and T. asperellum strain T34; M + S: F. mosseae and
S. griseoviridis strain K61; M + A: F. mosseae and A. pullulans strain DSM 14950).

COL SFW SDW RFW RDW Y GST KMP CA CHex QCT QDG CGA SIN DCQH

C − A 0.438 0.296 0.496 0.999 0.999 0.000 0.069 0.000 0.080 0.000 0.000 0.999 0.000 0.041
M − A 0.000 0.000 0.000 0.001 0.000 0.999 0.072 0.000 0.815 0.000 0.000 0.000 0.999 0.037

M + A − A 0.000 0.000 0.000 0.000 0.000 0.064 0.974 0.084 0.000 0.000 0.000 0.087 0.000 0.022
M + S − A 0.005 0.009 0.000 0.011 0.000 0.000 0.353 0.000 0.137 0.000 0.000 0.064 0.000 0.031
M + T − A 0.000 0.000 0.000 0.001 0.000 0.053 0.817 0.303 0.754 0.000 0.000 0.000 0.003 0.027

S − A 0.999 0.995 0.999 0.999 0.000 0.062 0.381 0.092 0.999 0.000 0.000 0.056 0.999 0.003
T − A 0.001 0.000 0.072 0.371 0.000 0.203 0.000 0.376 0.449 0.000 0.000 0.908 0.038 0.999
M − C 0.000 0.000 0.001 0.002 0.000 0.000 0.000 0.983 0.088 0.000 0.673 0.000 0.000 0.008

M + A − C 0.000 0.000 0.000 0.001 0.000 0.000 0.046 0.005 0.000 0.000 0.000 0.074 0.000 0.006
M + S − C 0.467 0.752 0.016 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.027 0.066 0.648 0.022
M + T − C 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.001 1.000 0.000 0.794 0.000 0.000 0.001

S − C 0.789 0.735 0.299 0.999 0.000 0.000 0.000 0.023 0.568 0.000 0.048 0.055 0.000 0.000
T − C 0.128 0.090 0.496 0.496 0.000 0.000 0.000 0.001 0.999 0.998 0.999 0.739 0.000 0.002

M + A − M 0.014 0.994 0.999 0.977 0.999 0.348 0.064 0.107 0.000 0.000 0.020 0.000 0.000 0.000 0.999
M + S − M 0.999 0.005 0.000 0.934 0.982 0.124 0.000 0.728 0.002 0.039 0.000 0.872 0.007 0.000 0.003
M + T − M 0.000 0.999 0.998 0.999 1.000 0.051 0.071 0.272 0.000 0.075 0.000 0.999 0.025 0.001 0.999

S − M 0.000 0.000 0.000 0.000 0.999 0.056 0.999 0.002 0.953 0.000 0.921 0.002 1.000 0.000
T − M 0.036 0.006 0.112 0.214 0.999 0.086 0.025 0.000 0.071 0.002 0.840 0.000 0.494 0.031

M + S − M + A 0.010 0.001 0.000 0.419 0.935 0.000 0.224 0.905 0.000 0.000 0.000 0.000 0.986 0.000 0.000
M + T − M + A 0.057 0.999 0.999 0.999 0.999 0.000 0.636 0.999 0.997 0.000 0.001 0.000 0.025 0.000 0.988

S − M + A 0.000 0.000 0.000 0.000 0.140 0.481 0.287 0.999 0.000 0.000 0.000 0.999 0.000 0.000
T − M + A 0.005 0.011 0.056 0.132 0.662 0.601 0.000 0.991 0.000 0.000 0.000 0.448 0.000 0.016

M + T − M + S 0.000 0.001 0.001 0.782 0.977 0.336 0.000 0.993 0.000 0.000 0.000 0.770 0.023 0.000 0.001
S − M + S 0.023 0.042 0.000 0.004 0.218 0.000 0.949 0.000 0.034 0.803 0.999 0.999 0.000 0.916
T − M + S 0.994 0.857 0.686 0.731 0.054 0.000 0.006 0.000 0.000 0.000 0.137 0.094 0.000 0.008
S − M + T 0.000 0.000 0.000 0.000 0.053 0.978 0.569 0.919 0.520 0.001 0.840 0.031 0.001 0.000
T − M + T 0.010 0.033 0.050 0.198 0.051 0.727 0.001 0.999 0.999 0.000 0.921 0.002 0.110 0.005

T − S 0.003 0.001 0.054 0.198 0.992 0.093 0.033 0.866 0.250 0.000 0.179 0.202 0.046 0.001
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Table A3. Pearson correlation coefficient values (R: Pearson correlation; P: p-value; KMP: kaempferol;
CA: coumaric acid; CHex: coumaroyl hexoside; QCT: quercetin; Q3DG: quercetin-3-diglucoside; CGA:
chlorogenic acid; SIN: sinapoyl DCQH: di-caffeyl quinic acid; SFW: shoot fresh weight; SDW: shoot
dry weight; RFW: root fresh weight; RDW: root dry weight; Y: yield; GST: gluthation-S-transferase
enzyme activity). * moderate degree of correlation at R > ±0.30, ** high degree of correlation at
R > ±0.50.

KMP CA CHex QCT QDG CGA SIN DCQH SFW SDW RFW RDW Y GST

KMP R 1.00 −0.07 0.01 −0.23 −0.26 0.42 ** 0.28 −0.02 0.17 0.24 0.19 0.23 0.51 ** 0.57 **
P 0.66 0.97 0.15 0.10 0.01 0.08 0.90 0.29 0.13 0.24 0.14 0.00 0.00

CA R −0.07 1.00 0.13 −0.45 ** −0.52 ** 0.28 −0.58 ** −0.22 0.06 0.07 0.22 0.21 0.24 −0.53 **
P 0.66 0.42 0.00 0.00 0.08 0.00 0.18 0.70 0.69 0.17 0.18 0.14 0.00

CHex R 0.01 0.13 1.00 −0.27 0.18 0.19 0.41 ** 0.23 0.39 * 0.36 * 0.42 ** 0.40 ** 0.07 −0.13
P 0.97 0.42 0.09 0.26 0.25 0.01 0.16 0.01 0.02 0.01 0.01 0.69 0.43

QCT R −0.23 −0.45 ** −0.27 1.00 0.66 ** −0.52 ** −0.02 0.31 −0.23 −0.21 −0.27 −0.31 −0.75 ** 0.24
P 0.15 0.00 0.09 0.00 0.00 0.90 0.05 0.14 0.19 0.09 0.05 0.00 0.13

Q3DG R −0.26 −0.52 ** 0.18 0.66 ** 1.00 −0.41 ** 0.27 0.21 −0.29 −0.30 −0.28 −0.22 −0.61 ** 0.29
P 0.10 0.00 0.26 0.00 0.01 0.09 0.20 0.07 0.06 0.08 0.17 0.00 0.07

CGA R 0.42 ** 0.28 0.19 −0.52 ** −0.41 ** 1.00 0.24 0.14 0.50 ** 0.58 ** 0.51 ** 0.56 ** 0.61 ** 0.27
P 0.01 0.08 0.25 0.00 0.01 0.14 0.39 0.00 0.00 0.00 0.00 0.00 0.10

SIN R 0.28 −0.58 ** 0.41 ** −0.02 0.27 0.24 1.00 0.47 ** 0.56 ** 0.52 ** 0.38 * 0.38 * 0.25 0.48 **
P 0.08 0.00 0.01 0.90 0.09 0.14 0.00 0.00 0.00 0.01 0.01 0.13 0.00

DCQH R −0.02 −0.22 0.23 0.31 0.21 0.14 0.47 ** 1.00 0.58 ** 0.61 ** 0.45 ** 0.41 ** 0.02 0.21
P 0.90 0.18 0.16 0.05 0.20 0.39 0.00 0.00 0.00 0.00 0.01 0.92 0.19

SFW R 0.17 0.06 0.39 * −0.23 −0.29 0.50 ** 0.56 ** 0.58 ** 1.00 0.89 ** 0.83 ** 0.76 ** 0.51 ** 0.13
P 0.29 0.70 0.01 0.14 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.42

SDW R 0.24 0.07 0.36 * −0.21 −0.30 0.58 ** 0.52 ** 0.61 ** 0.89 ** 1.00 0.80 ** 0.68 ** 0.47 ** 0.16
P 0.13 0.69 0.02 0.19 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32

RFW R 0.19 0.22 0.42 ** −0.27 −0.28 0.51 ** 0.38 * 0.45 ** 0.83 ** 0.80 ** 1.00 0.75 ** 0.54 ** −0.02
P 0.24 0.17 0.01 0.09 0.08 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.90

RDW R 0.23 0.21 0.40 ** −0.31 −0.22 0.56 ** 0.38 * 0.41 ** 0.76 ** 0.68 ** 0.75 ** 1.00 0.46 ** 0.10
P 0.14 0.18 0.01 0.05 0.17 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.55

Y R 0.51 ** 0.24 0.07 −0.75 ** −0.61 ** 0.61 ** 0.25 0.02 0.51 ** 0.47 ** 0.54 ** 0.46 ** 1.00 0.14
P 0.00 0.14 0.69 0.00 0.00 0.00 0.13 0.92 0.00 0.00 0.00 0.00 0.39

GST R 0.57 ** −0.53 ** −0.13 0.24 0.29 0.27 0.48 ** 0.21 0.13 0.16 −0.02 0.10 0.14 1.00
P 0.00 0.00 0.43 0.13 0.07 0.10 0.00 0.19 0.42 0.32 0.90 0.55 0.39

Table A4. Eigenvalues of the principal component analysis.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Eigenvalue 2.682 2.094 1.170 0.832 0.551 0.408 0.136 0.127
Variability (%) 33.529 26.181 14.620 10.406 6.882 5.096 1.697 1.590
Cumulative % 33.529 59.710 74.330 84.736 91.617 96.713 98.410 100.000

Table A5. Correlations between variables and factors of the principal component analysis.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Kaempferol 0.186 0.350 −0.571 −0.117 −0.617 0.130 0.098 0.110
Coumaric acid 0.455 −0.183 0.407 0.254 −0.371 0.051 0.450 −0.433

Coumaroyl hexoside 0.012 0.394 0.651 −0.341 −0.268 0.198 −0.436 0.058
Quercetin −0.504 −0.189 −0.111 0.312 −0.405 −0.063 −0.440 −0.489

Quercetin-3-diglucoside −0.519 0.014 0.173 −0.233 −0.367 −0.446 0.498 0.255
Chlorogenic acid 0.352 0.414 −0.066 0.269 −0.062 −0.756 −0.228 0.017

Sinapoyl −0.221 0.587 −0.072 −0.171 0.322 0.037 0.286 −0.621
Di-caffeylquinic acid −0.249 0.368 0.179 0.743 0.058 0.291 0.151 0.328
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Table A6. Peak identification of the HPLC profile of phenolic compounds.

Peak No. Rt Absorption Maxima (nm) Compound’s Name

1 7.372 297 326 Feruloyl dihexose
2 8.692 281 313 Coumaroyl dihexose
3 9.211 281 300 328 Sinapoyl di-glucoside
4 9.803 299 325 Feruloyl hexose
5 10.202 216 242 299 331 Sinapoyl hexose
6 10.854 279 302 331 Sinapoyl catechoyl derivative
7 11.714 302 329 Sinapoyl derivative
8 12.801 289 312 Coumaroyl glucoside
9 13.116 210 230 314 Caffeoylquinic acid derivative

10 14.442 311 Coumaric acid
11 14.843 216 238 297 (sh) 330 Sinapic acid derivative
12 15.982 298 327 Neochlorogenic acid
13 16.311 284 328 Chlorogenic acid isomer
14 16.643 294 327 Chlorogenic acid
15 17.341 300 330 Sinapic acid
16 17.764 282 326 Ferulic acid derivative
17 18.132 282 325 Feruloyl catechin derivative
18 18.442 282 322 Caffeic acid
19 20.053 282 311 Di-coumaroylquinic acid-glucose
20 20.69 255 266 354 Quercetin.3-o-glucose-xylose
21 21.471 255 266 318 362 Isorahmnetin-3-coffeoly di-glucoside
22 255
23 24.317 297 329 Di-coffeoylquinic acid
24 25.634
25 27.482 255 266 355 Rutin
26 28.227 268 348 Kaempferoyl-3-glucoside
27 29.416 222 266 355 Quercetin-3-glucoside
28 30.112
29 30.604 298 332 Miric
30 36.354 241 297 322 Di-coffeoyl derivative
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